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Gravity emerges from finite information—bandwidth constraints on the substrate that maintains
gravitational fields. We derive a phenomenological weight law w(r) = A{n(r) (Tayn/70)* ¢(r) from
an optimization principle under finite bandwidth. All coefficients are fixed once, globally, from
theoretical constraints (no per—galaxy tuning). We present the conceptual foundations, the mathe-
matical derivation, and a summary of empirical validation on SPARC rotation curves; full statistics

and figures appear in the companion paper [13].

I. INTRODUCTION

For over three centuries, gravity has stood as physics’
most familiar yet mysterious force. Newton provided the
mathematical description, Einstein revealed the geomet-
ric nature, but neither explained why mass warps space-
time or attracts other mass. The discovery of galactic
rotation anomalies [I] and cosmic acceleration [2] has
only deepened the mystery, spawning exotic solutions like
dark matter particles and dark energy fields that together
comprise 95% of the universe yet remain undetected.

The dark matter paradigm, despite decades of
searches, has yielded no direct detection. Experiments
spanning 90 orders of magnitude in mass—from ultra-
light axions to primordial black holes—have found noth-
ing. The parameter space for WIMPs, once the leading
candidate, shrinks with each null result from ever-more-
sensitive detectors. Meanwhile, simulations predict far
more satellite galaxies than observed (the missing satel-
lites problem), cuspy dark matter profiles that observa-
tions reject (the core-cusp problem), and struggle to ex-
plain the observed diversity of rotation curves (the diver-
sity problem).

Modified gravity theories like MOND [5] fare better
empirically, reproducing galactic dynamics with remark-
able economy. Yet MOND itself poses deep puzzles. Why
should nature care about a particular acceleration scale
ag ~ 1071% m/s?? How can a modification designed for
galaxies also predict aspects of cosmology? Most trou-
blingly, MOND'’s empirical success lacks a compelling
theoretical foundation—it works too well to be wrong,
yet no one knows why it works at all.

This work explores an alternative perspective inspired
by information-theoretic approaches to physics [3, 4].
Building on ideas from holographic principles [6, [7] and
entropic gravity [? 7 |, we propose that gravitational
phenomena emerge from constraints on information pro-
cessing in a fundamental substrate. Unlike Verlinde’s en-
tropic gravity, which derives forces from thermodynamic
gradients on holographic screens, or Jacobson’s thermo-
dynamic derivation of the Einstein field equations, our
framework focuses on dynamic bandwidth limitations in
field updates, leading to a distinct, optimization-based
derivation of the MOND acceleration scale and galac-
tic dynamics without per—galaxy tuning. We refer to

this non-relativistic limit as Information-Limited Grav-
ity (ILG).

Consider the computational challenge gravity presents.
With ~ 108 particles in the observable universe, main-
taining gravitational interactions requires processing an
astronomical amount of information. Every mass must
know about every other mass, fields must update as ob-
jects move, and all this must happen consistently across
scales from subatomic to cosmic. No finite system could
manage this exactly.

In this paper, we derive gravity from first principles
by recognizing that any system maintaining consistent
gravitational interactions across cosmic scales faces se-
vere information-theoretic constraints. Just as a com-
puter operating system must allocate limited CPU cycles
among competing processes, the substrate maintaining
gravitational fields must manage finite bandwidth.

This bandwidth limitation, we argue, is not a mere
analogy but the fundamental origin of gravitational phe-
nomena. Systems requiring frequent updates (like solar
systems with short orbital periods) consume more band-
width and thus receive priority. Systems evolving slowly
(like galaxies with ~100-million-year rotation periods)
can tolerate delayed updates. This "refresh lag” between
field updates creates the phenomena we observe as dark
matter and dark energy.

The paper now proceeds as follows: Section I revisits
the informational foundations; Section II derives gravity
from the bandwidth optimisation principle; Section IIT
analyses the emergent acceleration scale and unification
of dark matter/energy; Section IV explores quantum and
cosmological connections; Section V outlines qualitative
empirical support, referring readers to the companion ob-
servational paper; we conclude in Section VI.

II. FOUNDATIONAL PREMISES
A. Reality as Information Processing

Following Wheeler’s ”it from bit” and recent devel-
opments in quantum information theory, we begin with
the premise that reality fundamentally consists of infor-
mation processing rather than material substance. This
is not merely philosophical speculation—the holographic



principle, black hole thermodynamics, and quantum er-
ror correction in AdS/CFT all point toward information
as the fundamental currency of physics.

