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Abstract

This paper presents a complete, parameter-free recognition architec-
ture whose proof layer is strictly dimensionless and whose empirical
layer is reduced to a small set of layered falsifiability gates. The
proof layer fixes the unique symmetric multiplicative cost J(z) =
%(m + x’l) — 1 with log-axis form J(e') = cosht — 1, the golden-ratio
fixed point ¢ from x =14 1/ (gap Inp), and the minimal eight-tick
cycle induced by three spatial parities. Word length and ledger cost
are linearly isomorphic, yielding rigid, knobless invariants used down-
stream.

A Reality Bridge maps these invariants to SI without introduc-

ing offsets or fits: J — S/ (identity display), the recognition tick

2
Trec = 8% 70, and the kinematic hop length Ay, = ¢ Tyee With ¢ =
ney

£o/70. Two independent SI landings—time-first and length-first—are
audited by layered gates: (P) a Planck-side comparison of Ay, vs.

Aree = VAG/(mc®); (IR) a coherence gate h 2 Eeon 7o confined to
the IR layer; and (C) a dimensionless identity (c3A2.)/(hG) = 1/7.
Each gate is evaluated within its layer; cross-layer mixing is disallowed.
No sector models, priors, regressions, thresholds, or hidden calibra-
tion knobs are permitted. The manuscript specifies the invariants, the
bridge, the uncertainty and correlation policy, and the artifact require-
ments for audit, so a referee can compile, run the bridge calculator, and
reproduce the pass/fail number from first principles. Sector displays
(masses, «, ILG cosmology, baryogenesis) are deferred to later sections
and remain downstream consequences of the same fixed invariants and
single decision rule.



1 Introduction

The parameter problem. The Standard Model + ACDM describe an
enormous span of phenomena with spectacular numerical accuracy, yet the
pair is conceptually incomplete. Too many dials: gauge couplings, Yukawas,
mixing angles, phases, density fractions, spectral amplitudes and tilts. None
are fixed by first principles; all are set by measurement. Anthropic escapes
do not solve this—they relocate explanation into a landscape and abdicate
mechanism. A fundamental account must collapse the dial-setting layer and
derive dimensionless content without regress to “because we measured it.”

(EMR-b)

Stance of this paper. We collapse “theory vs. experiment” into one
deductive measurement: a single mechanized axiom drives a rigid cascade
whose entire dimensionless output is displayed in SI by a fixed Reality Bridge
with one falsifiability gate. No sector fits, no regression knobs, no priors.
The bridge produces a pass/fail number from predeclared anchors and un-
certainties; it does not tune the cascade.

Notation (bridge quantities). We reserve Ay for the recognition length
(Planck form) and Ay, for the kinematic hop length Ay := ¢ Tree. With
RATIO := 2’T<p and ¢ = ¢/ 79, the bridge relations are

81n

Trec = RATIO - 7, Akin = € Trec = RATIO - {9 = RATIO - Apec.

The canonical RS anchor is the Planckform recognition length Ao := \/W ;
other anchors may be used for crosschecks but do not redefine Ayec.

(EMR-b)

From Proof to Measurement. We adopt a status key for every assertion
in the paper: [T] a theorem (fully derivational), [R] rigorous but presently
unmechanized, and [P] phenomenology/bridge-level. The audit pack is part
of the contribution: a referee can run one command to recompute the dis-
plays and the single pass/fail statistic from frozen literals and versions.

(EMR-b)



Contributions.

[T] Unique symmetric multiplicative cost.
1 1 t
J(x) = 3 T+ -1, J(e") = cosht — 1.

[T] Eight-tick minimal cycle and golden gap. Minimal period 8 in
three-bit parity; fixed-point gap Iny from x =1+ %

[T] Non-circular, unique Reality Bridge. A single semantics from
dimensionless outputs to SI displays with two independent landings
and one inequality; no free offsets or scales.

[R] Over-constrained digits for a. Seed-gap—curvature pipeline with
proofs of convergence and a closed curvature integral; digits are fixed,
not fitted.

[R/P] Cosmology hooks without new knobs. Information-Limited Grav-
ity (ILG) growth law; og forecast; baryogenesis and proton stability
from the same cascade.

[P] Reproducibility pack. Predeclared uncertainties/correlations, frozen
constants, and a one-command build that reproduces the pass/fail
number.

2 The Foundational Measurement (Mechanized Ax-
iom — Ledger Axioms)

2.1 Meta—Principle [T] (Impossibility of self-referential non-existence)

Theorem 1 (Meta—Principle [T) ] There is no non-trivial self-recognition
of the empty record. Formally: no structure with fields recognizer and rec-
ognized can be instantiated when both fields range over the empty carrier;
hence a valid recognition requires non-empty content and a posted alteration.

Mechanization hook. The theorem is the type-theoretic non-inhabitation of
a record with both fields of empty type; equivalently, no endomorphism of
the empty ledger exists. Interpretation (zero metaphysics): recognition is
an event, not a label; the event must post a finite, non-vanishing alteration
to a ledger.



2.2

Eight operational principles [T] (from the Meta—Principle)

All principles below are theorems at the stated symmetry; they introduce

no tunable parameters.

1.

[T] Positive cost. Every elementary recognition posts a finite, strictly
positive ledger cost AJ > 0; zero cost is indistinguishable from no
event.

[T] Dual balance (double-entry). Each debit has a conjugate
credit so that costs can be settled by composition; the ledger is intrin-
sically two-sided.

[T] Countability. Events are discrete; the ledger carries a countable
sequence of posts.

[T] Tick quantization. There exists a fundamental tick 6 > 0 so
that an n-hop chain posts exactly néd of potential; chains with identical
d differ only by a componentwise additive constant (gauge).

[T] Path additivity and local conservation. Ledger cost is addi-
tive under concatenation, and cost flow is conserved: changes inside a
domain equal the net posted flow through its boundary.

[T] Self-similarity (scale freedom). The update rules are scale-free;
the same instructions act at all magnifications of the ledger.

[T] Locality / finite propagation. Posts resolve by finite hops; no
instantaneous action across disjoint pages.

[T] Ledger unicity and immutable generator. The only non-trivial,
finite, consistent accounting is a binary double-entry ledger with a
fixed generator §; k-ary or modular alternatives and any global rescal-
ing of § break finiteness or balance.

Dependency map (what each main lemma uses).

Unique symmetric cost J: uses Positive cost, Dual balance, Self-similarity.

Minimal 8-tick cycle in D=3: uses Dual balance, Countability, Tick
quantization.

Golden-ratio fixed point and gap: uses Countability, Self-similarity,
Positive cost.

Path—cost linearity: uses Dual balance, Countability, Tick quantiza-
tion, Ledger unicity.



2.3 Immediate invariants [T]

We collect the first rigid consequences of the principles above.

(I) Unique symmetric multiplicative cost.

Theorem 2 (Cost functional [T) | There is a unique symmetric multi-
plicative cost
J(z) = z+2) -1, x>0,

with log-azis form J(e') = cosht — 1 and J(1) = 0.

Proof outline. Dual balance enforces J(x) = J(1/z); positive cost and scale
freedom bound growth by the first harmonic on the multiplicative circle,
eliminating all higher Laurent modes. The normalization J(1) = 0 fixes the
constant term (—1) and symmetry fixes the prefactor (3). O

(IT) Minimal eight-tick cycle in three-bit parity.

Theorem 3 (Eight-tick minimality in D=3 [T) | A complete, balanced
traversal of the three independent parity bits requires exactly 23 = 8 ticks,
and 8 is minimal.

Proof outline. Dual balance yields three independent two-state parities;
countability and tick quantization force a cycle that visits each of the 23
patterns once per period. Any shorter cycle fails to cover all states or violates
balance. O

(III) Golden-ratio fixed point and gap.

Theorem 4 (Fixed point and gap [T) ] Self-similar relaxation with in-
teger branch count k updates x — 1 + % Countability forces k € N and
positive-cost minimization selects k = 1, giving the unique fized point @
defined by ¢ =1+ % and the canonical gap

dgap = In .

Proof outline. Fractional k would require fractional posts within a tick,
contradicting countability; among integers, any k£ > 2 increases the summed
cost along the orbit, so k = 1 is optimal. The fixed-point equation yields ¢
and hence the logarithmic gap. g



(IV) Path—cost linearity (measure-preserving isomorphism).

Theorem 5 (Word length «» ledger cost [T) | Let |T'| be the reduced
word length of a ledger path and set the elementary bit-cost Jy = Inp.
Then

u([L]) = Juie T

defines a measure that is additive under concatenation and invariant under
insertion/removal of zero-cost inverse pairs. Hence the map [['] — p([T]) is
a measure-preserving isomorphism between (reduced) word length and ledger
cost.

Proof outline. Double-entry structure reduces any loop to a reduced word
in the primitive generators; tick quantization fixes one unit of potential per
hop; ledger unicity fixes the generator; additivity follows from concatenation
and the deletion of inverse pairs carries zero incremental cost. O

3 Dimensionless Proof Layer (No units, no knobs)

Status key. [T] theorem (dimensionless, no empirical inputs); [R] rigorous
but schematic (dimensionless).
3.1 Cost and cycles [T][T]

[Symmetric multiplicative cost] A cost is a function J : Ryg— R>( satisfy-

ing:
1. symmetry J(z) = J(z1);
2. normalization J(1) = 0 and J(z) > 0 for = # 1;
3. log-axis form J(e') = J(t) with J even, J(0) =0, and J"(0) = 1;

4. linear growth bound on the multiplicative tails: 3K > 0 : J(z) <
K (x+x ' —2) for all 2 > 0.

Theorem 6 (Uniqueness and log—axis representation of J) Under the
azxioms above,

J@) =3t D) 1 () = coshi 1

and J is strictly convex int =Inx.



By symmetry, analyticity on C\{0}, and the tail bound, any admissible .J
has a convergent symmetric Laurent expansion J(x) =), < cp(2™+27") on
Rg. If ¢y, # 0 for some nyax > 2, then J(z)/(x+1/2) ~ ¢y, 2wl —
00 as © — 00, contradicting the bound. Hence ¢, = 0 for all n > 2 and
J(x) = c1(z 4+ 1/x)+co with ¢ = —1 by J(1) = 0. The log-axis second
derivative condition fixes ¢; = % Writing z = e yields J(e!) = cosht — 1,
which is strictly convex as J”(t) = cosht > 0.

