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For four centuries, the Hamiltonian has been treated as fundamental, with dynamics derived from energy
minimization. We prove this is an approximation. Starting from a single information-theoretic axiom (the Meta
Principle: nothing cannot recognize itself), we construct a discrete Recognition Operator R̂ with minimal eight-
tick period that evolves states by minimizing a unique convex symmetric cost on R>0, J(x) = 1

2
(x+x−1)−1.

In the small-deviation regime with r = eε and |ε| ≪ 1, we have J(eε) = cosh(ε) − 1 = 1
2
ε2 + 1

24
ε4 + · · ·,

yielding a quadratic effective generator Ĥeff ; under a continuum limit τ0 → 0 we recover Schrödinger dynamics
iℏ ∂tψ = Ĥψ. This explains the empirical success of Hamiltonian mechanics: typical laboratory systems
remain in the small-|ε| regime where R̂ ≈ Ĥ to better than percent accuracy. The theory predicts measurable
departures where R̂ ̸= Ĥ: strongly non-equilibrium flows (∆E ̸= 0 while recognition cost decreases), ultra-
fast processes exhibiting eight-tick discretization, and mesoscopic measurements crossing an intrinsic collapse
thresholdC ≥ 1. We state hard falsifiers (e.g., any alternate convex symmetric cost on R>0, failure of eight-tick
minimality, or cases where Ĥ works but R̂ fails) and provide concrete experimental protocols. Lean-verified
theorems in an open repository substantiate each claim; the same operator supplies bridges to measurement and
gravity via C = 2A.

I. INTRODUCTION

For four centuries, Hamiltonian mechanics has served as
the dominant paradigm for describing physical dynamics,
from planetary motion to quantum fields. In that paradigm
the Hamiltonian Ĥ is taken as the foundational object: it en-
codes energy and generates time evolution, whether via Pois-
son brackets or the Schrödinger equation iℏ ∂tψ = Ĥψ [? ?
]. Despite its extraordinary empirical reach, the Hamiltonian
is postulated rather than derived from a deeper, minimal prin-
ciple, and notorious conceptual tensions remain—particularly
around measurement, the emergence of classicality, and the
role of time in quantum theory [? ? ? ].

We propose and prove a different foundation. We show
that the Hamiltonian is not fundamental; instead, physical
evolution is generated by a discrete Recognition Operator R̂
that minimizes a unique recognition cost J on positive reals.
The starting point is an information-theoretic axiom, the Meta
Principle (MP): nothing cannot recognize itself. From MP
one obtains a double-entry ledger structure with exact conser-
vation on closed chains, a uniqueness theorem for potentials
up to constants on reach components, a unique convex sym-
metric cost J(x) = 1

2 (x+x
−1)−1 on R>0 (under symmetry,

unit, convexity, analyticity), and a minimal eight-tick discrete
timebase in three spatial dimensions. These results are formal-
ized and machine-verified in Lean, and collected in a public
repository that we cite throughout.

Concretely, the fundamental dynamics is a discrete update
with minimal period eight, written schematically as

s
(
t+8τ0

)
= R̂

(
s(t)

)
, C =

∫
J dt, J(x) = 1

2

(
x+x−1

)
−1,

(1)
which we develop rigorously in Sec. II. The operator R̂ mini-
mizesC, preserves discrete reciprocity balance and conserved
Z-pattern invariants, and couples to a global phase Θ. A key
operational implication is that collapse is not an added postu-
late: when the accumulated recognition cost crosses a thresh-

old, C ≥ 1, definite outcomes (pointers) appear automatically
within the same dynamics.

Why then has energy-based Hamiltonian mechanics
worked so well? The answer is that the Hamiltonian emerges
as an approximation. Near equilibrium, write r = eε with
|ε| ≪ 1. Then

J(eε) = cosh(ε)− 1 = 1
2ε

2 + 1
24ε

4 + · · · . (2)

In the small-ε regime, the quadratic term dominates and de-
fines an effective quadratic generator Ĥeff ≈ ∂2ε R̂

∣∣
ε=0

. After
coarse graining and a continuum limit τ0 → 0, one recov-
ers the standard Hamiltonian flow and Schrödinger dynamics.
This explains the historical success of Ĥ: most accessible lab-
oratory systems operate with |ε| ≲ 10−1, where R̂ ≈ Ĥ to
better than percent accuracy.

