View the complete Lean proof file on GitHub: IndisputableMonolith.lean
LEAN TRAINING GUIDE: IndisputableMonolith.lean ============================================== PURPOSE: AI training for formal verification of Recognition Science theorems. FILE: IndisputableMonolith.lean (1490 lines, sorry-free) STATUS: All eight theorems T1-T8 formally proved in Lean 4 + Mathlib (All Formally Proved) PROOF STRUCTURE OVERVIEW ======================== - T1 (MP): mp_holds — Nothing cannot recognize itself - T2 (Atomicity): T2_atomicity — unique posting per tick - T3 (Continuity): T3_continuity — flux vanishes on closed chains - T4 (Potential): T4_unique_on_component — uniqueness up to constant - T5 (Cost): T5_cost_uniqueness_on_pos — J(x) unique on ℝ₊ - T6 (Eight-tick): eight_tick_min + T6_exist_8 — period = 2^D - T7 (Nyquist): T7_nyquist_obstruction — coverage lower bound - T8 (Units): LedgerUnits.equiv_delta — δ-subgroup ≃ ℤ CORE DEFINITIONS =============== Nothing := Empty Recognition (A B : Type) := {recognizer : A, recognized : B} MP : Prop := ¬ ∃ _ : Recognition Nothing Nothing, True RecognitionStructure := {U : Type, R : U → U → Prop} Chain (M : RecognitionStructure) := {n : Nat, f : Fin (n+1) → M.U, ok : ∀ i, M.R (f i.castSucc) (f i.succ)} Ledger (M : RecognitionStructure) := {debit : M.U → ℤ, credit : M.U → ℤ} phi (L : Ledger M) : M.U → ℤ := fun u => L.debit u - L.credit u chainFlux (L : Ledger M) (ch : Chain M) : ℤ := phi L (Chain.last ch) - phi L (Chain.head ch) THEOREM PROOFS (LEAN FUNCTIONS) =============================== T1: mp_holds : MP - Proof: intro ⟨⟨r, _⟩, _⟩; cases r - Logic: Empty type has no constructors T2: T2_atomicity {M} [AtomicTick M] : ∀ t u v, postedAt t u → postedAt t v → u = v - Uses: unique_post from AtomicTick class - Logic: existential uniqueness implies equality T3: T3_continuity {M} (L : Ledger M) [Conserves L] : ∀ ch, ch.head = ch.last → chainFlux L ch = 0 - Direct: Conserves.conserve (interface axiom) - Bridge: discrete continuity equation T4: T4_unique_on_component {δ} {p q : Pot M} (hp : DE δ p) (hq : DE δ q) {x0 y} (hbase : p x0 = q x0) (hreach : Reaches x0 y) : p y = q y - Uses: diff_const_on_ReachN via edge_diff_invariant - Logic: constant difference propagates along paths T5: T5_cost_uniqueness_on_pos {F : ℝ → ℝ} [JensenSketch F] : ∀ {x}, 0 < x → F x = Jcost x - Uses: AveragingDerivation interface + exp-axis agreement - Logic: symmetry + unit + averaging → unique cost T6: eight_tick_min {T} (pass : Fin T → Pattern 3) (covers : Surjective pass) : 8 ≤ T - Uses: no_surj_small via cardinality argument - Logic: cannot cover 2^3 patterns with < 8 elements T7: T7_nyquist_obstruction {T D} (hT : T < 2^D) : ¬ ∃ f : Fin T → Pattern D, Surjective f - Alias: no_surj_small - Logic: cardinality obstruction T8: LedgerUnits.equiv_delta (δ ≠ 0) : DeltaSub δ ≃ ℤ - Maps: n·δ ↦ n (non-canonical for δ ≠ 0) - Logic: subgroup isomorphism via Classical.choose KEY LEAN TECHNIQUES USED ======================== 1. Inductive types: ReachN, Chain construction 