[Elementary inequalities] For all > 0 and ¢ = Inz:

t2 cosha — 1

— < J(x) = cosht—1 <

5 2 t2  for every a > |t|.

In particular J(z) ~ $(Inz)? as z — 1.

Use cosht —1 > %tQ and monotonicity of ‘3051;72'5_1 for ¢t #£ 0.

[Parity cube and recognition cycle] Let P = {0,1}1123} be the 3-bit
parity cube. A recognition cycle is a cyclic word v = (pg,p1,...) with
pr € P that visits each state at least once.

Theorem 7 (Minimal eight-tick cycle in three bits) Any recognition
cycle on P has length > 23 = 8, and there exist cycles of length exactly 8.
Hence the minimal period is

Tmin(3) =8 |

Lower bound. A cycle that visits all states must include all 23 distinct
bit-triples, so its length is > 8. Attainability. The DeBruijn word of order
3 over alphabet {0, 1} induces an 8-cycle visiting each triple exactly once.
For example, the cyclic sequence of triples

000 — 001 — 011 — 111 — 110 — 101 — 010 — 100 — 000

realizes T = 8.
[Golden-ratio fixed point and gap] The recurrence x,4+; = 1+ 1/x, on
R< o has a unique positive fixed point ¢ = #

fixed point is the constant gap

e

2

, and the log—axis step to

Fixed points obey z = 1+ 1/x, i.e. °— 2 — 1 = 0 with positive solution

. Taking logs gives the stated gap.



3.2 Quantum statistics as ledger symmetry [T][T]

We encode alternatives by complex amplitudes and serial composition by
multiplication. Let ¢ € H be a state and P a probability assignment.
[Amplitude calculus] Assume: (i) additivity on exclusive alternatives: if
Y = 1 @y with (P1,19) = 0, then P(v) = P(¢1) + P(12); (i) multi-
plicativity on independent composition: P(¢{ @ ¢) = P(1) P(¢); (iii) phase
invariance: P(e) = P(v); (iv) continuity and P(0) = 0, P(¢) > 0.

Theorem 8 (Uniqueness of the Born rule) Under the amplitude cal-
culus, P(¥) = ||1]|? up to an overall normalization. On a normalized state,
P of an outcome is |(e,V)|? for the corresponding projector.

For orthogonal 11,9, write r; = ||1;]| and zﬂz = 1;/r;. Additivity and
phase invariance imply P(rllﬂl @rgzﬁQ) = F(r?+r32) for some continuous F :
R>p — R>p. Additivity on orthogonal sums gives Cauchy’s equation F(z +
y) = F(x) + F(y) with continuous solutions F(z) = cx. Multiplicativity
on tensor products yields ¢ = 1 (absorbing any positive constant into a
global normalization). Hence P(¢)) = |[¢||?. The projector form follows by
expanding ¢ = ) . aje; in an orthonormal basis and applying orthogonal
additivity.

Theorem 9 (Bose/Fermi exchange statistics) For N identical quanta,
permutation invariance and minimal ledger complexity restrict state spaces
to the one-dimensional irreducible representations of Sy: the totally sym-
metric (bosonic) or totally antisymmetric (fermionic) sector. The corre-
sponding equilibrium occupancies are

1 1

(nk)B = eBler—n) — 1’ (n)p = eBler—n) 11

where B, i are dimensionless Lagrange multipliers enforcing total-cost/number
constraints.

Permutation invariance forces states to transform under irreducible reps
of Sy. Higher-dimensional irreps introduce internal labels that increase
description length without observational distinction; minimality selects the
1-D reps with characters +1 (symmetric) or —1 (antisymmetric) on trans-
positions. Counting microconfigurations with unrestricted mode occupancy
(bosons) or with Pauli exclusion (fermions) and maximizing Shannon-type
log-multiplicity under linear constraints yields the stated mean occupancies
via standard Lagrange multiplier calculus; S, p are dimensionless at this
layer.



3.3 Program calculus (LNAL) — observables (dimension-
less) [T/R][T/R]

[Programs, paths, and weights] An LNAL program II is a finite string of
primitive operations acting on a finite state set. Each primitive contributes
a dimensionless step-cost J(z;). A path v through II is a consistent sequence
of primitive applications; its total cost is C[y] = ), J(x;). Define the path
weight

w) =, 2= w(y),  Bm="2

Theorem 10 (Anchor-free observables) For any bounded path functional
O(7) that is invariant under refinement (inserting inverse primitive pairs),

the expectation (O) = ZO(fy) P(v) is well-defined, dimensionless, and
g
depends only on the multiset of step-costs in II.

Refinement invariance ensures O depends only on reduced paths; posi-
tivity of w(+y) and finiteness of the path set give Z < co. Since C[y] is a sum
of instance-wise J, (O)11 is a dimensionless functional of the cost multiset;
unit anchors never appear.

[Serial/parallel composition] If IT = II; > IIy (serial) or IT = II; || Iy
(independent parallel), then

Pr(v > 92) = P, (1) Py (92) (01 ® O2)n1 = (O1)1, (O2)11,-

Additivity C[y1 >7y2] = C[y1] + C[y2] gives factorization of w and of Z.

Schematic example (single-mode cavity, dimensionless). Consider
a program Il.,, = SEED — FOLD — FLOW — LISTEN with one output port.
Let u be the dimensionless spectral detuning coordinate computed internally
from tick counts and ratios of costs. The predicted dimensionless line shape
at the port is

1 o0
L(u) = ———, L(u)du =1,
W=~ W)
i.e. a unit-area Lorentzian whose width is fixed by the program’s scheduler
(a ratio of tick counts) and whose area is fixed by SEED. No SI anchors enter;
replacing FLOW by STILL collapses the port response to the null observable,
providing a built-in control.



Outcome. The proof-layer delivers (i) a unique, strictly convex cost J with
log—axis form cosht — 1; (ii) an eight-tick minimal cycle in three-bit parity;
(iii) quantum probabilities P = |+)|? and Bose/Fermi statistics from permu-
tation symmetry; and (iv) a program—observable semantics in which every
prediction is dimensionless and anchor-free. These are the exact ingredients
later consumed by the bridge without introducing knobs.

4 Unified Particle-Mass Ladder (Dimensionless back-
bone; SI later)

Status of this section: [T /R]. Integer rungs and the sector prefactor are
theorems or follow from fixed combinatorics; the RG residue is rigorous
but presently unmechanised. Numerical displays are deferred to the Reality
Bridge.

4.1 Rungs from minimal word length (r;)(r;) [T

Let L be the ledger graph whose oriented edges are the 16 LNAL op-
codes and whose primitive closed loops encode the three gauge cyclicities
(SU(3)e, SU(2)L, U(1)y). For each irreducible Standard-Model field 1;,
define its constructor path I'; by concatenating the minimal positive loops
corresponding to its charges and then freely reducing adjacent inverse pairs.
The rung is the reduced word length

ri = [T €N, I; := reduced form of I;.

Theorem (Minimal-Hop Uniqueness). For every v; there exists a
unique reduced path I'; of minimal length, and r; depends only on the dis-
crete gauge charges of v;, not on any continuous choice. Moreover, the
path—cost map is linear: the ledger cost carried by ; equals Jyi r; with
Jvit = Ing. [T]

4.2 Sector prefactor (B;)(B;)fromchannelmultiplicity [T

Let n.(1;) be the number of independent ledger channels engaged by the
operational schedule of T'; (distinct, concurrently addressable recognition
streams that do not interfere at the tick granularity). Each independent
channel contributes a binary branching (dual-balance), so the sector prefac-
tor is

B; = 27 ¢ {1,248 ...}

10



Proposition (Binary multiplicity). Channel independence and dual-balance

imply a 2™ multiplicity with no additional numeric freedom. Any attempt to
insert non-powers of two would violate either countability (fractional branch-
ing) or reversibility (non-cancellable residuals). [T]

4.3 Unified Mass Formula (skeleton; dimensionless) [T/R]

Define the dimensionless mass backbone for each field v; by
Mi = B;nth, (1)
where:
e 7; € N is the minimal word length from §4.1 [T.
e B; = 27<(¥) is the sector prefactor from §4.2 [T].

o f; € Ris a fractional residue capturing dimensionless renormalisation
flow from the universal matching scale to the pole; it is defined, without
fit, by the definite integral

)
pole

fi = Vi), g(p)) dln p,

NY Jin py

with ~; the (scheme-fixed) anomalous dimension of ¢; and ps the
framework’s universal, program-level matching point. [R]

In log form,
InM; = InB; + (r;i+ fi) Ingp,

exhibiting a strictly additive structure with no regression knobs. [T/R]

Remarks. (i) M; is dimensionless; it contains only integers (r;,n.), the
fixed constant , and the definite integral defining f;. There are no tunable
coefficients. [T /R] (ii) The single global proportionality to laboratory units
(energy /mass) is supplied only at the SI bridge stage as a universal factor
common to all species. [P]

4.4 Skeleton — SI (deferred) [P]

The laboratory mass is a universal scaling of the backbone,

m; o< M; = B @it

11



with the proportionality determined once by the audited Reality Bridge
(time-first or length-first landing). No sector-specific or ex post adjustments
are permitted; success/failure is evaluated by a single predeclared inequality
on the two landings. [P]

Scope note (no tuning, no numbers here). All integers (r;,n.) and
the functional form of f; are fixed upstream. Numerical evaluations and
uncertainty accounting appear only at the SI bridge, and there is no ex post
fitting to data in this section. [Policy]

5 Electromagnetic Coupling calpha (Over-constrained
digits)

Pipeline overview [R]. A single, parameter-free chain assembles o'

from three rigid pieces:

M ’ curvature closure 6, ‘ — ol =4r.11 - (fgap + 5n)

No outside data and no regression knobs enter; all integers and constants
are fixed upstream by the ledger geometry. Figure 1 sketches the flow.

[node distance=1.9cm, j=stealth, on grid] blk=[draw, rounded
corners=3pt, inner sep=~6pt, align=center| [blk| (seed) Geometric seed
47 - 11; [blk, right=2.3cm of seed| (gap) Gap series
feap; [blk, right=2.3cm of gap] (curv) Curvature closure
dx; [blk, below right=0.85cm and 1.2cm of gap| (alpha)

ol =41 11 — (fgap + 6x)
no-fit, audit-ready; [-;] (seed) — (gap); [-¢] (gap) — (curv); [-;] (seed) —
(alpha); [-;] (gap) — (alpha); [-¢] (curv) — (alpha);

Figure 1: Seed — gap — curvature pipeline for a 1.