The recognition framework makes sharp, falsifiable predic-
tions in regimes where the approximation fails. In strongly
non-equilibrium processes, the nonlinearity of J becomes
manifest and allows ∆E ̸= 0 even in nominally closed sys-
tems while the recognition cost C still decreases. At ultra-
fast times approaching a single recognition cycle, t ∼ 8τ0,
discrete-time signatures become observable. At mesoscopic
scales, the intrinsic collapse threshold C ≥ 1 yields specific
mass–time tradeoffs for the loss of quantum coherence. Each
of these predictions comes with concrete experimental proto-
cols and hard falsifiers that would rule out the theory if not
observed.

Beyond explanation and prediction, the same operator R̂
supplies bridges long sought in physics. A previously estab-
lished equivalence C = 2A connects recognition cost to a
residual gravitational action, unifying measurement and grav-
ity at the level of operational content and providing a com-
pact route to classical unit bridges (e.g., λrec =

√
ℏG/(πc3),

ℏ = Ecoh τ0). We emphasize, however, that this paper focuses
on foundations and testable departures from Ĥ; broader impli-
cations (including consciousness and pattern persistence) are
referenced only as context.
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This paper is organized as follows. In Sec. II we define
the Recognition Operator, the uniqueness of J , the eight-tick
minimality, conservation laws, and the built-in collapse mech-
anism, including a comparison table with Ĥ . In Sec. III we
derive the emergent Hamiltonian in the small-ε regime and re-
cover the Schrödinger equation in the continuum limit, quan-
tifying the approximation domain. In Sec. IV we present
testable predictions where R̂ ̸= Ĥ and specific measurement
protocols. Sec. V summarizes unification bridges. Sec. VI
states hard falsifiers and outlines experimental designs. We
conclude in Sec. VII with implications, limitations, and future
directions.

Where possible we refer to Lean-verified theorems in
the accompanying repository for full formal statements and
proofs, and to prior recognition-science manuscripts for de-
tailed derivations of cost uniqueness and the eight-tick cycle
[? ? ? ? ].

II. THE RECOGNITION OPERATOR R̂

The fundamental dynamical object is the Recognition Op-
erator R̂: a discrete-time update on admissible ledger states
that minimizes a unique convex symmetric cost and advances
time in eight-tick cycles. Unlike the Hamiltonian Ĥ , which
is defined from energy and postulated to generate continuous
time evolution, R̂ is derived from an information-theoretic ax-
iom and exact conservation on a double-entry ledger.

Definition. A Recognition Operator is a map R̂ : S → S
on admissible states with the following properties:

• Cost monotonicity: for all admissible s, C(R̂s) ≤
C(s).

• Conserved patterns: total_Z(R̂s) = total_Z(s).

• Reciprocity balance: if σ(s) = 0, then σ(R̂s) = 0.

• Global phase coupling: Θ(R̂s) = Θ(s) + ∆Θ(s).

• Eight-tick periodicity: R̂8 = id on admissible trajecto-
ries.

The cost functional and minimal eight-tick update are

J(x) = 1
2

(
x+ x−1

)
− 1, x > 0. (3)

s
(
t+ 8τ0

)
= R̂

(
s(t)

)
. (4)

Unique cost functional (T5). Under analyticity on C\{0},
symmetry J(x) = J(x−1) on R>0, convexity on R>0, and
unit normalization J(1) = 0 with J ′′(1) = 1, the cost is
unique and equals Eq. (3). This theorem (T5) is proved in full
in the RS corpus and summarized in [? ? ].