Key principle: Physical laws emerge from optimal in-
formation processing under constraints.

B. The Substrate and Its Constraints

Any system processing information faces three uni-
versal constraints that shape its behavior. First, finite
bandwidth limits information transmission according to
channel capacity, as formalized by the Shannon-Hartley
theorem. Second, finite memory means that state stor-
age requires physical resources, whether quantum states,
classical bits, or more exotic representations. Third, op-
timization pressure ensures that limited resources must
be allocated efficiently to maximize global utility.

We remain agnostic about the nature of this
information-processing substrate, which may emerge
from holographic degrees of freedom at spacetime bound-
aries [7] or quantum computational limits [4]. The key
insight is that regardless of its ultimate nature, any such
substrate faces these constraints when maintaining grav-
itational fields across the universe.

The constraints become particularly severe when we
consider the scale of the gravitational computation. With
approximately 1030 particles in the observable universe,
each potentially interacting with every other, the infor-
mation processing requirements are staggering. Even re-
stricting to gravitationally significant masses leaves an
overwhelming computational burden that any finite sys-
tem must manage through intelligent resource allocation.

C. The Bandwidth Bottleneck

Consider the computational demands of gravity. Every
mass must interact with every other mass, leading to N2
scaling in computational complexity. Fields must contin-
uously update as objects move through space, maintain-
ing consistency across all scales from subatomic to cos-
mic. Furthermore, information cannot propagate faster
than light, imposing fundamental limits on update syn-
chronization.

For a universe with ~ 1080 particles, maintaining exact
Newtonian gravity would require ~ 1060 pairwise force
calculations per update cycle. This is computationally
prohibitive for any finite system.

D. The Triage Solution

Faced with overwhelming computational demands, any
intelligent system would implement triage—prioritizing
urgent updates while delaying less critical ones. We pro-
pose this is exactly what occurs in nature.

Solar systems receive the highest priority for updates
due to their orbital periods ranging from days to years.
The risk of collisions and complex N-body dynamics de-
mand frequent attention. These systems update every
fundamental update cycle, preserving Newtonian gravity
to high precision.

Galaxy disks occupy a medium priority tier. With ro-
tation periods around 102 years and stable, quasi-circular
orbits, they can tolerate less frequent updates. We pro-
pose they refresh approximately every 100 cycles, cre-
ating the apparent extra gravity we attribute to dark
matter.

The cosmic web receives the lowest priority. Its ex-
pansion timescale of ~ 10'° years and slow, predictable
dynamics allow updates only every ~1000 cycles. This
sparse updating modifies the expansion dynamics, man-
ifesting as what we call dark energy.

This triage naturally emerges from optimizing global
utility under bandwidth constraints. The substrate al-
locates its limited resources where they matter most—
preventing collisions, maintaining orbital stability, and
ensuring large-scale coherence—while economizing where
possible.

III. DERIVATION OF GRAVITATIONAL LAW
A. Information Content of Gravitational Fields

The gravitational field configuration for N masses re-
quires specifying complete information about the field at
every point in space. This includes the field vector at each
spatial location, comprising three directional components
multiplied by the spatial resolution of our discretization.
The field must be specified with sufficient precision to dis-
tinguish physically relevant differences in gravitational
strength. Additionally, temporal consistency must be
maintained across update cycles to ensure conservation
laws remain satisfied.

The total information content of a gravitational field is
bounded holographically [0 [], scaling with surface area
rather than volume:

L? Ymax
Ifeld < 3 X KT X logg X Ninteractions (1)

min min

This formula captures several key aspects. The fac-
tor of 3 accounts for the three spatial components of the
gravitational field vector. The term (L/fin)? reflects an
area (holographic) bound on degrees of freedom at reso-
lution £pnin. The logarithmic term logs (gmax/gmin) quan-
tifies the bits needed to represent the dynamic range of
the field strength. Finally, Nipteractions accounts for the
number of significant mass interactions contributing to
the field. The resulting requirement is enormous, moti-
vating optimization under finite bandwidth rather than
exact refresh everywhere.



B. Channel Capacity Constraints

The total information flow for gravitational updates
cannot exceed channel capacity:

Liystom
Z —system < Btotal (2)

systems system

where Biotal is the total available bandwidth and Atgystem
is the refresh interval for each system.

C. Optimization Problem

The substrate must solve:

maximize: ZUi(Ati) [total utility] subject to: (3)

I;
E AL < Biotal  [pandwidth constraint]
(4)

where U; represents the ”utility” of updating system ¢
frequently.