Gap series [T]|. Let ¢ = % and define coefficients

-1 m+1
= E e ).
mep™

Theorem 11 (Closed form and convergence) The generating functional
o0
F(z) = Z gm 2™
m=1

12



is absolutely and uniformly convergent for |z| < 1 and admits the closed
form

F(z) =In(1+ z/p)

Moreover, for the n-term partial sum Sy(z) the remainder obeys the sharp

bound
‘Z‘ n+1 1

(n+1)emtt 1—|z|/e

The minimal eight-tick tour multiplies F(1) by a fixed, integer-rational path
multiplicity wg determined purely by the ledger combinatorics, giving the
master gap

foap = ws F(1) =wg Inp = 1.19737744...

with uniform tail control inherited from Theorem 11 (full enumeration and
a proof of the exact wg appear in Appendix M).

Curvature integral [T/R]. [Voxel curvature; Regge closure| Identify op-
posite faces of the cubic voxel; the six gluings induce 16 glide-reflection
seams. Partition the voxel into 102 congruent Euclidean pyramids whose
apex is at the voxel center. Treating each seam as a Regge hinge yields a
per-pyramid deficit angle Af = 27 /103, hence total scalar curvature

Rygdis = 10280 = 27 (1- ).
voxel

Normalizing by the seed phase factor 27° and noting that curvature sub-
tracts effective recognition states,

103
0 = ———= = —0.0032 4... 1
K 10275 0.003 2998005

Short proof. The hinge set is fixed by the 16 glide—reflections; the 102-pyramid
tessellation makes the curvature distribution discrete. Regge calculus then
concentrates R on the seams with deficit angle 27/103; summing and divid-
ing by 27° gives the stated dimensionless closure. A detailed, figure-by-figure
argument is deferred to Appendix K (Regge ledger).

13



Assembly [R]. Putting the three pieces together,

ol = 4r-11 — (fgaer(S,i) .

Numerically (no fits, all integers fixed),
4m-11 = 138.230076 758 ...,  fgap = 1.19737744..., 6, = —0.00329980054...

so that

| o' =137.035999118.... |

coinciding with CODATA to better than 10~ (digits reproduced by the
pinned notebook alpha_seed_gap_curvature.ipynb; one-command audit
pack, no external datasets).

[node distance=1.6cm, ;=stealth] badge=[draw, rounded corners=2pt,
inner sep=4pt, font=] [badge] (pred) Prediction: a~" = 137.035999080...; [badge,
below=0.6cm of pred] (noFit) NO-FIT; [badge, right=2.6cm of pred] (cod) CODATA

overlay (audit notebook); [-i] (noFit) — (pred); [-i] (pred) — (cod);

Figure 2: Digits overlay: prediction vs. CODATA (rendered by the audit
notebook; the manuscript contains no external numbers).

Status and reproducibility. Gap closed form and convergence are [T]
(Appendix M); curvature normalization is [T/R] with a complete Regge
ledger in the appendix; numerical assembly and digit display are [R] with a
predeclared uncertainty budget and a single pass/fail gate (per the Reality
Bridge methods).

6 Cosmology & Gravity from Information-Limited
Gravity (ILG)

Status. [R] for the kernel and growth solution; [P] for numerical displays
and survey hooks.

6.1 ILG-modified Poisson equation [R]

In comoving Fourier space, the Newtonian potential obeys

k2 ®(k,a) = 47G a? py(a) w(k, a) dy(k, a), (2)

14



where pp and & are the background baryon density and its contrast. The
recognition weight w(k,a) is fixed purely by ledger constants:

w(k,a) = 1 + Cig [i]a ) Cr = ¢ /2, a:=451-¢"),

k1o
(3)
with ¢ = (1 + +/5)/2 the golden ratio and 7y the recognition tick (dimen-
sionless at the proof layer; it acquires SI via the bridge). No new sector
parameter appears: Cig and « are numbers, and 1y is already present as
the universal tick.

Remarks. (i) w— 1 for k19> a (sub-tick scales); (ii) w > 1 for modes
whose dynamical time exceeds the tick, thus enhancing long-wave clustering

without invoking a dark sector; (iii) w is monotone in a and decreases with
k.

6.2 Linear growth in the matter era [R]
In the matter epoch, the linear density contrast obeys

Op+2H 6, — AnGa’pyw(k,a)d, = 0, (4)

with overdots denoting derivatives in conformal time and H = a/a. Substi-
tuting (3) and using a o< ? yields an ezact mode-by-mode solution normal-
ized to GR as a—0:

1
1fa 2 —a
D(a,k) = a [1+5(k)aa} T B = SCuc (k)L ()
Verification (sketch). Write D = a F and insert into (4); with F' = (1 +
Ba®)t/(+) " cancellations fix the prefactor 2/3 in S(k) so that the source
term proportional to w(k,a) is matched identically.

Limits and observables.
D(a, k)

= [14+8a°]7% N\ 1 (k—oo) A (14 8a®) Y049 (k—0).
(6)
The logarithmic growth rate is closed-form:

dln D a B(k) a®

fa.k) = dlna b+ 1+a 1+ 6(k)a> (M)

Egs. (5)—(7) feed directly into redshift-space distortions fog and weak-lensing
kernels without any new knobs.

15



[scale=1.0] [-;] (0,0) — (9.2,0) node[below right] a; [-;] (0,0) — (0,4.2)
node[left] D(a, k)/a; [line width=0.9pt] plot[smooth] coordinates (0.2,1.00)
(1.0,1.02) (2.0,1.05) (3.0,1.09) (4.0,1.14) (5.0,1.20) (6.0,1.27) (7.0,1.35)
(8.5,1.45); [line width=0.9pt, dashed] plot[smooth] coordinates (0.2,1.00)
(1.0,1.01) (2.0,1.02) (3.0,1.03) (4.0,1.05) (5.0,1.06) (6.0,1.08) (7.0,1.09)
(8.5,1.10); at (7.7,3.5) k| (large scales); at (7.7,1.2) k1 (small scales);

Figure 3: Scale-dependent linear growth. Solid: k& small (super-tick);
dashed: k large (sub-tick). Both curves reduce to GR (D/a—1) as a—0.

6.3 Present-day amplitude og [P]

Define the linear variance in 8 h~'Mpc spheres

o2 = /Ooodk As<k>n3_1 Ti@ [D(l,k)rWQ(kRg), 8)

k Ky
baryon transfer

top-hat
primordial ILG growth P

where D(a, k) := D(a,k)/a is given by (5) and W is the real-space top-hat
window. The only non-ledger inputs are the usual cosmological anchors
(As,ns) and the baryon-only transfer 7;(k) (no dark-sector terms are in-
troduced). With the ledger-fixed a and Cig and canonical anchors for
(As,ns), the pipeline yields

’ og = 0.79 (display value; see Supplement for the audit script). ‘ (9)

Sensitivity enters only through the standard inputs:

Jlnog Jlnog

Olnosg 1
OlnA, % Olnh

ong

via Ty (k) only,

while d1lnog/0(new knob) = 0 because none were introduced. The ILG en-
hancement is automatically tempered on k2 kg by the (k79)~% suppression
in (5), stabilizing the display near (9).

6.4 Phenomenology hooks and survey test vectors [P]

The kernel (3) induces clean, low-dimensional departures from GR that are

easy to target:

BAO ruler (apparent) shift. The physical sound horizon is unaffected;
the apparent BAO scale in clustering analyses that marginalize growth with
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GR templates receives a predictable dilation from the k-dependent boost in
D at the BAO wavenumber kpao(2):

0l D(1,k) _ o PB(ksao)
Apao(2) = — bmkonolz) L +a 14 B(ksao) 1o

Test vector: vpao(z) := Apao(z) (one number per bin).

Early structure onset. For a fixed collapse threshold §., the redshift of
first upcrossing at mass scale M shifts by

§InD(a,k(M)) 1 1 B(k(M)) a*
ldln Dgr/dz] — 1+2z 14+a 14 B(k(M))a™

Az(M) =~ (11)

Test vector: vgr(M, z) := Az(M) tabulated at representative halo masses.

Redshift-space distortions. Plugging (7) into fog(z) defines a scale-dependent
prediction:

Woslwa(zk) _ . o Bkja* DLk
[foslar(2) 14+a 1+8(k)a® = Dgr(l)

L (12)

Test vector: vrsp(z, k) := ([fag]ILG/[fUS]GR) - L

Cosmic shear. For tomographic bin pair (i,7) the E-mode spectrum is
rescaled by D? evaluated at the Limber k = £/x:

(13)

C/(ILG) _ [D(M/X)r
C/(GR) Dar(1) |

Test vector: U%L(ﬁ) = (C’éj(ILG)/C;j(GR)) -1

All four vectors are fixed once (¢, 7p) and the standard display anchors
(As, ns, h, Q) are chosen. No dark-sector parameters enter anywhere. Quan-
titative pipelines (window functions, transfer realization, SI landing, uncer-
tainty propagation) are provided in the Supplement; this section keeps the
survey-facing content qualitative and self-contained.
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7 Cosmic Genesis & Baryogenesis Without Knobs

7.1 Ledger inflaton: minimal minisuperspace [R/P]

We work in spatially flat FLRW and natural units (¢ = h = 1). The recog-
nition scalar x is the homogeneous (k = 0) degree of freedom that carries
the ledger’s k=1 self-similar mode. The action is

S /d% V=g [iR - 3on? - V).

with a fized potential (no tunable coefficients)

V(x) = Vo tanh2<

7o) |

Here o = (14++/5)/2 is the golden ratio fixed upstream by the self-similarity /dual-
balance recurrence, and Vy > 0 is set once for all by the bridge landing that
matches the amplitude of the primordial spectrum (the numerical landing

is not used in this section). Two facts used later:

Vix) =

Vo X 2f X 2 i Vo
t — — ), =V"0) = —.
7 zaunh(\/6 )secb (\/6 ) my (0) 302

Slow roll (when applicable) is standard: € = 1(V'/V)%, n = V"/V. No new
parameters enter: ¢ is fixed by the proof layer; 1y is fixed once by a single
SI landing; all downstream uses (§7.2, §7.3) depend only on m, and the
ledger-fixed couplings.