Eight-tick minimality (T6). In D = 3 spatial dimensions
any spatially complete, ledger-compatible walk on the cube
graph Q3 has minimal period 2D = 8. A Gray-cycle example
realizes the bound, and no shorter period covers all cells with-
out violating atomicity or timestamp uniqueness. The discrete
evolution Eq. (4) therefore uses the minimal recognition cycle
8τ0 [? ].

TABLE I. Hamiltonian Ĥ versus Recognition Operator R̂.

Property Ĥ R̂

Minimizes Energy E Recognition cost C
Cost function Quadratic (local) J(x) = 1

2
(x+ x−1)− 1

Time evolution Continuous Discrete (8τ0)
Conserved Energy Z-patterns; σ = 0

Phase Local Global Θ
Collapse Postulated Built-in at C ≥ 1

Conservation laws and phase. Evolution by R̂ preserves a
family of information invariants (Z-patterns), maintains reci-
procity balance σ = 0, and couples to a global log-φ phase Θ,
which mediates cross-boundary coherence in coarse-grained
limits. These statements are formalized in the Lean develop-
ment and provide the bridge to continuum continuity equa-
tions in mesh-refinement limits.

Built-in collapse. Because dynamics minimizes C =∫
J(r(t)) dt, a recognition event (definite pointer) occurs au-

tomatically when the accrued cost crosses a threshold: C ≥ 1.
No measurement postulate is added; collapse is an intrinsic
transition of the same discrete dynamics. This threshold ad-
mits concrete mesoscopic predictions developed in Sec. IV.

The remainder of the paper quantifies the small-deviation
regime where R̂ ≈ Ĥ and derives the Hamiltonian and
Schrödinger limits (Sec. III), followed by explicit predictions
in regimes where the two frameworks differ (Sec. IV).

III. HAMILTONIAN AS EMERGENT PHENOMENON

We now quantify the regime in which the Recognition Op-
erator R̂ reduces to energy-based Hamiltonian dynamics and
derive the Schrödinger equation as a continuum limit.

Deviation parameters. Let r > 0 denote a dimension-
less ratio measuring proximity to equilibrium. Two equivalent
small parameters are useful:

• additive deviation δ := r − 1;

• log-deviation ε := ln r so that r = eε.

The recognition cost admits the exact identities

J(1 + δ) =
δ2

2(1 + δ)
, J(eε) = cosh(ε)− 1. (5)

Accordingly, the series in ε has only even powers,

J(eε) = 1
2ε

2 + 1
24ε

4 + 1
720ε

6 + · · · , (6)

whereas the series in δ is alternating with leading term 1
2δ

2.
Quadratic approximation and error bounds. The

quadratic approximation J ≈ 1
2ε

2 is uniformly accurate for
small |ε|. Since all higher terms in Eq. (6) are nonnegative,
we have the bound for |ε| <

√
20:

0 ≤ J(eε)− 1
2ε

2 =
∑
k≥2

ε2k

(2k)!
≤ ε4

24

1

1− ε2/20
. (7)
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Thus, for |ε| ≤ 0.1 the relative deviation from the quadratic
term obeys

J(eε)− 1
2ε

2

1
2ε

2
≤ ε2

12(1− ε2/20)
< 0.01. (8)

This justifies the ≲ 1% claim over a broad small-deviation
domain. If one instead expands in δ = r−1, the exact formula
in Eq. (5) shows a linear-in-δ correction factor 1/(1 + δ); the
log parameter ε is therefore the canonical small variable for
tight bounds.

Effective quadratic generator. In the small-|ε| regime,
minimizing C =

∫
J dt reduces locally to minimizing a

quadratic functional. Linearizing R̂ around equilibrium yields
an effective near-isometry on the relevant submanifold. There
exists an operator Ĥeff such that one step of the eight-tick up-
date can be written

R̂ = exp
(
− i

ℏ
Ĥeff

(
8τ0

))
+O

(
τ20
)
, (9)

with Ĥeff determined by the second variation of R̂with respect
to ε at equilibrium,

Ĥeff ≈ ∂2ε R̂
∣∣∣
ε=0

. (10)

The precise proportionality follows from the normalization
J ′′(1) = 1 and the units bridge ℏ = Ecoh τ0 (Methods).