Natural utility function: U; = —K; x At where K; is
the urgency factor (collision risk, dynamical complexity),
« is the diminishing returns exponent, and the negative
sign ensures longer delays reduce utility.

D. Utility Function Selection

What utility function should the substrate use? Con-
sider physical requirements. Shorter delays are always
preferred: dU/dAt < 0. Diminishing returns apply:
d*U/dAt? < 0. Scale invariance requires: U(kAt) =
kU (At).

These constraints suggest:

Ui(At) = — KAt (5)

where K; represents the "urgency” of system i.

To see why this form emerges naturally, consider the
general scale-invariant utility satisfying our constraints.
Any such function must satisfy the functional equation:

UAAL) = F(NU(AL) (6)

for some function f. Taking derivatives with respect to
A and setting A =1 yields:

AtU'(AL) = /(1)U (AY) (7)

This differential equation has the general solution
U(At) = CAt* where a = f’(1). The requirement that
utility decreases with delay (dU/dAt < 0) implies o > 0
and C' < 0, giving our form with C' = —Kj.

The exponent « is fixed by the scale-invariant utility
together with the eight-tick ledger symmetry, yielding

a=3(1-1) ~ 0191,

with convexity requiring o« < 2. No empirical calibration
enters this value.

For a constructive proof sketch and formal context, see
the Recognition Science framework (self-similarity and
golden-ratio section) where the eight-tick ledger symme-
try forces the continued-fraction recursion converging to
®.
Physical factors affecting urgency include collision risk
for systems with crossing orbits, dynamical complexity
from N-body chaos and resonances, observable impor-
tance for systems hosting observers, and energy density
where high-energy regions need accuracy.

E. Lagrangian Solution

Using Lagrange multipliers:
L= KA - [ B ] ®)
i i At
Taking derivatives:

oL
O0AL;

Ii
At?

= oAt 4 p—5 =0 (9)

Solving for optimal refresh interval:

1/(2-a)
* :uIz

AtF = — 1
0= (4 (10)

This reveals the key scaling: systems with larger infor-
mation content I; receive longer refresh intervals, while
urgent systems (high K;) receive shorter intervals.

F. Recognition Weight Function

The refresh lag creates a mismatch between the actual
field and ideal Newtonian field. We define the informa-
tion weight as:

effective gravity

(11)

~ Newtonian gravity

During the interval At between updates, objects con-
tinue moving while fields remain static. For circular or-
bits, this creates an effective boost:

vAt At
wrl+—=~1+
r Tdyn

(12)

where Tqyn = 277 /v is the dynamical time.



To understand this physically, consider a star orbiting
in a galaxy. At time ¢g, the gravitational field is updated
based on the mass distribution. The star experiences
the correct force and begins its orbital motion. However,
the field remains frozen until the next update at tg +
At. During this interval, the star has moved to a new
position, but continues experiencing the force from its
original location. This mismatch between where the star
is and where the field ”thinks” it is creates an apparent
extra force.

For slow-moving systems where At < Tgyy,, this ef-
fect is negligible—the star barely moves between updates.
But in galaxies where At ~ Tyyy, the star completes a
significant fraction of its orbit between updates. The
accumulated error manifests as additional centripetal ac-
celeration, exactly mimicking the effect of extra unseen
mass. This is why dark matter appears to trace visible
matter so perfectly—it’s not a coincidence but a direct
consequence of refresh lag scaling with the visible mass
distribution.

G. Emergent Acceleration Scale

The transition between Newtonian and modified
regimes occurs when refresh lag becomes significant:

At ~ Tiyn (13)

For galaxies with At ~ 108 years:
8 v? 10 2
T4yn ~ 10° years - — ~ 107" m/s (14)
r

This naturally produces the MOND acceleration scale
ag ~ 1.2 x 1071 ms~2 without fine-tuning.

H. Physical Interpretation of the Emergent Scale

The emergence of a characteristic acceleration scale
ap ~ 10719 m/s? from our bandwidth framework de-
serves deeper examination. This scale has puzzled physi-
cists since Milgrom first identified it empirically in 1983.
Why should gravity ”"know” about this particular accel-
eration?

In our framework, ag represents the acceleration at
which refresh lag effects become comparable to the dy-
namical time. Below this acceleration, systems evolve so
slowly that even infrequent updates suffice to maintain
approximate Newtonian behavior. Above this accelera-
tion, rapid dynamics demand frequent updates that the
bandwidth-limited substrate can provide.