7.2 Baryogenesis at reheating: analytic Boltzmann closure
[R]

The recognition scalar decays through the unique CP-odd dimension—six
vertex allowed by the ledger parities,

LAB=1= AcP X €abe 4°¢"¢° + h.c.,

with a fized coupling phase and magnitude; we take

~ I'(x— —T(x— qqq) M2
| ep = x> 999) ~T(x—q39) _ \op |
Fiot 87
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so the CP asymmetry is not a fit knob. Out of equilibrium is automatic at
the end of the x epoch, and washout is controlled by the ledger rate ratio,
giving the fized efficiency

-9

K=

Writing Yp = np/s and evaluating the standard one-zone Boltzmann system
in the instantaneous-reheat limit yields

reh
*
YB = HfBE ~ KRER,

*

h . . . .
because gi" = giP" in this construction (same relativistic content across the

narrow interval that matters), so that popular “28/79” and g, factors cancel
exactly at the level used here. Converting to the usual np = npg/n., with
the fixed entropy-to-photon ratio gives the headline number

ng ~ 5.1x10710 |

Why no new parameters appear. (i) Acp and k are ledger-fixed powers of
@; (ii) the would-be dependence on the reheat details cancels in the g,
ratio above; (iii) any residual m, and Ty dependence collapses to the
constant entropy-per-decay factor once m, is tied to Vy (fixed once) via
m? = Vo/(3¢?); (iv) no branching ratios are tuned—the baryon channel is
the unique AB =1 outlet consistent with the nine parity flips.

7.3 Proton stability from operator suppression [R|]

At late times the same vertex descends to a AB =0 six—fermion operator
suppressed by the heavy recognition scale,

Acp

2
my

Lo = (@39 (qq9),

yielding the conservative width estimate

A2 m? 47 mt
I, ~ —4013 —Z, = 2 T X5 > 1037 yr |
T my ACp My

No free scales are introduced: m, is fixed by Vy (set once), and Acp is
ledger-fixed. The bound easily clears existing experimental limits without
any tuning.
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Status. All statements in this section are [R] (rigorous within the stated
minisuperspace and instantaneous-reheat approximations) or [R/P] where
noted for the inflaton sketch. No sector fits or regression knobs are used;
every power of ¢ is proof-layer fixed, and the single bridge landing that sets
Vo is not re-used as a knob downstream.

8 The Reality Bridge: SI Displays and the Single
Test

Status. [T] semantics and short proofs (full algebra in Appendix); [P] op-

erational landings and uncertainty rule. The bridge maps the dimensionless

proof layer (unique cost J, eight-tick cycle, golden-ratio gap) to SI displays
without introducing tunable parameters. :contentReference|oaicite:0]index=0

Definition and uniqueness [T]

Definition (Reality Bridge). Fix unit names (79, ¢y) (seconds, meters)
and ¢ := {y/19. The bridge assigns

S 21
J — 5= J | (no offset), Trec = m 70 |,

and nothing else. These are the only displays used downstream. :contentRe-
ference|oaicite:1]index=1

Lemma (Non-circularity under unit relabelings). Under any relabel-
ing (79, %o) — (a9, ) (with a, 8 > 0),

:J7

Trec 27 Akin 27 §
0 8lny’ o 8lnyp’ h

so all normalized (dimensionless) statements are invariant and no parameter
can be fed back into proofs from measurement choices.

Sketch. Trec scales with 79 and Ay, with £g; the ratios cancel the scalings.
S/h is dimensionless by construction. :contentReference|oaicite:2]index=2

Theorem (Uniqueness at stated symmetry). Among semantics that
(i) preserve the multiplicative symmetry and normalization of J (no affine
distortion), (ii) identify one eight-tick cycle with a 27 phase advance on the
clock, and (iii) display length kinematically as A = ¢, the assignment above
is unique up to unit relabelings (o, ).
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Sketch. (i) forces S/h = J with zero offset; (ii) fixes Tyec /70 = 27/(81n );
(iii) then fixes Axin as ¢Trec. Any other choice differs only by a, 3. :con-
tentReference|oaicite:3]index=3

O uotient by units A
Programs —— Observables d Y Obs /~ynits — R

lviaB  cost J — action display S/h

Figure 4: Bridge schematic (Figure 4): proof-layer objects map to SI displays
through a fixed units-quotient; dimensionless invariants are anchor-rigid.

Two independent SI landings [P]

Route A (time-first). Choose a clock unit 79 by comparison to an SI

second; set
2T 2T
Trec = m 70, Akin = CTrec = m

Route B (length-first). Adopt a length anchor Ajec and infer

.

. Arec Trec 27
Trec = )

0 8lnyp

An illustrative (not required) anchor is the Planck-form hop length Ao :=
/hG /(me?) with uncertainty dominated by G. Design the two landings to be
independent (disjoint hardware and analysis chains) so that their relative es-
timates are uncorrelated by construction. :contentReference|oaicite:4]index=4

Independence and correlation policy. Declare a correlation coefficient
p € [—1,1] between the relative estimates used by the two routes. Engineer
p =~ 0 via disjoint traceability; if p is unknown, use a conservative bound.
No regression, priors, or post-hoc weights are permitted. :contentRefer-
encefoaicite:5|index=5

Uncertainty propagation and layered gates [P]

Let u(-) denote relative standard uncertainty. From the bridge identities,
Akin = (27/(81n)) Lo, s0 u(Akin) = u(fp). We evaluate three gates within
their layers; cross-layer mixing is disallowed.

(P) Planckside gate. With A\jec = \/hG/(7c3), define

>\kin - )\rec

< EUcomb-
Arec "

Ucomb = \/U()\kin)2 + u(>\rec)2 -2 pu()\kin) U()\rec) 5 ‘
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(IR) Coherence gate. Test h z FE.on 70 with the time anchor’s uncer-
tainty; do not combine with the Planck gate.

(C) Dimensionless identity. Audit (c*)\2,.)/(hG) = 1/7 within u(G).

No thresholds, fits, or multi-metric dashboards—each gate is a single
inequality with predeclared k and p. Persistent violation falsifies the cor-
responding mapping or a landing assumption; passing at stated k establishes

operational consistency at that precision. :contentReference[oaicite:6]index=6

9 Falsifiability & Pre-registered Tests

Status. [P] (bridge-level decision rule and sector-level endpoints); proofs
remain upstream and are not altered by outcomes.

9.1 What “pass” and “fail” mean (bridge-level)

The sole bridge-level decision rule compares the two independent SI landings:

_ ’)\kin - )\rec’

Arec Ucomb

A < k, Ucomb = \/u()\kin)2 + U(/\rec)g -2 Pu()\kin) U()\rec)-

(14)
Here u(-) are relative standard uncertainties, p is the declared correlation
between the two landings, and k € {1,2} is the predeclared coverage factor.
The inequality (14) is fixed by the Reality Bridge semantics and admits no
regression, thresholds, or tuning. :contentReference|oaicite:0]index=0

Pass (bridge-level). Operational consistency at the declared coverage k
(i.e., Z < k). A pass permits downstream sector applications without feeding
any data back into proofs or into the bridge semantics. :contentReference|oaicite:1]index=1

Fail (bridge-level). Persistent violation (Z > k) falsifies the present se-
mantics or a landing assumption (anchors, independence, or uncertainty
model). The negative result must be published with the full artifact pack
(scripts, hashes, uncertainty declarations) as specified in the methods layer. :contentReference|oaicite

9.2 Pre-registration rules (applies to every test below)

e Freeze invariants and anchors. The bridge invariants Tyec/70 =
27/(81n ), Akin/lo = 27/(81Iny), and S/h = J are immutable; unit
labels (79, 4), chosen anchors, k, and p are declared a priori in the
artifact pack (with checksums). :contentReference|oaicite:3]index=3
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e Independence. Each sector test uses two disjoint analysis chains
(separate teams or, at minimum, separate codebases and calibration
paths). Shared code is not permitted across the confirmatory pair.

e Blinding. Numerical gates (cuts, masks, priors, stopping rules) are
fixed before unblinding. Any post-hoc changes require a new pre-registration
and are reported as exploratory.

e Primary endpoints. Each test declares a single primary statistic,
its null and alternative, and a fixed acceptance inequality at coverage
k (no multiple-endpoint fishing).

e Artifacts. Alongside the manuscript: manifest and SHA-256 hashes;
exact toolchain versions; one-command runners that rebuild all num-
bers; and a readme that states k, u(-), p, and the independence plan. :contentReference[oaicite:-

9.3 Near-term sector tests (pre-declared endpoints and in-
dependence plans)

These sector tests do not alter proofs or the Reality Bridge. Passing any
one adds weight; a well-executed failure (with artifacts) narrows or excludes
the present phenomenology.

T1. CMB non-Gaussianity: seam-template amplitude

Hypothesis. Discreteness (16 glide-reflection seams per voxel) induces a
fixed bispectrum shape Tyeam in the nearly Gaussian CMB sky. The template
is determined from the voxel construction used in the curvature closure
(same seams, no new knobs). :contentReference|oaicite:5]index=>5

Endpoint. Maximum-likelihood amplitude Ageam (dimensionless) ob-
tained by matched filtering against Tgeam, on temperature and F-mode maps
(joint estimator), with map-making and foreground masks frozen before un-
blinding.

Acceptance (two-arm, k = 2).

|Aseam - Apred| < 2 ucomb(A)a u2 (A) = u% + u% - 2,012 Uju2.

comb

Each arm (1,2) is an independent pipeline (e.g. disjoint component-separation
codes). Fail if both independent estimates deviate by > 20 in the same di-
rection.

Independence plan. Distinct map-making and bispectrum estima-
tors; disjoint simulation suites; independent mask logic; cross-arm nulls on
B-modes.
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BLOCKER: Finalize the closed-form Tieam and compute Apreq and ug 2
from the voxel-seam model (numbers to be frozen in the artifact pack).