Continuum limit and Schrödinger dynamics. Writing
∆t = 8τ0 and expanding Eq. (9) gives, for sufficiently smooth
states,

s(t+∆t)− s(t)

∆t
= − i

ℏ
Ĥeff s(t) + O(∆t). (11)

Taking τ0 → 0 with appropriate coarse-graining yields the
Schrödinger equation

iℏ ∂ts(t) = Ĥeff s(t), (12)

thereby exhibiting Hamiltonian dynamics as the continuum,
small-deviation limit of recognition-cost minimization.

Why standard physics works. Many laboratory and as-
trophysical systems are close to equilibrium on the relevant
scales, with typical |ε| ∼ 10−2–10−1. In this regime Eqs. (8)–
(11) show that (i) the quadratic term dominates J , (ii) Ĥeff

governs the dynamics to high precision, and (iii) the eight-
tick discreteness is invisible under coarse graining. Depar-
tures from Ĥ appear only when |ε| grows, when t ∼ 8τ0, or
when intrinsic thresholding (C ≥ 1) triggers non-Hamiltonian
transitions; these regimes are explored in Sec. IV.

IV. PREDICTIONS WHERE R̂ ̸= Ĥ

We outline three classes of experiments that distinguish
recognition dynamics from energy-based Hamiltonian evolu-
tion. Each test specifies a measurable, a predicted signature,
and a falsifier.

4.1 Extreme non-equilibrium (large deviations). When lo-
cal deviations from equilibrium satisfy |ε| ≳ 1, the higher-
order terms in Eq. (6) become non-negligible: J(e1)− 1

2 ·1
2 ≈

0.086, and the gap grows with |ε|. Recognition dynamics pre-
dicts that the recognition cost decreases, dC/dt ≤ 0, while
the coarse-grained energy budget need not be conserved dur-
ing rapid redistributions,

d

dt
C(t) ≤ 0 but

d

dt
Eeff(t) ̸= 0 over a window W.

(13)
Systems: shock tubes and detonation fronts; ultrafast marten-
sitic phase fronts; laser-induced ablation with nanosecond-
to-picosecond diagnostics. Observable: define a dimension-
less response ratio r(t) = O(t)/O∗(t) (e.g., pressure, den-
sity, or intensity relative to a reference), estimate CW =∫
W
J(r(t)) dt, and compare to the measured energy change

∆EW . Signature: windows with ∆EW ̸= 0 while ∆CW <
0. Falsifier: all windows obey ∆EW = 0 whenever ∆CW <
0.

4.2 Ultra-fast processes (discrete-time signatures). With
τ0 the fundamental tick, the minimal recognition cycle is 8τ0.
In coarse-grained limits this periodicity is hidden, but near the
fundamental scale a residual aliasing appears in pump–probe
correlations. Define ∆t = 8τ0. Prediction:

S(τ) = ⟨O(t)O(t+ τ)⟩ exhibits sidebands at τ ≈ n∆t.
(14)

Systems: high-harmonic generation and attosec-
ond/femtosecond pump–probe spectroscopy; ultrafast
electron diffraction. Observable: cross-correlation residuals
after removing continuum fits. Signature: statistically
significant peaks at integer multiples of 8τ0 (with τ0 set by
the units bridge or fit as a single global parameter across
datasets). Falsifier: no excess power at n 8τ0 across stacked
experiments.

4.3 Mesoscopic quantum thresholds (intrinsic collapse).
Because collapse is built-in, recognition predicts a sharp tran-
sition in coherence when the time-integrated cost crosses
unity,

C =

∫ T

0

J
(
r(t)

)
dt ≳ 1 =⇒ loss of superposition.

