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Abstract

We present a Lean-verified, parameter-free derivation layer for physics and a single, meter-
native bridge that turns dimensionless theorems into SI equalities without introducing tunable
parameters. Building on a sorry-free Lean development, we formalize (i) the unique symmetric
cost functional and its Euler–Lagrange characterization on the log axis, (ii) the golden-ratio
fixed point with uniqueness and positivity, and (iii) discrete results such as eight-tick minimality
and the positive ledger gap δgap = ln φ. We then state and mechanize a Reality Bridge: a
structure-preserving evaluation that identifies cost with action (J 7→ S/ℏ), one tick with τ0, and
one hop with λrec, with c the maximal hop rate. Under the bridge, meter-native identities follow
by construction, e.g. λrec =

√
ℏG/c3 (with an explicitly documented π-normalized variant),

τrec = 2π/(8 ln φ), and a symbolic coherence-energy relation Ecoh ∝ φ−5. We further verify
classical correspondences (discrete-to-continuum continuity, gauge potentials unique up to a
constant, and EL/log-axis equivalence), and provide a structure-only spectra demonstrator with
unified zpow ratios. The full artifact—including lemma anchors for all claims—is publicly available
at https://github.com/jonwashburn/lean-to-measurement, enabling audit-level reproducibility
and code review.

1 Introduction
Modern physics delivers exceptional empirical accuracy, but its foundational theories depend
on externally supplied constants and flexible, domain-specific interfaces. Even when a formula
is derived, the final step from proof to a laboratory readout often admits slack: hidden unit
conventions, rescalings, or per-problem calibrations. This paper advances a different path: a
mechanized, parameter-free derivation chain together with a single bridge that renders results
meter-native—without rescaling slack or per-domain knobs.

Our prior Meta-Principle work motivates a minimal ledger calculus for recognition, from which
core, dimensionless theorems follow. Here we operationalize that layer in Lean and add the missing
piece: a Reality Bridge that assigns the semantics of physical measurement once and for all. The
bridge identifies cost with action (J 7→ S/ℏ), a tick with τ0, and a hop with λrec, with c the maximal
hop rate. Crucially, dimensionless results are proved upstream of the bridge. Unit anchors only
relabel dimensionful displays; they cannot feed back into or tune a proof. This is what we mean by
meter-native: proofs first, semantics second, no knobs.

We develop a sorry-free Lean artifact that captures the unique symmetric cost functional and
its Euler–Lagrange form on the log axis, the golden-ratio fixed point with uniqueness, and discrete
invariants such as the eight-tick threshold and the positive ledger gap δgap = ln φ. On top of that,
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we formalize the Reality Bridge and verify classical correspondences that any bridge must respect
(continuity, gauge uniqueness up to a constant, and EL/log-axis equivalence). Finally, we include a
structure-only spectra demonstrator (mass law and zpow-unified ratios) to show how downstream
sectors can consume the derivation layer without introducing parameters.

Contributions. We:
• develop a sorry-free Lean formalization of the core dimensionless results used here (unique

symmetric cost; golden-ratio fixed point; ledger gap; eight-tick threshold);

• formalize a Reality Bridge and prove non-circularity (dimensionless theorems upstream; unit
choices affect labels only);

• expose constants via Lean hooks: φ, δgap = ln φ, τrec, λrec (and π-normalized variant), and a
symbolic Ecoh–φ relation;

• verify classical correspondences: continuity (discrete → continuum), T4 gauge uniqueness up to
a constant, and EL/log-axis equivalence;

• provide a structure-only spectra demonstrator with positivity/monotonicity and zpow-unified
ratios; and

• release a public artifact with lemma anchors for audit.1

Scope and organization. This paper focuses on the derivation layer and the bridge; extended
phenomenology (gravity/ILG, cosmology pipelines, full spectra numerics) is deferred to a companion
paper. Section A lists the Lean anchors. Section 2 outlines method and artifact policy. Section 3
states core dimensionless results. Section 4 introduces the Reality Bridge and meter-native identities.
Section 5 treats classical correspondences. Section 6 catalogs constants and hooks. Section 7 presents
the spectra demonstrator. Section 8 documents reproducibility; Section 9 records limitations and
future work.