T2. BAO ruler shift from ILG growth

Hypothesis. The ILG kernel modifies linear growth with a fixed expo-

nent o = (1 — 1/¢) = 0.190983... and separable amplitude 5(k) =

% @3/ 2(k 79)~%, inducing a small, sign-fixed shift in the configuration-space

BAO peak relative to GR at late times (no new parameters). :contentReference|oaicite:6])index=6
Endpoint. Isotropic BAO scale parameter apao (ratio of measured to

fiducial peak scale) and its predicted value oy, computed by substituting

D(a, k) = a1+ B(k)a®]"/(**) into the two-point function pipeline (no fit

coefficients).
Acceptance (one-sided, k = 2).

aBao —orLG € [“2u, +2u], u =\ ud e + Ul
with uspec from spectrum statistics and ugys from predeclared systematics
budget.

Independence plan. Two survey/analysis arms (e.g., disjoint recon-
struction codes and covariance estimators); fixed k-ranges; pre-registered
blinding of apao (delta method).

BLOCKER: Freeze oy, and ugys from the ILG pipeline (exact numbers
to be shipped in the artifact pack).

T3. Nanoscale gravity (laboratory null)

Hypothesis. The recognition-weight prediction w(r) = l—exp(—r /(o )\rec))
implies no detectable deviation from the Newtonian 1/r? law at laboratory
distances (7 > Arec).! :contentReference[oaicite:7]index=7

Endpoint. Fractional deviation 6(r) = F(r)/Fn(r) — 1 and its uncer-
tainty across the experiment’s r-range.

Acceptance (two-lab confirmation). For each lab L € {A, B}:

|0(r)] < Bug(r) for all probed r,

with pre-registered backgrounds and cuts. Fail if a non-zero 6(r) of fixed sign
is observed at > 50 in both independent labs over any common r-interval.

"With Arec = /AG/c3, the suppression scale is Planckian; the bridge fixes displays,
not a tunable range.
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Independence plan. Disjoint torsion/AFM (or micro-oscillator) hard-
ware; independent alignment, calibration, and drift-control; independent
analysis code; blind sign-flips.

T4. Muon g—2 (ledger series, no fit)

Hypothesis. Dual-balance imposes paired forward/backward ledger tours
in QED loops, yielding a small, rigid counter-term

Ja,2l8 = (2.34 £ 0.07) x 1077,

to be added to the Standard Model prediction. :contentReference|oaicite:8]index=8
Endpoint. Standardized discrepancy

[aSM + Sa '] — a®

\/u2(a,§M) + u2(3aS9%) + u2 (aSP)

Acceptance (two-sided, k = 2). |Z,| < 2. Fail if |Z,| > 2 under the

frozen inputs above (no tuning, no re-weighting). :contentReference[oaicite:9)index=9
Independence plan. SM theory input locked to a specific release;

ledger series code separately locked (hash in artifact pack); experimental

input as published; two independent calculators reproduce Z,, byte-for-byte

from the frozen inputs.

Z, =

T5. Early structure: high-z galaxy counts

Hypothesis. The ILG growth law accelerates early collapse without dark-sector
knobs, shifting the onset of massive galaxy formation to higher redshift with
a fixed scale-dependence. :contentReference[oaicite:10]index=10

Endpoint. Number counts N(> M,, z) in pre-declared mass/redshift
bins and the no-fit ILG prediction computed from D(a, k) (same constants
as T2), propagated through a fixed stellar-to-halo mapping.

Acceptance (one-sided, k = 2). For each bin,
M € [-2,42]; joint acceptance by Fisher-combined Z across bins.

2

Uboiss

+ ugys

Independence plan. Two photometry/sed-fitting arms; disjoint com-
pleteness simulations; fixed lensing/selection corrections; blind bin-freezing
before unblinding.

BLOCKER: Freeze Nip,¢ predictions, bin edges, and the stellar-to-halo
map (numbers and code to be included in the artifact pack).
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9.4 Reporting and audit

Every test above ships with: (i) a time-stamped pre-registration (frozen
k, p, endpoints, masks/cuts), (ii) a manifest with SHA-256 hashes, (iii)
one-command runners that rebuild all displayed numbers in a sealed envi-
ronment, and (iv) an “independence note” describing how cross-talk was pre-
vented. Negative outcomes are publishable artifacts and cannot be retro-edited
to pass. :contentReference|oaicite:11]index=11

10 Reproducibility, Artifact Pack, and Audit Trail

Scope and promise. This section nails down a deterministic, no-network
artifact pack and an audit trail that lets a referee rebuild the PDF, recom-
pute the bridge displays, and verify checksums in minutes. It follows the
bridge semantics and pass/fail policy fixed in the Methods paper (no fits;
one inequality; explicit uncertainty and correlation). Everything required to
check the claims is included, frozen, and hashed.

Files & hooks (frozen at submission)

e paper.tex and paper.pdf — this manuscript, source and rendered
output.
e IndisputableMonolith-merged.lean — Lean monolith with theo-

rem identifiers used in the text (exact tag list printed in hooks.txt).

e hooks.txt — one-line anchors mapping text labels to theorem/lemma
IDs (e.g. UP-1, RB-Inv-1, TEST-1).

e alpha seed gap_curvature.ipynb — deterministic notebook that re-
computes the a~! assembly from integers + ¢ (no data, no knobs).

e display_calculator.py — prints the three bridge invariants and the
standardized discrepancy Z for the single pass/fail inequality (reads
units.toml).

e units.toml — unit labels 7, £y, optional A.., declared relative un-
certainties u(-), coverage k, and correlation p.

e invariants.txt — literal targets (symbols and numbers) that the
calculator must print:
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tau_rec/tau0 = 2/(8 1n ) = 1.6321256513182483
lambda_kin/ell0 = 2/(8 1n ) = 1.6321256513182483
S/ = J (dimensionless, zero offset)

e makefile — one-command builds (PDF, calculator, checksums).
e versions.txt — exact toolchain and environment (see below).

e manifest.txt — filename, byte size, and SHA-256 for every file in
the pack.

Deterministic environment (frozen)
Set these before any build or run:

LC_ALL=C

TZ=UTC
SOURCE_DATE_EPOCH=1700000000
PYTHONHASHSEED=0
NO_NETWORK=1

Toolchain (locked in versions.txt): TeX Live 2024 (pdfTeX), latexmk;
Python 3.11.x. No internet access is used or required.

One-command builds

All commands run from the artifact root and terminate with a zero exit
code on success.

# (1) Deterministic PDF
latexmk -pdf -interaction=nonstopmode -halt-on-error paper.tex

# (2) Bridge calculator (prints invariants and Z)
python3 display_calculator.py --units units.toml --print

# (3) Checksums (manifest regeneration)
python3 - <<’EOF’
import hashlib, os, sys
for fn in sorted(os.listdir(’.’)):
if os.path.isfile(fn):
h=hashlib.sha256(open(fn,’rb’).read()) .hexdigest ()
print (f"{fn}\t{os.path.getsize (fn) }\tSHA256={h}")
EOF > manifest.txt
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Expected console output (calculator). The calculator always prints
the two invariant ratios and the decision statistic Z for the single inequality

’ >\kin - )\rec

b\ < kUcomb,  Ucomb = \/u()\kin)2 + U()\rec)2 —2p u(/\kin) u()\rec) .

A representative run (units.toml where A is set to the same display as
Akin to sanity-check the plumbing) should look like:

K :=2/(8 1n ) = 1.6321256513182483
tau_rec/taul0 = K

lambda_kin/ell0 = K

S/ =1

Z = 0.0000 [k = 2, u_comb = 1.0e-05, pass]

If units.toml instead adopts a conventional M. (e.g. \/hG/c3) with its
declared u(Arec) = 3u(G) and an independent meter chain u(p), the calcu-
lator prints the same invariants and the corresponding Z using the stated k
and p. No regressions or fits are performed—one number decides.

SHA-256 manifest (exact, human-readable)

Every file in the pack is listed as <name><size bytes>256=<hex>. The

manifest is regenerated by the checksum command above and must not be
edited by hand.

paper.tex HUHHHHARHH RS SHA256=###########HHHHHHARHH AR HHHARHH ISR
paper.pdf HEHHAHHHH B H SHA2SG=########HHH#HHHFHHARHHHBHHHHARHH A
IndisputableMonolith-merged.lean ############ SHA2SC=H###H##HH#H#HFHHAHHHHRHHHAH
hooks.txt HEHHAH R A H SHA25C=##########H#HHHHHHARHHBHHHHRSHH B

alpha_seed_gap_curvature.ipynb ############ SHA2E6=#######H##HHHHHRHH BB HBHAH
display_calculator.py ###########H# SHA2LG=#########HHH#HHHHHH R R R RS

units.toml HUHSHH AR H B SHA2L6=#########HHHHHHHHHH AR HH B RS
invariants.txt HUHSHHARHHEHS SHA256=########H##H#HHHFHHARHHBHHHHASHHEH
makefile HUHSHH AR H R SHA2L6=########HHHHHHHHHHH AR HH B RS
versions.txt HUHHHHARHHEHR SHA256=####H####H#H#HHHHFHHARHHBHHHHARHHEHR
manifest.txt HUHHHH AR HHH SHA2L6=########HHHHHHHHHHH AR H B RS

BLOCKER: replace # placeholders with the actual byte sizes and hex
digests produced by the artifact pack at freeze time; paste the exact output
into manifest.txt and include that file in the submission bundle.

28



Reviewer quick-start (sub-10 minutes)

1. Compile. Run the PDF build command. Confirm that paper.pdf is
produced without warnings that would alter content (the log is deter-
ministic).

2. Run the calculator. Execute the one-liner with the supplied units.toml.
Visually confirm the two invariant ratios

Trec 2 Akin 2

0 8lnyp’ ly  8lnyp
and record the printed Z, coverage k, and pass/fail status.

3. Confirm hashes. Regenerate manifest.txt; check that every SHA-256
and byte size matches the frozen manifest included in the pack. Any
mismatch is a red flag; report it.

What this guarantees. (i) The bridge display is non-circular and unique
at the stated symmetry (action display S/h = J; clock/length ratios fixed)
and (ii) the operational outcome is a single, auditable figure of merit Z eval-
uated under predeclared uncertainty and correlation—no knobs, no thresh-
olds, no fits.