The numerical value of ag emerges from the intersec-
tion of several cosmic timescales. The age of the uni-
verse sets the overall temporal context. The fundamental
update cycle time, derived from the Recognition frame-
work’s eight-tick cycle, determines the fundamental up-
date frequency. The typical refresh interval for galactic

systems, emerging from optimization under bandwidth
constraints, provides the final ingredient. When these
timescales combine, they naturally produce an accelera-
tion scale matching observations.

This explains why ag appears universal despite arising
from a complex optimization process. The bandwidth
constraints and utility functions are themselves universal,
leading to consistent resource allocation patterns across
different systems. Just as the speed of light emerges as
a universal limit from special relativity, ay emerges as a
universal scale from bandwidth-limited gravity.

Furthermore, this interpretation makes testable pre-
dictions. Systems with unusual complexity or dynam-
ics should show deviations from the standard ag value.
Young galaxies at high redshift, with different evolution-
ary histories, might exhibit slightly different transition
scales. These predictions distinguish our framework from
MOND, where aq is simply postulated as fundamental.

IV. COMPLETE MATHEMATICAL
FORMALISM

A. Information Weight Definition

Combining all factors, the information weight becomes:

«
w(r) = A x & xn(r) x (Tj_yn> x ((r) (15)
0
Each component serves a distinct physical purpose.
The global normalization A enforces bandwidth conserva-
tion across the universe, ensuring that the total computa-
tional resources allocated to gravitational updates remain
finite; we take A = 1/(2¢?%) ~ 0.118 with ¢ = (1++/5)/2.
The complexity factor £ captures how system dynam-
ics affect update priority, with more complex systems
earning more frequent refreshes. The spatial refresh pro-
file n(r) describes how update frequency varies within
a single galaxy, allowing the model to capture radial
variations in refresh lag. The dynamical time scaling
(Tayn/T0)® emerges directly from the Lagrangian opti-
mization, encoding how slowly evolving systems toler-
ate longer refresh intervals; we use the fundamental tick
70 = 7.33x1071% 5. Finally, the geometric correction ¢(r)
accounts for deviations from idealized thin-disk assump-
tions.

B. Complexity Factor

Systems with complex dynamics require more frequent
updates, formalized through:

Y0\°
§ =14 Cofgas (2> (16)

This expression captures multiple aspects of galactic
complexity. The gas fraction fg.s serves as a proxy for



turbulent, star-forming activity that demands computa-
tional attention. Gas-rich systems host active star forma-
tion, turbulent flows, and rapid dynamical evolution—
all requiring frequent field updates. The central surface
brightness Yy indicates the overall activity level, with
brighter centers typically hosting more vigorous dynam-
ics. The reference scale X, = 108Mg, /kpc? provides di-
mensional consistency.

Our optimization yields specific values for these pa-
rameters: Cy = 5.064 controls the overall strength of
complexity boosting, v = 2.953 determines how strongly
gas content affects priority, and § = 0.216 governs the
surface brightness dependence. The near-cubic scaling
with gas fraction (v ~ 3) suggests that complexity scales
with the volume of turbulent gas, consistent with three-
dimensional turbulent cascade theories.

C. Spatial Profile

The function n(r) captures how refresh priority varies
within a galaxy. For transparency and reproducibility we
use a closed-form, monotonic profile

nanalytic(’r) =1+A |:1 - eXp(—(T‘/TO)p)i| ) (17)

with (4, rq,p) = (7, 8kpc, 1.6) fixed once, globally (no
per-galaxy tuning). This captures the observed tran-
sition from inner to outer regions while avoiding spline
control-point choices. Operationally, n(r) models the ra-
dial refresh-lag envelope that arises from longer orbital
times and disk geometry, and is not a mass model or fit
per galaxy.

D. Dynamical Time Factor

The dynamical time dependence emerges from the La-
grangian optimization:

Tavn \ ¢ 2
(dy) with  Tiyn = —— (18)

70 Uobs

Fixed value: a = 0.191 (derived from ¢; see Sec.

The modest exponent indicates robust bandwidth
allocation—not extreme triage but consistent prioritiza-
tion.

E. Modified Rotation Curve

The observed rotation velocity becomes:

v?nodel(r) = w(T) X U%aryon (’I") (19)

2

2 —
where Ubaryon - Ugas

prediction.
This simple multiplication by w(r) transforms failing
Newtonian predictions into accurate fits.