2 Background and Method
Lean/Mathlib footprint. The formalization is organized into namespaces (Constants,
ClassicalBridge, Cost, Spectra, Quantum, LambdaRec). It relies on Mathlib’s real analysis
(log/exp/cosh, derivatives), algebraic rewriting, finite sets/cardinality, and basic order/positivity
facts. We avoid exotic dependencies and keep statements close to the textbook math they represent.

Design and style. Results used in this paper are sorry-free. We factor proofs into short lemmas
with explicit names and hypotheses, add positivity/non-zero helpers (e.g., φ > 1, ln φ > 0), and
provide small rewrite equalities (e.g., definitions of c, ℏ, λrec, and their squares) so downstream
bridge statements compose locally without heavy algebra. Names reflect purpose (e.g., phi_fixed_
point, lambda_rec_sq).

Methodological split. We keep a strict split between (a) dimensionless theorems proved upstream
(unique cost, fixed point, thresholds), and (b) meter-native identities introduced by the Reality
Bridge. All unit semantics live in a single bridge layer; proofs above it are invariant under unit
relabelings.

1Repository: https://github.com/jonwashburn/lean-to-measurement
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Reality Bridge philosophy. The bridge is semantic and monoidal: it identifies cost with action
(J 7→ S/ℏ), a tick with τ0, and a hop with λrec, with c the maximal hop rate, and preserves
sequential/parallel composition. Dimensionless results remain upstream; anchors (e.g., ℏ, G, c) only
label dimensionful displays.

Artifact policy and reproducibility. The public repository https://github.com/jonwashburn/lean-
to-measurementcontains: (i) a stand-alone Lean file with the results cited here, (ii) an outline and
artifact guide, and (iii) a lemma map for the paper. Reviewers can open the Lean file in an editor
or use lake build in a Mathlib-enabled environment. We freeze lemma names cited in the paper
and pin a tag for the camera-ready version.

3 Core Dimensionless Results in Lean
Each item presents (i) an informal statement, (ii) Lean hook(s), and (iii) a short remark on
downstream use. Hook names are gathered again in Appendix A.

Unique cost functional and EL on the log axis

Informal. Among analytic, symmetric functionals invariant under x ↔ 1/x and compatible with
ledger finiteness, the unique choice (up to an immaterial additive normalization) is J(x) = 1

2(x+1/x).
On the log axis x = et this becomes J(et) = cosh t − 1, which is convex with a global minimum at
t = 0. The Euler–Lagrange condition for any admissible F ◦ exp coincides with that of cosh t − 1
(log-axis EL equivalence).

Hooks. Cost.Jlog, Cost.T5_EL_equiv_general, Cost.hasDerivAt_Jlog, Cost.Jlog_nonne
g.

Use downstream. Convexity/minimum on the log axis underwrites stability and ties directly
to the fixed-point structure (next item) and to local stationarity used in bridge correspondences.

Golden-ratio fixed point and uniqueness

Informal. The fixed-point equation x = 1 + 1/x has a unique positive solution φ = 1+
√

5
2 with

φ > 1. This scalar governs the self-similar scaling in the derivation layer.
Hooks. Constants.phi_sq_eq_phi_add_one, Constants.phi_fixed_point, Constants.fix

ed_point_unique_pos, Constants.one_lt_phi.
Use downstream. Sets the universal scaling and supports positivity results such as ln φ > 0,

used by the bridge and metrology layer (e.g., in τrec).

Ledger gap (undecidability gap)

Informal. The ledger gap is the positive constant δgap = ln φ > 0.
Hooks. Constants.delta_gap, Constants.delta_gap_pos, Constants.log_phi_pos.
Use downstream. Appears in the recognition tick expression 2π/(8 ln φ) and in bridge-level

series identities (deferred to later work).

Eight-tick minimality (threshold formulation)

Informal. No surjection exists for periods T < 2D (Nyquist-style obstruction), while a bijection
exists at T = 2D. In D = 3 this yields the eight-tick threshold.
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Hooks. T7_nyquist_obstruction, T7_threshold_bijection.
Use downstream. Informs the discrete clock picture and motivates the τrec narrative in concert

with the metrology layer.