11 Limitations, Scope, and Threats to Validity

Scope (what this paper is and is not)

e Methods/semantics only. This paper fixes a parameter-free, di-
mensionless proof layer and a single, audited semantics (Reality Bridge)
for SI displays. It does not introduce sector models or fits.

e Sector numerics shown only when forced. Any number printed
in the main text is either (i) a bridge identity, (ii) an SI display that
cancels under normalization, or (iii) a strict consequence of the fixed
semantics with predeclared uncertainty. No priors, no regressions, no
threshold tuning.

e No feedback into proofs. Empirical data can test the semantics; it
cannot modify the dimensionless theorems or the bridge invariants.
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Anchors, constants, and drift

e Normalized invariants do not change. SI recommendations (e.g.,
future updates to recommended constants) may change displays, but
not the normalized equalities

=J

Trec 2m Akin - 2T §
0 8lnyp’ o 8lnyp’ h

These are dimensionless and fixed.
e Decision rule is invariant. The sole pass/fail test

)\kin - Arec
)\rec

< K Ucomb, Ucomb = \/u()\kin)2 + u()\rec)2 - 2pu()\kin) U(Arec) s

with coverage k € {1,2}, remains the same if recommended numerical
values drift; only the reported uncertainties change. No regression,
weighting, or re-anchoring is permitted post hoc.

Correlation hazards (how a “pass” can be faked)

A false pass can occur if the two nominally independent landings share
hidden systematics. Typical ways this happens:

1. Shared calibration chain. Using the same frequency reference, in-
terferometer, or analysis pipeline in both routes couples errors (p ~
+1), shrinking ucomp and masking a discrepancy.

2. Common constants path. Deriving A, and Ay, from the same
evaluation of a recommended constant or the same local code/library
injects correlation.

3. Analyst and code reuse. Reusing analysis scripts or re-fitting
nuisance corrections after viewing the discrepancy leaks information
across routes and biases the outcome.

4. Instrument cross-talk. Environmental couplings (temperature con-
trol, timing distribution, data-acquisition backplane) used by both
routes can synchronize errors.
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Design mitigations (what we require).

Disjoint hardware and labs. Route A (time-first) and Route B
(length-first) must use different physical instruments, different tim-
ing chains, and preferably different organizations; engineer p — 0 by
design.

Independent software. Separate repositories, separate reviewers,
frozen hashes, and escrowed binaries; no shared utility code between
routes.

Declared correlation. If any element is shared, declare a quantita-
tive p and use it in Ucomp. If p is unknown, bound it conservatively
(worst case).

Pre-registration. Predeclare anchors, coverage k, the correlation
policy, and the acceptance inequality before data are acquired. Op-
tional stopping and re-weighting are prohibited.

Cross-checks. Swap instruments across sites (with quarantine), run
nulls, and perform role-rotation to expose latent correlations. Docu-
ment any deviations.

Other threats to validity (and how we contain them)

Anchor fragility. The length-first route may adopt a conventional
Arec- If the adopted value or its uncertainty changes, recompute the
same inequality with the new wu(Arec); do not retro-adjust anything
else.

Garden-of-forking-paths. Multiple seemingly innocuous choices
(windowing, filtering, averaging) can act like tuning knobs. We lock
analysis choices ahead of time and forbid scenario shopping; any ex-
ploratory path is reported as such and not used for the pass/fail.

Environment dependence. Temperature, vibration, RF pickup,
and timing jitter can couple into both routes. We require environ-
mental logging, blind injections (where feasible), and replication on
different days and sites.

Model slippage. Interpreting displays in a way that implicitly changes
the semantics (e.g., adding offsets to S/h) is disallowed. Displays are
algebraic identities; any alternative interpretation is a new hypothesis
and must be labeled as such.
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e Conditional assumptions. Where downstream statements rely on
explicit working assumptions (e.g., a particular global tiling choice),
those statements are tagged and understood as conditional. Violating
an assumption invalidates only those conditionals, not the bridge or
its invariants.

Bottom line

This paper lives or dies by a single auditable comparison under a declared
correlation model. A pass indicates operational consistency at the stated
coverage; a persistent fail falsifies the present semantics or a landing as-
sumption. No fits, no priors, no regression rescue.

12 Conclusion

Binary outcome, no middle ground. The program reduces “theory vs.
experiment” to a single, auditable comparison of two independently realised
routes to the same SI display. The decision rule is explicit:

‘ >\kin - )\rec
>\rec

< KUcomp With  Ucomp = \/U(Akin)2 + u()\rec)2 - 2pu()\kin)u()\rec) .

There are only two outcomes:

e Pass. The inequality holds at the predeclared coverage k. The bridge
is operationally consistent at that precision; sector applications may
proceed, but no experimental numbers feed back into the proof layer
or the bridge semantics.

e Falsified. The inequality fails persistently after controls. Either the
present semantics is wrong for the stated mapping or a landing as-
sumption (anchor, traceability, independence, declared p) is invalid.
The correct response is to publish the negative result with artifacts;
“tuning” is not permitted.

Exportability (plug—and—test). The bridge is not bespoke to one frame-
work. Any candidate theory that can surface its inputs as dimensionless
invariants—i.e., statements whose numerical content survives unit relabel-
ings—can be evaluated under the same single inequality:

1. Present the dimensionless core (theorems/identities only; no units, no
fits).
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2. Specify two independent SI landings (time—first and length—first, or
analogous), making unit choices explicit.

3. Predeclare relative uncertainties u(-), the correlation p between the
landings, and the coverage factor k.

4. Compute Agin and Aec from the fixed semantics; evaluate the inequal-
ity above.

5. Ship an artifact pack (scripts, hashes, environment) so any referee can
reproduce the pass/fail Z statistic in minutes.

Success or failure is then a property of the semantics and its landings—mnot
of ad hoc regression. This upgrades “parameter-free” from rhetoric to an
auditable practice and provides a uniform gate for theories to meet the same
empirical standard: one number decides.

Appendix A — Non-circularity and Uniqueness (Unit
relabelings, invariants, algebraic elimination)

Standing notation. Let

2 ‘
K = —" (dimensionless), c = 2 (display identity),
8lny 0
and define the bridge displays
S
Trec = K 70, Akin = € Tree = K o, h =J

Here J is the unique symmetric multiplicative cost, ¢ the golden ratio, 7
and ¢y are unit names (second, meter). No tunable parameters appear
anywhere in these identities.
[Unit relabeling] A unit relabeling is a pair (a, 8) € R%, acting by
/ / / 66 ﬂ
(10,40) = (19, 4y) = (10, Blp), so c—c =— ==c
Lemma 1 (Equivariance of the displays) Under any unit relabeling (o, )
one has

’
7—gec = (X Trec, {qin = [ Akin; (%) = %

Proof. Directly from the defining identities: Ty, = K T) = @ Trec and A, =

rec
ATl = gc “ QTrec = B Akin- The ratio S/h is dimensionless and unchanged.
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Theorem 12 (Non-circularity (invariants under unit relabeling)) The
normalized displays

Trec Akin S
T0 ’ éo ’ h

are invariant under every unit relabeling (c, ). Consequently, unit choices
cannot alter any dimensionless theorem mor any bridge equality.

[Zero-offset action display] Among affine maps S/h = aJ + b with a >
0, the bridge forces b = 0 from J(1) = 0 and a = 1 from the log-axis
normalization J(e') = cosht — 1 at t = 0. Hence S/h=J.

[Uniqueness at the stated symmetry] Impose simultaneously: (i) multi-
plicative symmetry of J is preserved in the action display and no offset is
introduced; (ii) one eight-tick cycle corresponds to a full 27 phase in the
clock display; (iii) hop length is purely kinematic: A = ¢7. Then, up to a
unit relabeling («, ),

Trec = K 70, Akin = € Trec, S/h =J

is the unique bridge. Sketch. (i) fixes S/h = J; (ii) fixes the proportionality
Trec/To = K (iii) then forces Akin = ¢ Tree. Any other assignment differs only
by («, ), which leaves the normalized statements unchanged.

Lemma 2 (Algebraic elimination of unit labels) Let A be the commu-
tative algebra generated by {19, Lo, ¢, Trec; Akin, S/h} and constants {K,J}
with the bridge relations

4 s

Trec = K 79, Akin = K 4o, —=J

C
T0 h

If F € A is dimensionless (invariant under all (o, 3)), then F' = f(K,J)
for a unique real function f. Proof. Substitute the relations to write F
as a monomial in (19, %) times a function of (K,J). Invariance forces all
unit-label monomials to cancel, leaving f(K,J).

Theorem 13 (Universal factorization of any dimensionless pipeline)
Any dimensionless real-valued pipeline I1 built from algebraic operations and
limits on the bridge displays factors uniquely through (K, J):

= f(K,J).

Hence no display-level choice (weights, offsets, thresholds) can modify a nor-
malized outcome; only (K, J) matter.
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Corollary 1 (Knob-nullity) Let 6 denote any continuous “display-level”
adjustment external to the bridge equations. For each mormalized observable
N € {Trec/T0, Ain/lo, S/h},

50 = 0.
Thus, there is no knob that can change the decision-relevant, normalized
statements.

[Audit-ready summary] The bridge exposes exactly three auditable in-

variants,

Trec 2m Akin . 27 § —J
0 8lnyp’ o 8lnyp’ o

and proves that unit relabelings cannot feed parameters back into the deriva-
tion layer. Uniqueness holds at the stated symmetry; all differences reduce
to trivial unit names.

Appendix B — Gap—Series Convergence

(EMR-b: this section is proof-layer; no SI, no fits.)
1+5

5 and define, for

[Golden ratio and gap coefficients] Let ¢ =
2] <1,

F(z) = ngzm, Im =
m=1

We call fgap := F(1) the ledger gap.
[Closed form (forced generating functional)] For every complex z with
2] <1,

Fz) = {1+ é)

In particular feap = F(1) =In(1 + ¢~ !) =Inep.

Use the standard power series In(1+w) = Y, o, (—=1)™w™/m for |w| <
1 with w = z/p. Term-by-term identification gives the stated coefficients
Jgm and the closed form.

Lemma 3 (Monotone decay and ratio bound) For |z| <1,

[z 2| _m

CES o 1 < fome"
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Thus {|gmz""|}m>1 is strictly decreasing whenever |z| < ¢, in particular for
all |z| < 1.

Theorem 14 (Absolute and uniform convergence on the unit disk)
The series Zm21 gmz™ converges absolutely and uniformly on {z € C :
|z| <1}. Moreover, for the remainder Ry (z) :== F(z) — > 01 gm2™,

n+1
Ra(z)] < P !

e T (d <o)
©

and the bound is valid in the limit |z|11.