(15)
Systems: nanogram-scale mechanical oscillators or levitated
nanoparticles prepared in spatial superpositions. Observable:
visibility V(T ) of interference fringes vs mass and interro-
gation time. Signature: a threshold-like drop in V at curves
satisfying Eq. (15), consistent with a single global τ0 and cost
J . Falsifier: persistence of high visibility V in regimes where
Eq. (15) predicts collapse, or the need for free parameters be-
yond τ0 and the fixed J .

4.4 Brief note on boundary effects. In settings where
observer-system boundaries matter, the C = 2A bridge
implies additional couplings that we do not exploit here.
Section V summarizes these links; the tests above avoid
boundary-dominated interpretations by design.
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TABLE II. Testable predictions distinguishing R̂ from Ĥ . Each row
lists a system class, an observable, the recognition prediction, and a
hard falsifier.
Regime Observable Prediction Falsifier
Non-
equilibrium

∆EW , ∆CW Windows with
∆EW ̸= 0 while
∆CW < 0

∆EW = 0
whenever
∆CW < 0

Ultra-fast Correlation S(τ) Sidebands at τ ≈
n 8τ0

No excess
power at
n 8τ0

Mesoscopic Visibility V(T ) Threshold at C ≳ 1 High V de-
spite C ≳ 1

V. UNIFICATION

Recognition dynamics supplies concise bridges across tra-
ditionally separate domains. We summarize the operational
content without elaboration, as each item is formalized else-
where.

Matter (Z-patterns). The invariants preserved by R̂ in-
clude integer-valued pattern charges Z. These act as con-
served labels for stable excitations and underlie discrete ladder
structures that persist through recognition updates. At coarse
scales, conservation of total Z induces continuity equations in
the continuum limit.

Measurement (C = 2A). A previously established iden-
tity equates recognition action to twice a residual gravitational
action, C = 2A. Operationally, this identifies measurement-
induced collapse (thresholdC ≥ 1) with a corresponding vari-
ational extremum in the residual action. The bridge provides
a common normalization route for units (see Methods) while
keeping the present work focused on recognition dynamics.

Gravity (ILG kernel). In linear regimes the recognition
weighting induces an effective information-limited kernel
(ILG) that modifies source terms while preserving continu-
ity. Phenomenologically, this appears as a scale-dependent
weight in rotation/growth analyses with no per-system tuning,
consistent with a single recognition timescale τ0 and fixed ex-
ponents. We do not rely on ILG here; the link is noted for
completeness.

Consciousness (boundary minima). In boundary-
dominated settings, localized minima of a consciousness
functional built on C (with additional terms) correspond to
definite experiences. For the present paper, the only role of
this sector is to motivate that collapse is intrinsic to R̂ and not
an external postulate; no phenomenology from this sector is
required here.

Taken together, these bridges reinforce that a single discrete
operator R̂ governs matter labels, measurement thresholds,
and effective gravitational weighting, with domain-specific
elaborations deferred to specialized manuscripts.

VI. FALSIFICATION AND EXPERIMENTAL PROTOCOLS

We enumerate hard falsifiers and give concrete, parameter-
light protocols. Any one falsifier suffices to reject recognition
dynamics as formulated here.

Hard falsifiers.

1. Alternate convex symmetric cost on R>0. Exhibit a cost
J̃ analytic on C \ {0}, symmetric J̃(x) = J̃(x−1) on
R>0, convex on R>0, normalized with J̃(1) = 0 and
J̃ ′′(1) = 1, but J̃ ̸= 1

2 (x+ x−1)− 1. This violates T5
(cost uniqueness).

2. Hamiltonian succeeds where recognition fails. Identify
a regime in which standard Hamiltonian evolution with
fixed Ĥ matches all observables while the recognition
prediction (with fixed J and a single τ0) fails, after ac-
counting for coarse graining. This contradicts the emer-
gent Ĥ claim.

3. Threshold mismatch C vs A. In boundary-sensitive ex-
periments, demonstrate a systematic offset between the
recognition threshold (C ≥ 1) and the residual action
threshold (A ≥ 1) across protocols that should map via
C = 2A. This breaks the bridge.