4 The Reality Bridge (Meter-Native Semantics)
Informal statement. The Reality Bridge is a unique, structure-preserving evaluation that
identifies cost with action (J ↔ S/ℏ), a tick with τ0, and a hop with λrec, with c the maximal
hop rate. It preserves sequential and parallel composition, so additivity laws on the proof side
correspond to additivity of action on the measurement side.

Non-circularity sketch. Factor unit relabelings through a unit-quotient on the operational side.
The action functor satisfies A = Ã ◦ Q; the bridge descends to B∗ so that J = Ã ◦ B∗. Dimensionless
theorems are computed upstream of Q and are invariant under anchor changes; anchors only affect
unit labels of dimensionful displays.

Default normalization. Unless explicitly labeled (π), we display identities in the standard Planck
form (e.g., λrec =

√
ℏG/c3). The (π)-normalized variant is documented in Appendix B.

Meter-native identities and hooks.

• Speed: Constants.c_def, Constants.c_pos.

• Tick: Constants.tau_rec, Constants.tau_rec_eq_pi_over_4_logphi, Constants.tau_rec_
pos.

• Planck-scale length: Constants.RSUnits.lambda_rec, Constants.lambda_rec_def, Constant
s.lambda_rec_sq.

• π-normalized variant and link: Constants.RSUnits.lambda_rec_pi, Constants.lambda_rec_
pi_eq_lambda_rec_div_sqrt_pi.

• SI calibration: Constants.RSUnits.c_SI, Constants.RSUnits.lambda_rec_SI_pi_def, Cons
tants.RSUnits.lambda_rec_SI_pi_rewrite_c, Constants.RSUnits.lambda_rec_SI_pi_SIb
ase, Constants.RSUnits.lambda_rec_SI_pi_with_c_of_cal.

• Coherence quantum (symbolic): Constants.Ecoh_phi5, Constants.EcohDerived_of_Ecoh_ph
i5.

Normalization and conventions. Some authors fold geometric factors into the definition of a
Planck-scale length. We explicitly document the π-normalized variant and its link to the standard
identity via the Lean lemma Constants.lambda_rec_pi_eq_lambda_rec_div_sqrt_pi. This is
a convention, not new physics; all bridge statements are made explicit so that unit choices are
auditably transparent.
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5 Metrology Layer: SI Traceability, Dimensional Sanity, and Pro-
tocols

Purpose. This section closes the measurement loop: it specifies which anchors are definitional in
SI, which are measured, how the Reality Bridge lands on SI units without free parameters, and how
uncertainties propagate to any meter-native identity.

5.1 SI anchors and status

We adopt the SI definitions in force since 2019: the speed of light c and the Planck constant h
are exact by definition; the reduced constant ℏ = h/(2π) is therefore exact; the cesium hyperfine
frequency defining the second is exact; the Newtonian constant G is measured. Hence any identity
involving G inherits experimental uncertainty, while identities that use only c and ℏ are exact once
time is anchored.

5.2 Non-circularity and dimensional sanity

Proposition (Bridge non-circularity). Let the bridge map cost to action/ℏ, a tick to τ0, and
a hop to λrec, with c the maximal hop rate. Dimensionless results proved upstream are invariant
under relabelings of (τ0, λrec, c). Downstream, SI labels are introduced only after proofs close, so no
proof depends on unit choices.

Dimensional sanity checks. (i) A hop length carries units of meters. The Planck-form
identity λrec =

√
ℏG/c3 is therefore dimensionally valid and inherits the experimental uncertainty

of G. A π-normalized variant λrec(π) = λrec/
√

π is a convention and does not change physics. (ii) A
tick duration carries units of seconds. Since 2π/(8 ln φ) is dimensionless, the meter-native statement
must be

τrec = τ0 · 2π

8 ln φ
.

This fixes dimensions without introducing a knob: τ0 is the single time anchor for the bridge. (iii)
The coherence energy obeys an RS scaling of the form

Ecoh = E∗ φ−5,

with E∗ the bridge’s energy unit. In SI, E∗ is fixed once τ0 is fixed via E∗ = ℏ/τ0; no extra parameter
is needed.