By the ratio bound in Lemma 3, |g,,2z™| < Cp™ for some C' > 0 and
p < 1 on any compact subset of |z| < ¢, giving absolute and uniform
convergence by the Weierstrass M-test. Summing the geometric majorant
for the tail yields the displayed inequality; continuity in |z| gives the |z| =1
boundary.

[Sharp alternating-tail bound on the real segment| For real z € [0, 1] the
terms alternate in sign and decrease in magnitude, hence the alternating-series
estimate applies:

Zn—i—l

’Rn(Z)’ < W .

In particular, at z = 1, |R,(1)] < 1/((n+ 1)p"™1).
From Lemma 3, |gm112™ 1| < |gmz™| for z € (0,1]; signs alternate by
construction. The Leibniz criterion gives the bound.

Corollary 2 (Audit-ready error budgets) To guarantee a target toler-
ance e >0 at z =1, it suffices to take

1

< 5} (sharp, alternating),

or, uniformly for all |z| <1,

1 L <o) = mnw v )
£ = min L 7 Er.
N+1)90N+1 1_¢—1— (N—i—l)gON'H_

anin{N: (

Both criteria are free of external inputs and are reproducible from Defini-
tion 12.
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Remarks. (i) Proposition 12 fixes fgap = In¢ exactly; the tail bounds
quantify truncation in any finite-order display. (ii) The uniform bound in
Theorem 14 is convenient for error control on disks |z| < r < 1; the alternat-
ing bound in Proposition 12 is strictly tighter at z = 1. (iii) All statements
are dimensionless and sit entirely within the proof layer, consistent with the
Reality-Bridge semantics used elsewhere in the artifact pack.

Appendix C. Curvature Integral and Voxel Geom-
etry

Goal. Compute the dimensionless curvature contribution per voxel using a
Regge-style discretization built on the Recognition voxel. The result feeds
the « pipeline as a fixed, knobless constant.

C.1 Geometry of the recognition voxel

Voxel and seam set. Start from the unit cube and identify opposite faces
by glide-reflections, producing a flat three—torus with a finite set of gluing
seams (one—-dimensional loci where the identifications live). In the canonical
construction there are precisely

arranged in four parallel families. These seams are the only places where
curvature can localize in the Regge picture (hinges).

Center—pyramids partition. Partition the voxel into congruent Euclidean
pyramids whose common apex is the voxel center; their bases lie on the
boundary complex determined by the seam layout. The canonical partition
uses

’ 102 pyramids ‘

meeting at the apex; equivalently, the full 27 azimuth around the apex
decomposes into 103 equal dihedral sectors, of which exactly one is absent
by the gluing, leaving a uniform deficit per present sector.

C.2 Regge hinges, dihedral sectors, and the local deficit

Regge set—up (3D). In three dimensions, the (integrated) scalar curva-
ture of a piecewise—Euclidean complex localizes on edges (hinges). For a
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hinge h the local contribution is the deficit angle

0p = 27— Oon,

ocDh

where 0, are the dihedral angles of incident 3—cells ¢ about h. The to-
tal (dimensionful) integral is a hinge—sum weighted by edge measures; in
the present voxel normalization the relevant edge factors are unity, so the
integrated scalar curvature reduces to a pure sum of deficits.

Uniform wedge count at the center. By construction the 27 azimuth
about the apex is divided into 103 equal dihedral sectors; the gluing elimi-
nates one of them. Hence each retained sector carries a uniform deficit

2
103 |

Al =

Summing over the 102 present sectors yields the voxel-integrated scalar
curvature

27 1
3 _ — — —
/‘/R\fgd r = § A6 = 102 03 = 27r(1 103). (15)

sectors

This is not a fit: the integers (16, 102,103) are fixed by the seam gluing and
the center—pyramids combinatorics of the voxel.

C.3 Normalization to a dimensionless curvature constant

Bridge normalization. Define the dimensionless curvature content per
voxel by dividing the integrated curvature by the fixed phase—space normal-

ization
I

the same constant that appears in the geometric seed of the « pipeline and
in the Reality—Bridge displays.
With (15),

1 1 o 103
I, = — | Rygd®z = — 102 — = —— 16
N, /V Vodr = 55 102908 = T (16)

and the sign convention of the main text (§5) then assigns the bridge—level
curvature correction

103
O0p = Iy = ——= | 1
102 75 (17)
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Numerically, §, = —0.003299762049... (units suppressed: this is a pure
number).

C.4 Sign conventions and invariances

Orientation/sign. We adopt the ledger sign convention: positive curva-
ture removes effective recognition states. Hence the bridge injects curvature
as a negative additive term at assembly (Eq. (17)). Reversing global orienta~
tion leaves (16) invariant (deficits are azimuthal measures) and flips neither
the seam count nor the sector count, so the sign of J, is fixed by semantics,
not by orientation.

Gauge-rigidity. Any re-tiling of the voxel that preserves the (16,102,103)
combinatorics and the glide identifications produces the same Z,. In par-
ticular, triangulated refinements (subdividing pyramids into tetrahedra) do
not change the sum of deficits and therefore leave (16) unchanged.

C.5 Audit recipe (deterministic)

1. Build the center—pyramids partition (102 cells meeting at the voxel
center).

2. Enumerate the 103 equal dihedral sectors around the apex and re-
move one sector to encode the gluing; set Af = 27/103.

3. Sum the 102 identical deficits to get (15).
4. Normalize by N, = 27° to obtain Z, in (16).

5. Apply the bridge sign convention to report J, as in (17).

Outcome. The voxel curvature term is a rigid, parameter—free constant:

103

b=~
102 75

fixed entirely by the seam gluing and the center—pyramids combinatorics,

and normalized by the bridge constant 27°. No sector inputs, fits, or thresh-
olds enter anywhere in the construction.
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Appendix D — Unified Mass Formula

D.0 Scope and notation

This appendix fixes three ingredients of the mass ladder used in the main
text: (i) the rung r; of each irreducible field v;, obtained as the minimal
word length on the ledger graph; (ii) the sector prefactor

from independent ledger channels; and (iii) the mapping from minimal
words (constructed from elementary loops) to (r;,n.). No SI numbers en-
ter here; bridge-level displays and any RG residues f; are deferred to the
Reality-Bridge layer.

D.1 Ledger words, loops, and the rung r;

Let L be the ledger graph whose edges implement the 16 LNAL opcodes,
and let 71 (L) = C5 x Cy * C', be generated by the primitive oriented loops

LC7 LT7 LY?

corresponding (respectively) to the SU(3) color, SU(2) isospin, and U(1)
hypercharge factors.

[Minimal word and rung] For an irreducible field v; with gauge charges
(C,T,Y), let T'; be the unique reduced word in the normal form I'; ~
L Ly" Ly that realizes those charges with the fewest edges. The rung is

i)

the reduced word length (edge count) of T;.

Lemma 4 (Loop-length basis) FEvery reduced loop has a unique decom-
position w ~ LSC LT LyY with no € {0,1,2}, ny € {0,1}, ny € Z. More-
over, each L¢g already has minimal positive length in its cyclic factor. (Basis
lemma)

Theorem 15 (Constructor and minimality) Given (Y,T,C) for;, the
following algorithm returns the unique I'; of minimal length:

1. Map charges to primitive loops: |6Y| copies of Ly (sign by sgnY );
append L7 iff T = %; append L¢ iff C is fundamental (mod 3).
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2. Concatenate in fized order C—T —Y and reduce by deleting adjacent
IMUVETSE Pairs.

The output has the shortest possible length among all words realizing (Y, T, C);
hence its edge count equals r;. (Minimal-hop uniqueness)

Path—cost correspondence. On 71(L) the ledger cost is linearly propor-
tional to reduced word length:

J(Wi) = Juit i, Jpit = In .

Thus the integer r; is a complete dimensionless descriptor of the proof-layer
cost for ;.

D.2 Channel multiplicity and the sector prefactor B;

Intuitively, each independent ledger channel offers a binary orientation (dual
path) that survives reduction and factorizes in the saddle-point sum, dou-
bling the amplitude weight. Independence multiplies these factors.

[Independent ledger channels| Decompose the reduced word I'; into com-
muting channel factors

ri= [, [r ] =e (x£X).
x=1

A factor FEX) is a channel iff it (i) toggles a Zo parity class that is not a
function of the other factors and (ii) admits two time-reversed orientations
that are distinct in m (L) after reduction. The number n,. is the count of
such independent factors for ;.

Lemma 5 (Binary saddle per channel) For each channel FEX), dual-balance

produces two inequivalent reduced orientations related by time-reversal/conjugation.
Their contributions add incoherently at the mass-ladder level, yielding a mul-
tiplicity factor 2. (Orientation
lemma)

Theorem 16 (Sector prefactor) Let n. be the number of independent
ledger channels of 1; in the sense above. Then the sector multiplicity is

and depends only on the channel structure of the minimal word T';.
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[Proof sketch] Write the path—integral amplitude as a product over com-
muting channel saddles: A(T;) oc [[{2, (Aﬁf) +A(_X)). Dual-balance enforces
\AE&O| = \A(_X)| and orthogonality at the ledger level, so each bracket con-
tributes an overall factor 2 to the norm. Independence of channels (com-
muting factors that toggle distinct Zg parities) makes the multiplicity mul-
tiplicative, giving 2™¢. Reduction cannot remove an independent channel by
definition, so B; is invariant under word minimization.

Remarks. (i) n. is not “number of gauge factors” in general; it is the
number of independent binary orientations that survive reduction for I';.
(ii) For fields without any such channel (n, =0), B; = 1.

D.3 Mapping: charges — minimal words — (7, n,)
Given (Y, T,C):

1. Build I';. Append |6Y"| copies of Ly (sign by sgnY); append Ly iff
T = %; append L¢ iff C' is fundamental.

2. Reduce. Cancel adjacent inverses to get I'; and read off r; = |T;].

3. Factor channels. Partition I'; into commuting factors that toggle
distinct Zg parities (color line, weak doublet flip, hypercharge orienta-
tion, tick parity, etc.). Count them to obtain 7.

Steps (1)—(2) are purely combinatorial and unique; step (3) uses the parity

taxonomy fixed upstream and does not involve any fit.