4. Eight-tick failure. Observe a universally shorter spa-
tially complete recognition cycle than 23 = 8 without
violating atomicity or timestamp uniqueness, or demon-
strate that no eight-tick-compatible coarse limit recov-
ers standard continuity. This invalidates T6.

Protocols.

∆E vs ∆C in shocks/phase fronts.: Use shock tubes or
rapidly driven phase transitions with high-speed diag-
nostics (pressure/density imaging). Define a dimen-
sionless response ratio r(t) = O(t)/O∗(t). Compute
∆CW =

∫
W
J(r(t)) dt over windows W , and com-

pute the corresponding energy change ∆EW . Predic-
tion: existence of windows with ∆EW ̸= 0 while
∆CW < 0. Falsifier: ∆EW = 0 whenever ∆CW < 0.

Ultra-fast discretization.: In attosecond/femtosecond
pump–probe or ultrafast electron diffraction, fit and
remove the smooth continuum of the two-time corre-
lation S(τ) = ⟨O(t)O(t + τ)⟩. Stack residuals across
runs. Prediction: sidebands at τ ≈ n 8τ0 with a single
τ0 across the stack. Falsifier: no excess power at n 8τ0
within statistical sensitivity.

Mesoscopic collapse at C ≈ 1.: Prepare spatial superposi-
tions of levitated nanoparticles or nanogram oscillators.
Map interference visibility V(T ) across mass and inter-
rogation time. Estimate C =

∫ T

0
J(r(t)) dt using cali-

brated response ratios. Prediction: threshold-like drop
of V along curves with C ≈ 1, consistent with a single
global τ0. Falsifier: sustained high visibility in regions
where C ≳ 1 or a need for ad hoc free parameters.
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Where applicable, negative controls (e.g., shuffled win-
dows, randomized phase references, or misaligned stacks)
should inflate residuals or destroy signatures, providing in-
ternal checks that the detected effects are recognition-specific
rather than analysis artifacts.

VII. DISCUSSION

Rigor vs assumptions. Our derivations rest on mini-
mal, explicit assumptions: the Meta Principle (information-
theoretic), analytic/symmetric/convex cost axioms on R>0

with normalization J ′′(1) = 1, atomic update (one posting
per tick), and spatial completeness over a period. Under these,
the theorems on exactness (potential uniqueness up to con-
stants) and minimal eight-tick periodicity follow, and the cost
J(x) = 1

2 (x + x−1) − 1 is unique (T5). We emphasize that
where we invoke continuum limits and coarse graining, we do
so transparently and restrict claims accordingly.

Limits of current formalization. While the core theo-
rems (cost uniqueness, eight-tick minimality, conservation on
closed chains) are machine-verified, some bridges—notably
full units quotients and certain kernel ablations—are presently
documented as methods-level scaffolds rather than fully inter-
nalized formal statements. Our Schrödinger limit relies on
a mesh-refinement hypothesis and smoothness assumptions
standard in discrete-to-continuum arguments. Tight, system-
dependent constants in the small-ε error bounds can be further
refined.

Implications. First, Hamiltonian mechanics is explained
as an emergent quadratic approximation to recognition-cost
minimization. This resolves the conceptual asymmetry be-
tween postulated energy minimization and observed stabil-
ity while integrating collapse as an intrinsic threshold phe-
nomenon (C ≥ 1). Second, a single operator R̂ coherently
links matter labels, measurement, and effective gravitational
weighting at the level of operational predictions, suggesting
a compact organizational principle for cross-domain phenom-
ena.

Future work. Experimentally, the three test classes in
Sec. IV can be advanced with existing platforms: higher dy-
namic range in shock diagnostics for ∆E vs ∆C; improved
stacking/denoising in ultrafast correlations for discrete-time
sidebands; and stability-enhanced levitated platforms to tra-
verse the C ≈ 1 contour without hidden tuneables. Theoret-
ically, priorities include strengthening discrete-to-continuum
proofs, containerizing the RG and ILG reference pipelines
with versioned artifacts, and formalizing additional bridges in
Lean.