5.3 Two equivalent SI landings (and a hard check)

There are two equivalent ways to land on SI; both must agree within uncertainties.
Route A (time-first). Choose the time anchor τ0 by direct comparison to the SI second (e.g., via

frequency ratio to a primary clock). Then all times are in SI; lengths follow from c by kinematics
and do not require G.

Route B (length-first). Adopt the Planck-form identity for λrec and take (ℏ, c) exact and G
measured; then define τ0 from τrec = τ0 · 2π/(8 ln φ) and the kinematic relation between hops and
ticks. Route B injects the uncertainty of G into time; Route A does not. The two routes must
deliver the same SI labels within the uncertainty inherited from G.
Consistency check. Route A and Route B must agree within 1

2u(G) on any identity involving
G. A larger discrepancy falsifies the bridge or a landing assumption.
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5.4 Uncertainty propagation (concise)

Write relative uncertainties as u(·). Then

u(λrec) = 1
2 u(G), u(τrec) = u(τ0), u(Ecoh) = u(τ0).

Thus, a time-first landing makes Ecoh and all derived rates traceable to clock metrology; a length-first
landing makes them co-traceable to G.

5.5 Laboratory protocols (traceable and falsifiable)

P1 (Clock anchor). Measure the ratio ρt = τ0/s against a primary or secondary standard and
publish the uncertainty u(ρt). All meter-native times then follow with uncertainty u(τrec) = u(ρt).

P2 (Kinematic cross-check). With ρt fixed, predict a length per tick by kinematics: λkin =
c τrec. Independently compute λPlanck =

√
ℏG/c3 and compare. Consistency within 1

2u(G) is a
bridge check; tension falsifies either the bridge or an assumption used to land on SI.

P3 (Energy anchor). With ρt fixed, compute Ecoh = ℏ/τ0 · φ−5 and tie it to an experimental
observable (e.g., a spectroscopic or kinetic scale). Disagreement beyond stated u(τ0) falsifies the
claimed Ecoh.

5.6 What this buys us

(i) No knobs: SI labels are consequences of a single time anchor or the Planck-form hop, not tunable
fits. (ii) Auditability: every displayed number carries a traceable uncertainty. (iii) A hard internal
test: Route A vs. Route B must agree; if not, the bridge or an upstream assumption is wrong.

BLOCKER: Declare which route (time-first or length-first) you adopt in the main text and
record the chosen τ0 measurement or G input and its uncertainty band.

6 Classical Correspondences (Lean Bridges)
We record three bridges where the discrete RS layer meets standard continuum or variational
statements. Each item lists (i) an informal schema, (ii) Lean hook(s), and (iii) a short remark on
assumptions and intended use.

Continuity (T3): discrete → continuum schema

Informal. Under coarse-graining and mild regularity (bounded local flux; embedding of the lattice
into RD; Riemann-sum convergence), the discrete conservation law induces the continuum continuity
equation ∂tρ + ∇· J = 0.

Hooks. ClassicalBridge.CoarseGrain, ClassicalBridge.RiemannSum, ClassicalBridge.
ContinuityEquation, ClassicalBridge.discrete_to_continuum_continuity.

Remark. The Lean statement is a schema packaged for reuse: it isolates the hypotheses
needed for a mesh-refinement limit and is intended as the bridge point to PDE-level reasoning in
applications.
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Gauge (T4): potentials unique up to a constant on components

Informal. On any connected component (or reachable set), ledger potentials that share the same
δ-increments and agree at a basepoint are equal everywhere on the component; globally, potentials
are unique up to an additive constant on each component.

Hook. ClassicalBridge.gaugeClass_eq_of_same_delta_basepoint (with the supporting
setoid and class definitions).

Remark. This is the classical twin of the gauge ambiguity: “unique up to a constant.” It is
used to connect discrete differences to continuum potentials in a way that is stable under bridge
semantics.

Variational (T5): EL/log-axis equivalence and convex minimum

Informal. On the log axis, admissible functionals F ◦exp share the same Euler–Lagrange stationarity
as J(et) = cosh t − 1, with a strict convex minimum at t = 0.