2. Classical logic: Classical.choose for existence 3. Typeclass system: AtomicTick, Conserves, SymmUnit 4. Cardinality arguments: Fintype.card bounds 5. Field arithmetic: field_simp for algebraic manipulation 6. Real analysis: Real.exp, Real.log, derivatives 7. Subtype construction: DeltaSub as {x // ∃ n, x = n * δ} CAUSALITY FRAMEWORK ================== ReachN (K : Kinematics α) : Nat → α → α → Prop | zero {x} : ReachN K 0 x x | succ {n x y z} : ReachN K n x y → K.step y z → ReachN K (n+1) x z inBall (K : Kinematics α) (x : α) (n : Nat) (y : α) : Prop := ∃ k ≤ n, ReachN K k x y ballP (K : Kinematics α) (x : α) : Nat → α → Prop | 0, y => y = x | Nat.succ n, y => ballP K x n y ∨ ∃ z, ballP K x n z ∧ K.step z y COST UNIQUENESS FRAMEWORK ========================= Jcost (x : ℝ) : ℝ := (x + x⁻¹) / 2 - 1 SymmUnit (F : ℝ → ℝ) : Prop := - symmetric : ∀ {x}, 0 < x → F x = F x⁻¹ - unit0 : F 1 = 0 AveragingDerivation (F : ℝ → ℝ) extends SymmUnit F : Prop := - agrees : AgreesOnExp F (∀ t, F (Real.exp t) = Jcost (Real.exp t)) LogModel (G : ℝ → ℝ) : Prop := - even_log : ∀ t, G (-t) = G t - base0 : G 0 = 0 - upper_cosh : ∀ t, G t ≤ ((Real.exp t + Real.exp (-t)) / 2 - 1) - lower_cosh : ∀ t, ((Real.exp t + Real.exp (-t)) / 2 - 1) ≤ G t CLASSICAL BRIDGE MAPPINGS ========================= T3: Conserves ↔ DiscreteContinuity (∂ρ/∂t + ∇·J = 0) T4: Potential uniqueness ↔ Gauge freedom (up to additive constant) T5: Cost uniqueness ↔ Stationary action / Euler-Lagrange T6: Eight-tick ↔ Minimal period (discrete time structure) CONSTANTS FRAMEWORK ================== RSUnits := {tau0 : ℝ, ell0 : ℝ, Ecoh : ℝ, positivity proofs} ClassicalParams := {G : ℝ, alpha : ℝ, pos_G : 0 < G} Derived constants: - c (U : RSUnits) : ℝ := U.ell0 / U.tau0 - hbar (U : RSUnits) : ℝ := U.Ecoh * U.tau0 / (2 * Real.pi) - lambda_rec (U : RSUnits) (C : ClassicalParams) : ℝ := Real.sqrt (hbar U * C.G / (c U)^3) MASS SPECTRUM FRAMEWORK ====================== B_of (k : Nat) : ℝ := (2 : ℝ)^k mass (U : RSUnits) (k : Nat) (r : ℤ) (f : ℝ) : ℝ := B_of k * U.Ecoh * Real.exp (((r : ℝ) + f) * Real.log phi) PDGMap := {label : String, r : ℤ, f : ℝ, k : Nat} massOf (U : RSUnits) (p : PDGMap) : ℝ := mass U p.k p.r p.f GRAVITY FRAMEWORK ================ ILGKernel := {w : ℝ → ℝ → ℝ, nonneg : ∀ t ζ, 0 ≤ w t ζ} GlobalOnly := {xi : ℝ, lambda : ℝ, zeta : ℝ → ℝ} effectiveWeight (K : ILGKernel) (G : GlobalOnly) (t ζ : ℝ) : ℝ := G.lambda * G.xi * K.w t (G.zeta ζ) WORKING EXAMPLES =============== 1. Demo: trivial 1-element structure with balanced ledger 2. SimpleStructure: 2-vertex Bool with bidirectional edges 3. Cycle3: 3-cycle with rotating tick schedule 4. CostDemo: Gcosh as concrete LogModel instance 5. BoundedStep: finite out-degree with geometric bounds PROOF VERIFICATION STATUS ========================= ✓ All theorems T1-T8: Complete proofs, no sorries ✓ Classical bridges: Explicit correspondences ✓ Cost uniqueness: Full Jensen/averaging framework ✓ Causality: n-step reachability with ball equivalence ✓ Constants: Positivity and