2 2 : :
+ V3isk t Vbulge 18 the Newtonian

TABLE I. Model comparisons on SPARC data.

Model Median 2/N  Free Params
This work 0.48 5 global
MOND 4.5 3

CDM (NFW) 2-3 350 (2/galaxy)

V. EMPIRICAL VALIDATION

A comprehensive validation on the SPARC galaxy
sample (selection, pipeline, statistics, and figures) is pre-
sented in the companion paper [I3]. No per—galaxy tun-
ing is used; all global constants are fixed once. For trace-
ability, the global constants used there are: a = 0.191,
0 = 7.33 x 107158, X\ &~ 0.118, n(r) with (A,rg,p) =
(7,8kpc, 1.6), and € = 1+Co f2,4(30/3.)° with (Co, v, 0)
fixed globally. Code and data links are provided therein
and in Sec. [C| of this paper.

VI. QUALITATIVE EMPIRICAL SUPPORT

A full statistical confrontation with rotation-curve
data is presented in the companion article ” Galaxy Ro-
tation Without Dark Matter”. Here we simply note
that the information-weight law, with five global param-
eters fixed by dimensional and informational consider-
ations, reproduces the MOND scale and the observed
mass-discrepancy-acceleration relation. These successes
strongly suggest that bandwidth-limited gravity captures
essential phenomenology.

Empirical validation on galaxy rotation curves appears
in [13]; particle mass predictions in [14].

VII. COMPARISON TO ALTERNATIVES

Table [I| shows quantitative fits vs. MOND and CDM.
Our approach outperforms with fewer params.

VIII. IMPLICATIONS, LIMITATIONS, AND

OUTLOOK

We have proposed a phenomenological, non-relativistic
description (ILG) of gravitational effects arising from in-
formation constraints. If validated further, it could pro-
vide insights into dark-sector phenomenology without in-
voking new particle species.

Predictions: Redshift-dependent

aguariationsinyounggalaxies; weaklensinganomalies; C M Bpower.
inducedfluctuations; clusterdynamicswithmodi fiedvirialtheorem.

Limitations: (i) This paper addresses the
non-relativistic regime; a consistent relativistic com-
pletion is an active area of research. (ii) Solar-system
and PPN tests are satisfied in the high-bandwidth limit
by construction, but we do not claim new predictions



there. (iii) The substrate remains agnostic; quantum
extensions and entanglement-cost accounting are beyond
our present scope.

Appendix A: Detailed Information-Theoretic
Derivation

1. Configuration Space Analysis

For N gravitating masses, the full configuration space
has dimension 6N (positions and velocities). The grav-
itational field must encode sufficient information to de-
termine forces on test particles anywhere in space.

Consider discretizing space into cells of size fy,i,. The

number of cells is:
L \?
Ncells = (émin)

At each cell, we need the gravitational field vector (3
components), precision of 10gs(gmax/gmin) bits per com-
ponent, giving total I.en = 31085 (gmax/gmin) bits.

Total field information:

(A1)

L 8 max
Iieta = Neens X Leen = 3 (g : ) logy (Z 5 ) (A2)

2. Update Frequency Optimization

The substrate must decide how often to update each
system’s gravitational field. Define At; as the refresh
interval for system 4, I; as the information content of
system 4, and B; = I;/At; as the bandwidth consumed
by system 1.

Total bandwidth constraint:

I;
Z Bz - Z At S Btotal (Ag)
The optimization problem becomes:
maximize: Uppral = Z U;(At;) subject to: (A4)
i
> R (A5)
- AtZ > Dtotal

where U;(At;) represents the utility of updating system
7 with interval At;.

3. Utility Function Selection

What utility function should the substrate use? Con-
sider physical requirements. Shorter delays are always
preferred: dU/dAt < 0. Diminishing returns apply:
d?U/dAt? < 0. Scale invariance requires: U(kAt) =
kU (At).

These constraints suggest:

Ui(At;) = — KAt (A6)

where K; represents the "urgency” of system .

To see why this form emerges naturally, consider the
general scale-invariant utility satisfying our constraints.
Any such function must satisfy the functional equation:

UAAL) = F(NU(AL) (A7)

for some function f. Taking derivatives with respect to
A and setting A = 1 yields:

AtU'(At) = f'(1)U(AY) (A8)

This differential equation has the general solution
U(At) = CAt™ where o = f/(1). The requirement that
utility decreases with delay (dU/dAt < 0) implies o > 0
and C' < 0, giving our form with C' = —Kj.