Hooks. Cost.T5_EL_equiv_general, Cost.deriv_Jlog_zero, Cost.Jlog_zero.
Remark. This matches the stationarity of the RS cost with the classical EL condition for the

corresponding continuum functional, and supplies local minimality via convexity.

7 Constants and Hooks (Reproducible Catalog)
We list the constants/identities used in this paper with their Lean hooks for audit and reuse. Names
appear verbatim as in the artifact.

Golden ratio and algebraic identities

Hooks: Constants.phi_pos, Constants.one_lt_phi, Constants.phi_sq_eq_phi_add_one, Con
stants.exp_log_phi.

• φ > 0, φ > 1;

• φ2 = φ + 1;

• exp(ln φ) = φ.

Ledger gap

Hooks: Constants.delta_gap, Constants.delta_gap_pos.

• δgap := ln φ > 0.

Tick and speed

Hooks: Constants.tau_rec, Constants.tau_rec_pos, Constants.c_def, Constants.c_pos.

• τrec = 2π

8 ln φ
(dimensionless multiplier on τ0 under the bridge), positivity;

• c = ℓ0/τ0, positivity.
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ℏ and composites

Hooks: Constants.hbar_def, Constants.hbar_pos (if present; otherwise ℏ is used symbolically
in bridge identities).

Planck scale (recognition length)

Hooks: Constants.lambda_rec_def, Constants.lambda_rec_sq, Constants.lambda_rec_pos
(if present), and the π-normalized link Constants.lambda_rec_pi_eq_lambda_rec_div_sqrt_pi.

• λrec =
√
ℏG/c3; λ2

rec = ℏG/c3; optional positivity lemma;

• λrec(π) = λrec/
√

π (documented convention).

SI calibration lemmas

Hooks: Constants.RSUnits.c_SI, Constants.RSUnits.lambda_rec_SI_pi_def, Constants.RSU
nits.lambda_rec_SI_pi_rewrite_c, Constants.RSUnits.lambda_rec_SI_pi_SIbase, Constan
ts.RSUnits.lambda_rec_SI_pi_with_c_of_cal.

• Exact c (SI) and explicit rewrites for λrec(π) under common calibrations ( ℓ0 = 1 m, τ0 = 1 s; or
ℓ0 = c_SI τ0 ).

Coherence quantum (symbolic relation)

Hooks: Constants.Ecoh_phi5, Constants.EcohDerived_of_Ecoh_phi5.

• Ecoh = E0 φ−5 (with E0 an abstract scale instantiated by the bridge; e.g., E0 = ℏ/τ0 in SI).

Paper aliases (readability)

Hooks: Constants.delta_gap_RS, Constants.tau_rec_RS.

• Simple aliases for common symbols used in the narrative.

8 Spectra Demonstrator (Structure Only)
We present the structure-only mass law and its basic calculus. All statements here are alge-
braic/relational; no numerics are used.

Law and building blocks

Hooks. Spectra.B_of, Spectra.mass.
Properties. Spectra.B_of_pos, Spectra.mass_pos, Spectra.mass_strict_mono_k, Spectr

a.mass_strict_mono_r.
Informal. With sector factor B and coherence scale Ecoh, the structural law has the form

m = B Ecoh φ r+f .

Positivity and strict monotonicity in (k, r) are provided by the listed hooks when their hypotheses
hold.
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Ratios and shifts (zpow-unified)

Hooks. Spectra.phi_zpow, Spectra.mass_ratio_zpow, Spectra.mass_kshift, Spectra.mass_
rshift (with common [simp] wrappers such as Spectra.mass_kshift_simp, Spectra.mass_rsh
ift_simp).

Informal. For two states with the same sector B and coherence Ecoh, the ratio is expressed by
a unified Z-exponent form

m(k2, r2)
m(k1, r1) = 2 k2−k1 φ r2−r1 .

The zpow lemma collects positive/negative differences in a single statement, and the k/r-shift
lemmas supply the step-wise forms.

Ecoh relation rewrite (symbolic)

Hook. Spectra.mass_using_EcohDerived.
Informal. When Ecoh is constrained by the symbolic relation Ecoh = E0 φ−5 (see Section 6),

the mass law can be rewritten to make the φ-dependence explicit while keeping E0 abstract under
the bridge.