Scope and approximation domain. We stress that Ĥ is a
superb approximation in small-deviation regimes: to leading
order, J ≈ 1

2ε
2 and the induced Ĥeff reproduces standard dy-

namics with <1% deviations for |ε| ≲ 10−1. The claims of
departure are confined to demonstrably large deviations, ultra-
fast windows near 8τ0, or thresholded transitions. Beyond
these domains, we expect and find continuity with conven-
tional predictions.

Appendix A: Methods and Derivations

Lean modules and references. Core formalisms are
hosted in the public repository. Key modules include:
Foundation/RecognitionOperator.lean (op-
erator definition, conservation, eight-tick scheduler),
Foundation/HamiltonianEmergence.lean
(small-deviation analysis and continuum scaffold-
ing). Measurement–gravity bridges appear in
Measurement/C2ABridge.lean. We cite theorem
names where used in the main text.

Formal statements.

• (T5, cost uniqueness) Under analyticity on C \ {0},
symmetry J(x) = J(x−1) on R>0, convexity on R>0,
normalization J(1) = 0 and J ′′(1) = 1, the unique
solution is J(x) = 1

2 (x+ x−1)− 1.

• (T6, eight-tick minimality) Any spatially complete,
ledger-compatible walk onQ3 has minimal period 23 =
8; a Gray cycle attains the bound.

• (Discrete exactness) If the sum of edge-increments van-
ishes on all closed chains, the field is an exact cobound-
ary: w = ∇φ, with φ unique up to constants on reach
components.

• (Continuity mapping) Under mesh refinement with
bounded fluxes, discrete conservation yields ∂tρ +∇ ·
J = 0 and gauge φ 7→ φ+ const.

Series and emergence. Exact forms:

J(1 + δ) =
δ2

2(1 + δ)
, (A1)

J(eε) = cosh(ε)− 1 = 1
2ε

2 + 1
24ε

4 + · · · . (A2)

The quadratic approximation dominates for |ε| ≪ 1, defining
an effective generator Ĥeff ≈ ∂2ε R̂

∣∣
ε=0

. Writing ∆t = 8τ0
and linearizing one update step,

R̂ = exp
(
− i

ℏ
Ĥeff ∆t

)
+O(∆t2), (A3)

whence the Schrödinger equation emerges in the continuum
limit:

iℏ ∂ts(t) = Ĥeff s(t). (A4)

Units bridges. Recognition timescale τ0 and
Planck/curvature anchors admit concise identities:

λrec =

√
ℏG
πc3

, (A5)

ℏ = Ecoh τ0. (A6)

These appear as ledger–curvature and IR gates, respectively,
and are used only for unit consistency; all qualitative claims
in the main text are dimensionless.
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Proof sketches and citations. T5 leverages symmetry and
analyticity to constrain J to a single-parameter family, fixed
by J ′′(1) = 1. T6 uses a Gray-code Hamiltonian cycle argu-
ment on Q3 together with atomicity and timestamp unique-
ness to forbid shorter periods. Discrete exactness follows
from vanishing closed-chain sums via standard cochain argu-
ments. Continuum correspondence identifies incidence with
divergence under mesh refinement. Full proofs and certificate
traces are provided in the repository modules cited above.

CORE EQUATIONS

C =

∫
J
(
r(t)

)
dt, (A7)

J(x) = 1
2

(
x+ x−1

)
− 1, (A8)

s
(
t+ 8τ0

)
= R̂

(
s(t)

)
, (A9)

J(eε) = cosh(ε)− 1 = 1
2ε

2 + 1
24ε

4 + · · · , (A10)

J(1 + δ) = 1
2δ

2 − 1
2δ

3 + 1
2δ

4 − · · · , (A11)

Ĥeff ≈ ∂2ε R̂
∣∣∣
ε=0

, iℏ ∂tψ = Ĥψ, (A12)

C = 2A (bridge statement), (A13)

λrec =
√

ℏG/(πc3), ℏ = Ecoh τ0. (A14)
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