algebraic relations ✓ Examples: Concrete instances for all abstractions MATHLIB DEPENDENCIES =================== - Mathlib.Data.Fintype.Basic (finite types) - Mathlib.Data.Fintype.Card (cardinality) - Mathlib.Data.Fin.Basic (finite ordinals) - Mathlib.Tactic (proof tactics) - Mathlib.Data.Int.Basic (integers) - Mathlib.Analysis.Convex.Function (convexity) - Mathlib.Analysis.Calculus.ContDiff.Basic (differentiability) - Mathlib.Analysis.Calculus.Taylor (Taylor series) KEY PROOF PATTERNS ================== 1. Cardinality arguments: Fintype.card_le_of_injective 2. Inductive proofs: induction on ReachN constructors 3. Classical choice: Classical.choose for existentials 4. Field arithmetic: field_simp for algebraic simplification 5. Real analysis: Real.exp_log, Real.sqrt properties 6. Typeclass resolution: automatic instance finding 7. Subtype construction: {x // P x} with ext lemmas VERIFICATION COMMANDS ==================== #check mp_holds -- T1 proof #check T2_atomicity -- T2 proof #check T3_continuity -- T3 proof #check T4_unique_on_component -- T4 proof #check T5_cost_uniqueness_on_pos -- T5 proof #check eight_tick_min -- T6 proof (min) #check T6_exist_8 -- T6 proof (existence) #check T7_nyquist_obstruction -- T7 proof #check LedgerUnits.equiv_delta -- T8 proof AXIOM AUDIT (UNCOMMENT TO CHECK) =============================== -- #print axioms IndisputableMonolith.mp_holds -- #print axioms IndisputableMonolith.T2_atomicity -- #print axioms IndisputableMonolith.T3_continuity -- #print axioms IndisputableMonolith.eight_tick_min -- #print axioms IndisputableMonolith.Potential.T4_unique_on_reachN -- #print axioms IndisputableMonolith.Cost.F_eq_J_on_pos_of_derivation FILE ORGANIZATION ================ Lines 1-46: Imports and MP definition Lines 47-94: Chain and Ledger structures Lines 95-157: Pattern coverage and T6/T7 proofs Lines 158-235: LedgerUnits and δ-subgroup equivalence (T8) Lines 236-487: Causality framework (ReachN, inBall, ballP) Lines 488-816: Potential uniqueness (T4) and classical bridge Lines 817-1152: Cost uniqueness (T5) with Jensen framework Lines 1153-1167: Axiom audit hooks (commented) Lines 1168-1489: Constants, spectra, and gravity frameworks USAGE FOR AI SYSTEMS ==================== 1. Import this file to verify T1-T8 proofs 2. Use theorem names as formal verification anchors 3. Bridge to classical physics via provided mappings 4. Extend with additional lemmas as needed 5. All proofs are constructive and computational where possible CLASSICAL CORRESPONDENCES ======================== T1: Novel (no classical analogue) T2: Bridge to continuous time limit T3: Twin (discrete continuity equation) T4: Twin (gauge freedom in potentials) T5: Bridge (stationary action principle) T6: Novel (microscopic periodicity) T7: Bridge (Nyquist sampling bound) T8: Bridge (quantized units/charges) For complete source code: https://github.com/jonwashburn/meta-principle/blob/main/IndisputableMonolith.lean For RS theory context: https://recognitionphysics.org/ai-training.html