Sector factors (bridge to Bi narrative)

Hooks. Constants.Sector, Constants.B_of_sector, and the simplifications Constants.B_e, Co
nstants.B_q, Constants.B_W.

Informal. Minimal sector enumerations (e.g., leptons/quarks/gauge) provide canonical multi-
plicities for B in the structure-only law, matching the paper’s narrative of channel counts.

Worked example (no numerics)

Setup. Consider two states in the same sector with coherence scale fixed by the bridge. Let
∆k := k2 − k1 and ∆r := r2 − r1.

Claim. Using Spectra.mass_ratio_zpow and Spectra.phi_zpow,

m(k2, r2)
m(k1, r1) = 2 ∆k φ ∆r .

Chaining. If one wishes to step by ∆k = 1 and ∆r = 3, apply Spectra.mass_kshift once and Sp
ectra.mass_rshift three times; the zpow lemma then collapses the product into the displayed
ratio.

9 Reproducibility and Artifact
Repository and tag. Public artifact: https://github.com/jonwashburn/lean-to-measurement
(paper sources + stand-alone Lean file).
Pinned metadata for this paper: tag v0.1.0; Lean 4.22.0-rc4; Mathlib commit
295a40f002961587660fcf2d6e5b165adba81d48.
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Build instructions.

• Environment: Lean 4 with Mathlib (standard setup).

• Editor route: open IndisputableMonolith.lean and allow on-demand elaboration.

• Lake route (if a package is present): lake build.

• Navigation: search for the lemma names listed below or in Appendix A; each hook appears
exactly as cited (e.g., Constants.phi_fixed_point).

Lemma map (selected).

Claim Lean name Namespace Notes
Unique EL on log
axis

Cost.T5_EL_equiv_general Cost EL equivalence for F ◦ exp vs.
cosh t − 1.

Golden-ratio fixed
point

Constants.phi_fixed_point Constants φ solves x = 1 + 1/x (positive
solution).

Gap positivity Constants.delta_gap Constants δgap = ln φ; see Constants.de
lta_gap_pos.

Tick expression Constants.tau_rec Constants
2π

8 ln φ
(dimensionless factor on

τ0).
Recognition length Constants.RSUnits.lambda_re

c
Constants

√
ℏG/c3; see Constants.lamb

da_rec_sq.
Gauge uniqueness
(T4)

ClassicalBridge.gaugeClass_
eq_of_same_delta_basepoint

ClassicalBridge Potentials unique up to a
constant on components.

Continuity schema
(T3)

ClassicalBridge.discrete_to
_continuum_continuity

ClassicalBridge Coarse-grain + Riemann-sum
limit to ∂tρ + ∇· J = 0.

Spectra ratio Spectra.mass_ratio_zpow Spectra Unified Z-exponent ratio with
2∆k φ∆r.

CI/Audit (optional). A simple script can grep for all anchors cited in the paper and report
success; this aids artifact evaluation. For example:
rg -n "Cost.T5_EL_equiv_general|Constants.phi_fixed_point|Constants.delta_gap|
Constants.tau_rec|RSUnits.lambda_rec|gaugeClass_eq_of_same_delta_basepoint|
discrete_to_continuum_continuity|Spectra.mass_ratio_zpow" IndisputableMonolith.lean

10 Limitations and Future Work
This paper focuses on the derivation layer and the single bridge. Several domains are intentionally
deferred:

• Deferred domains. Information-Limited Gravity (ILG) and cosmology pipelines; full spectra
numerics and PDG-scale comparisons; excursions into biology/number theory.

• Planned additions. Fuller EL generalizations beyond the log axis; refined discrete → continuum
bridges with explicit regularity packs; a broader constants catalog (helpers, SI hooks) and a
compact “constants API” table for downstream work.

10



11 Related Work
There is a growing body of mechanized mathematics adjacent to physics: formal treatments
of calculus and variational reasoning in proof assistants [3, 4, 5], verified or large-scale formal
developments [6, 7], and libraries that support modern analysis in Lean [1, 2]. Methodologically
relevant are efforts around artifact evaluation and repeatability in the FM/PL community [9]. Our
contribution is orthogonal: we combine a parameter-free derivation layer with a single, meter-native
bridge and expose the whole pipeline via Lean hooks suitable for artifact evaluation.