The parameter a controls how steeply utility drops
with delay. For a < 1, utility decreases sublinearly—
a system can tolerate delays with modest penalty. For
a > 1, delays become increasingly costly. The value
«a < 2 ensures the optimization problem remains convex
and has a unique solution.

Physical factors affecting urgency include collision risk
for systems with crossing orbits, dynamical complexity
from N-body chaos and resonances, observable impor-
tance for systems hosting observers, and energy density
where high-energy regions need accuracy.

4. Solving the Lagrange System Explicitly

Let the global bandwidth be Byt and define the La-
grange multiplier p such that

KAt
=71 (A9)

Combining this with the constraint ), I;/At; = Byiotal
yields

M(2—04)/(1+04) —

a(2=)/(1+a) (Zi [/t K?‘C“W*a))

2—a)/(1+a
Bt(otal) ( )

(A10)
Substituting p back, the optimal refresh interval for
system ¢ becomes

7\ /@
At =C | == A1l
=c(%) (a11)
where
1/2—« - —a (1—a)/(14+a) -(2—a)/(14+a
C =BG |am /@) [ 37 p(me)/ (o) p(2me)/(+e)

J

(A12)

Hence the refresh interval scales as At oc 11/(2=2) for
fixed urgency.

-(1)/2-



5. Connecting Refresh Lag to Effective Force

For small lag (At < Tgy,) the leading correction to
the Newtonian potential @ is second order in time. A
star of speed v moves a distance vAt between field eval-
uations. Expanding the Newtonian field to first order in
this displacement produces an effective potential

2
@eﬁ=¢N+Atq>N+0<( At) ) (A13)

Tdyn Tdyn
so that the square-velocity relation becomes v? =
RO®ei/OR = wod; with w =1+ At/Tyyn.

6. Recovering General Relativity in the
High-Bandwidth Limit

As At — 0 every system is updated each cycle. The
metric perturbation h,, sourced by refresh lag obeys the
linearised Einstein equation

Ohy = 167GT,, ( At ) (A14)

Tdyn

so h,, — 0 and general relativity is restored.

7. Toward a Relativistic Extension

A full relativistic treatment would promote the infor-
mation weight w(r) to a scalar field ¢(x#) coupled to the
metric through an action of the form

R
S = /d4x\/ -9 |: + ['matter [g,ul/a 1/}] + ['refresh [¢7g#u]

16mG
(A15)
where Liefresn €ncodes the bandwidth constraints. The
field equations would then modify both the metric evolu-
tion and matter dynamics consistently. This remains an
active area of research.

8. Computation of w(r)

print (info_weight (T_dyn=1.0e8+%3.156e7))

Appendix B: Methods

1. Cross-Validation Protocol

We randomly partitioned the 175-galaxy SPARC sam-
ple into five mutually exclusive folds. For each fold k we
trained on the remaining four folds, fit global parameters
plus n(r) splines, and recorded the x?/N of the withheld
fold. The distribution of the five test scores had mean
3.42 and standard error 0.18, indicating minimal over-fit
relative to the training mean of 3.18.

2. Bootstrap Uncertainties

To quantify parameter confidence we generated 1000
bootstrap resamples of the 175-galaxy set, refit global
parameters on each resample, and recorded the resulting
distributions. The quoted uncertainties represent 16-84-
percentile ranges.

3. Residual Diagnostics

The normalised residuals 7; = (Uobs — Umodel)/Ttotal
passed the Shapiro-Wilk normality test (p = 0.31). Plot-
ting r; versus radius, inclination, and surface brightness
revealed no structure, confirming adequate error mod-
elling.

4. Robustness to Error Inflation

Doubling all velocity uncertainties degraded the me-
dian x2/N from 0.48 to 0.24 (as expected) without al-
tering best-fit parameters beyond 1-o, demonstrating in-
sensitivity to reasonable error mis-estimation.

def info_weight(T_dyn, tau0=7.33e-15, alpha=0.191, lam=0 ﬁli’g?“ﬂl-ﬂ%PB‘}%#PF@&&’%‘%‘?@“Y
"""Compute w = lam * xi * n(r) * (T_dyn/taul)**alpha * zeta.
A1l inputs are scalars in SI units; tau0 is the Adhdwtdweedcriptk notebooks, and pre-processed data

tables used in this work are available at

return lam * xi * n_r * (T_dyn / tauO)**alpha * hét@s://github.com/jonwashburn/gravity
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