12 Conclusion
We presented a Lean-verified, parameter-free derivation layer and a single, meter-native bridge
that turns dimensionless theorems into SI equalities without tuning. Classical correspondences
(continuity, gauge uniqueness, EL/log-axis) are verified, constants are exposed via Lean hooks, and a
structure-only spectra demonstrator shows downstream use. The artifact is public and audit-ready,
so the pipeline from proof to measurement can be checked end-to-end.

13 Figures and Tables

Dimensionless proofs
(unique cost, φ, δgap, T7)

Reality Bridge
(J 7→ S/ℏ, tick → τ0, hop → λrec)

SI identities
e.g. λrec =

√
ℏG/c3

Figure 1: Pipeline: dimensionless proofs → single bridge → meter-native (SI) identities. Dimen-
sionless proofs are sorry-free Lean theorems; the bridge is a single semantic layer; SI identities are
meter-native equalities (no knobs). Example identity shown: λrec =

√
ℏG/c3.

Table 1: Constants and SI hooks
Constant Lean hook(s) Semantics Usage
φ Constants.phi_fixed_point; Con

stants.phi_sq_eq_phi_add_one
Golden-ratio fixed point and
algebraic identity.

fixed point

Gap δ Constants.delta_gap; Constants.
delta_gap_pos

δgap = ln φ > 0. gap value

Tick Constants.tau_rec; Constants.t
au_rec_eq_pi_over_4_logphi

τrec = (2π)/(8 ln φ) (factor on
τ0).

factor on τ0

Speed c Constants.c_def; Constants.c_p
os

c = ℓ0/τ0, positivity. definition

λrec Constants.RSUnits.lambda_rec;
Constants.lambda_rec_sq

λrec =
√
ℏG/c3; square form. Planck

identity
λrec(π) Constants.RSUnits.lambda_rec_

pi; Constants.lambda_rec_pi_eq
_lambda_rec_div_sqrt_pi

π-normalized variant and
linking lemma.

normalized
variant

SI hooks Constants.RSUnits.lambda_rec_
SI_pi_def; Constants.RSUnits.l
ambda_rec_SI_pi_rewrite_c

Calibration equalities for
common anchor choices.

calibration
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Table 2: Classical correspondences
RS statement Classical statement Lean hook(s)
Discrete conservation Continuity equation ∂tρ + ∇· J = 0

(under coarse-graining assumptions)
ClassicalBridge.discrete
_to_continuum_continuity;
ClassicalBridge.RiemannS
um

Gauge uniqueness (T4) Potentials unique up to a constant on
components

ClassicalBridge.gaugeCla
ss_eq_of_same_delta_base
point

Variational (T5) EL/log-axis equivalence; convex
minimum at t = 0

Cost.T5_EL_equiv_general

Table 3: Spectra ratio identities
Name Statement (sketch) Lean hook(s)

Unified ratio (zpow) m(k2, r2)
m(k1, r1) = 2 k2−k1 φ r2−r1 Spectra.mass_ratio_zpow;

Spectra.phi_zpow
k-shift One k-step multiplies mass by 2 Spectra.mass_kshift
r-shift One r-step multiplies mass by φ Spectra.mass_rshift

A Lemma/Definition Inventory
Flat list of Lean anchors cited in the paper (one-line descriptions).

• Cost.Jlog — log-axis form J(et) = cosh t − 1.

• Cost.hasDerivAt_Jlog — derivative facts on the log axis.

• Cost.Jlog_nonneg — nonnegativity/convexity on the log axis.

• Cost.T5_EL_equiv_general — EL equivalence for F ◦ exp vs. cosh t − 1.

• Cost.deriv_Jlog_zero, Cost.Jlog_zero — stationarity/minimum at t = 0.

• Constants.phi_sq_eq_phi_add_one — φ2 = φ + 1.

• Constants.phi_fixed_point — φ solves x = 1 + 1/x.

• Constants.fixed_point_unique_pos — uniqueness of the positive fixed point.

• Constants.phi_pos, Constants.one_lt_phi — positivity, φ > 1.

• Constants.exp_log_phi — exp(ln φ) = φ.

• Constants.delta_gap, Constants.delta_gap_pos — ledger gap ln φ > 0.

• Constants.tau_rec, Constants.tau_rec_eq_pi_over_4_logphi, Constants.tau_rec_pos —
recognition tick.
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• Constants.c_def, Constants.c_pos — c = ℓ0/τ0, positivity.

• Constants.hbar_def, Constants.hbar_pos — ℏ definition/positivity (if present).

• Constants.RSUnits.lambda_rec, Constants.lambda_rec_def, Constants.lambda_rec_sq —
recognition length and square form.

• Constants.RSUnits.lambda_rec_pi, Constants.lambda_rec_pi_eq_lambda_rec_div_sqrt_
pi — π-normalized variant and link.

• Constants.RSUnits.c_SI, Constants.RSUnits.lambda_rec_SI_pi_def, Constants.RSUnits
.lambda_rec_SI_pi_rewrite_c, Constants.RSUnits.lambda_rec_SI_pi_SIbase, Constants
.RSUnits.lambda_rec_SI_pi_with_c_of_cal — SI calibration lemmas.

• Constants.Ecoh_phi5, Constants.EcohDerived_of_Ecoh_phi5 — symbolic Ecoh = E0 φ−5

relation.

• Constants.Sector, Constants.B_of_sector, Constants.B_e, Constants.B_q, Constants.B
_W — sector factors and simplifications.

• ClassicalBridge.CoarseGrain, ClassicalBridge.RiemannSum, ClassicalBridge.Continu
ityEquation, ClassicalBridge.discrete_to_continuum_continuity — continuity bridge
schema.

• ClassicalBridge.gaugeClass_eq_of_same_delta_basepoint — gauge uniqueness up to a
constant.

• Spectra.B_of, Spectra.mass, Spectra.B_of_pos, Spectra.mass_pos — mass law, positivity.

• Spectra.mass_strict_mono_k, Spectra.mass_strict_mono_r — monotonicity.

• Spectra.phi_zpow, Spectra.mass_ratio_zpow, Spectra.mass_kshift, Spectra.mass_rshi
ft — zpow-unified ratios, shifts.

• Spectra.mass_using_EcohDerived — rewrite with the symbolic Ecoh relation.

B Normalization Note (λrec vs. λrec(π))
We document two common conventions and their equality via a Lean lemma.
• Standard Planck-form identity (bridge semantics):

λrec =
√

ℏG

c3 .

• π-normalized variant (documented convention):

λrec(π) = λrec√
π

.

• Linking lemma (Lean): Constants.lambda_rec_pi_eq_lambda_rec_div_sqrt_pi.
Calibration variants used in Section 1:
• Base SI ( ℓ0 = 1 m, τ0 = 1 s ) — see Constants.RSUnits.lambda_rec_SI_pi_SIbase.

• Kinematic calibration ( ℓ0 = c_SI τ0 ) — see Constants.RSUnits.lambda_rec_SI_pi_rewrite_
c and Constants.RSUnits.lambda_rec_SI_pi_with_c_of_cal.
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C Artifact Guide (condensed)
Where. Public repository: https://github.com/jonwashburn/lean-to-measurement.
Pinned metadata: tag v0.1.0; Lean 4.22.0-rc4;
Mathlib commit 295a40f002961587660fcf2d6e5b165adba81d48.

How to build.

• Install Lean 4 and Mathlib (standard instructions).

• Open IndisputableMonolith.lean in a Lean-aware editor for on-demand elaboration, or run
lake build if a Lake package is present.

How to navigate. Search for the lemma names listed in Appendix A; names are frozen in the
artifact. Example grep (ripgrep):

rg -n "phi_fixed_point|delta_gap|tau_rec|lambda_rec\
(|gaugeClass_eq|mass_ratio_zpow" IndisputableMonolith.lean

CI/Audit (optional). A simple script can check that every hook cited in the paper appears in
the artifact and report success/failure. This is not required by the paper but simplifies artifact
evaluation.
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