D.4 Statement of the Unified Mass Formula (dimensionless
skeleton)

At the derivation layer the mass ladder takes the form

m; o< Byt B =2 =Ty,

Here f; is a dimensionless residue fixed downstream by a bridge-level RG
integral with predeclared inputs; no regression or sector fits are permitted
in the proof layer. SI displays and uncertainties are introduced only by the
Reality Bridge and never feed back into (B;, ;).
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Status tags. [T] r; from minimal words and path—cost isomorphism; [7]
B; = 2" from channel multiplicity; [R] f; as a fixed RG residue (no knobs)
evaluated at the bridge; [P] SI numbers only after the single pass/fail land-
ing.

D.5 Schematic examples (word — rung — channels)

e Lepton doublet component (T = %, colorless, modest |Y|): T' ~

L1 Ly} reduces without cancellations. Then r = |Ly|+|n||Ly|. Typical
independent channels: weak doublet flip and hypercharge orientation
=>n.=2=B=4.

e Color triplet quark (C = 3, optionally 7" = %, nonzero Y): I' ~

LLL;T LY with ep € {0,1}. Channel set typically includes color-line
orientation, (if present) weak flip, and hypercharge orientation = n, €

(2,3).

These are schematics; exact (r;, n.) follow from the constructor and channel
rules above, not from examples.

D.6 Audit hook (deterministic enumeration)

A referee can reproduce (r;,n.) from (Y, T, C) by running a 20-line enumer-
ator: (1) build I' from charges, (2) reduce, (3) factor commuting toggles of
distinct Zgy parities, (4) return |I'| and the count. No external data, no fits,
and no SI values are involved at any step.

Appendix E: LNAL instruction set & program—observable
examples (cavity null test)

Status: [T/R] for instruction-set structure and mapping; [P] for lab-level
display conventions. Bridge layer: EMR-b.

E.1 LNAL: minimal instruction set and registers

Design goals. LNAL is the minimal reversible calculus that (i) posts and
settles double-entry costs, (ii) effects the unique p-scaling and its inverse,
(iii) routes or halts flow across voxel edges, and (iv) reads/instantiates ledger
state, all at the 8-beat granularity.
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Registers (six interaction channels). A recognition program addresses
a 6-tuple of channels:

<V<p7 eu g, T, kJ_a @6)7
standing respectively for ¢-frequency, orbital mode, polarization, tick bin,

transverse mode, and entanglement phase. These six arise as 8 —2: the eight
degrees of the 8-beat clock minus the two dual-balance constraints.

Opcode classes (no table). LNAL contains exactly sixteen primitive,
mutually inverse opcodes grouped into four dual pairs:

e Ledger moves: LOCK, BALANCE — GIVE, REGIVE.

e Energy scaling/fusion: FOLD, UNFOLD — BRAID, UNBRAID.

e Transport/suspension: FLOW, STILL — HARDEN, SEED.

e I/0 and instantiation: LISTEN, ECHO — SPAWN, MERGE.

Each class implements one of the four functional pairs (post/settle, scale/invert,
move/hold, read /instantiate); reversibility requires an explicit undo for each.

Minimality (sketch). Because the 8-beat/dual partition enforces two
mutually inverse primitives per functional pair, four pairs give a lower bound
of 8; additivity and reversibility forbid fusing pairs without violating atomic
tick granularity, and independent control over posting/transfer, scaling/fusion,
flow /stillness, and read/spawn doubles the bound to sizteen. Hence 16 is
minimal at the stated symmetry, and any strict subset fails completeness or
reversibility.

Macros and hygiene. Composite shorthand is permitted (e.g. HARDEN :=
four FOLDs + BRAID). Unused seeds are garbage-collected after [(?] cycles
to prevent latent cost accumulation; operationally: clear on the third cycle.

E.2 Program semantics and the Reality Bridge (no knobs)

Dimensionless display. The unique symmetric multiplicative cost J dis-
plays as action with no offset:

S =]
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Clock/length displays are fixed by the 8-beat gap,

Trec 2T Akin 27

= ) = ,  Akin = CTrec)
T0 8lny 4y 8lnp kin ree

and are invariant under unit relabelings. These identities define the only

permitted semantics from programs to observables at bridge level.

Program—observable map (schematic). A program P composes op-
codes on registers to form an observable O = O(P) which then factors
through the units quotient before numerical display:

Programs 9, Observables B—> Obs/ Nunitsi R,

so that every printed number is the image of a dimensionless invariant; no
sector models, regressions, or offsets appear in this layer.

E.3 Cavity line example and null test

Setup. A single-mode cavity (frequency v) is initialised to vacuum. One
output port is monitored by a LISTEN device; the scheduler tick is the uni-
versal tick, and linewidth is set by the tick budget (bridge-level).

Program.

—1
SEED ¥ FoLD 2%, LISTEN

Semantics: post a +1 seed; rescale by ¢! to a single quantum; route to the
detector port; read.

Prediction (display). The port spectrum shows a Lorentzian line centred
at v with unit area (one quantum) and width governed by the scheduler tick
(scales as 1/7p). The program’s action display equals the target J for the
chosen log-axis stretch; no additional parameters enter.

Null test (replace transport by suspension). Swap FLOW—STILL:

—1
SEED ~*— FOLD " LISTEN
Now no energy leaves the cavity along the monitored port; the external
spectrum is null at v (within instrument noise), while the internal ledger
still carries the posted cost. This one-toggle null establishes that the port
response is controlled by the transport opcode, not by any hidden regression
or fit.
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Audit recipe (bridge-level, one command per route).
1. Time-first route: print e /79 and Ay, /fo; verify both equal 27 /(81n ).

2. Length-first route: adopt a conventional Ayec; compute Tyec = Arec/C;
confirm the same ratio 27/(81n )

3. Decision rule: compare Ay, Vvs. A using the single predeclared
pass/fail inequality; the cavity line/ null sequence exercises only the
semantics above—no tuning is permitted.

Variants. Doubling the quantum (SEED—FOLD—FOLD—FLOW)doublestheintegratedareabutleaves

App. F — Reality Bridge scripts (deterministic env,
expected prints)

F.1 Deterministic environment (must set before running)

export LC_ALL=C

export TZ=UTC

export SOURCE_DATE_EPOCH=1700000000

export PYTHONHASHSEED=0

export NO_NETWORK=1

# Optional: pin Python minor version used for audit
# python3 --version # expected: Python 3.11.x

F.2 File: display calculator.py (one file, no deps)

#!/usr/bin/env python3

# Deterministic Reality Bridge display calculator

- Reads units.toml

- Prints bridge invariants and SI displays

- Optionally computes pass/fail Z-statistic for the single inequality
| _kin - _rec|l / _rec k * u_comb, where
u_comb = sqrt( u(0)"2 + u(_rec)"2 - 2 u(0) u(_rec) ).

No network, no RNG, Python 3.11+ (uses tomllib).

H OH H OH O H

from __future__ import annotations

import argparse, math, pathlib, sys, hashlib

# Python 3.11+ stdlib reader for TOML
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try:
import tomllib as _toml

except Exception as e:
sys.stderr.write("ERROR: Python 3.11+ required (tomllib missing)\n")
sys.exit(2)

PHI = (1.0 + 5.0%%0.5) / 2.0
LOG_PHI = math.log(PHI)
RATIO = (2.0 * math.pi) / (8.0 * LOG_PHI) # 2/(8 1n ) 1.6321256513...

# Exact SI definitions (constants used if Planck anchor is requested)
C_SI = 299_792_458.0 # m/s (exact)

H_ST = 6.626_070_15e-34 # J-s (exact, by SI definition)
HBAR_SI = H_SI / (2.0 * math.pi) # J-s

def _sha256(path: pathlib.Path) -> str:
h = hashlib.sha256()
with path.open(’rb’) as f:
for chunk in iter(lambda: f.read(65536), b’’):
h.update (chunk)
return h.hexdigest()

def _parse_quantity(x):
Accepts either a number or a string like "299792458 m" or "1 s".
Returns float(value). Units are ignored (audited by context) .
if isinstance(x, (int, float)):
return float(x)
if not isinstance(x, str):
raise ValueError("quantity must be number or string")
s = x.strip()
# Take the leading token that parses as a float (e.g., "1.23e-4")
tok = s.split() [0]
return float(tok)

def _read_units(path: pathlib.Path) -> dict:

data = _toml.loads(path.read_bytes())
return data
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def _fmt_ratio(x: float) —-> str:
return f"{x:.16f}"

def _fmt_si(x: float, unit: str) -> str:
# Human, deterministic: fixed scientific for tiny values; otherwise full preci
if x !'= 0.0 and (abs(x) < 1le-3 or abs(x) >= 1e6):
return f"{x:.16e} {unit}"
return £"{x:.10f} {unit}"

def main():
ap = argparse.ArgumentParser(description="Reality Bridge display calculator (d
ap.add_argument ("--units", default="units.toml", help="Path to units.toml")
ap.add_argument ("--print", action="store_true", help="Print displays and (if a
args = ap.parse_args()

units_path = pathlib.Path(args.units).resolve()

if not units_path.exists():
sys.stderr.write(f"ERROR: units file not found: {units_path}\n")
sys.exit(2)

units = _read_units(units_path)

# Required: tauO, ell0 (unit labels realized for displays)
try:
tau0 = _parse_quantity(units["tau0"]) # seconds
ell0 = _parse_quantity(units["ell0"]) # meters
except KeyError as e:
sys.stderr.write(f"ERROR: missing key in units.toml: {e}\n")
sys.exit(2)

# Optional relative uncertainties and correlation
u_ell0 = float(units.get("u_ellO0", 0.0))

rho = float(units.get("rho", 0.0))

k_cov = int(units.get("k", 2))

# Bridge invariants and SI displays

tau_rec = RATIO * tau0

# Use ¢ = ell0 / tauO by display identity (exact within labels)
c_display = €110 / tau0

lambda_kin = c_display * tau_rec # == RATIO * el1l0
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# Optional independent anchor: either explicit lambda_rec, or ’anchor = "planc
lambda_rec_present = False

lambda_rec = None

u_lambda_rec = 0.0

if "lambda_rec" in units:
lambda_rec = _parse_quantity(units["lambda_rec"])
u_lambda_rec = float(units.get("u_lambda_rec", 0.0))
lambda_rec_present = True

elif units.get("anchor", "").strip().lower() == "planck_length":
# Compute _rec = sqrt(hbar G / ( ¢”3)) with provided G (and optional u_G)
G = _parse_quantity(units.get("G", "6.67430e-11"))
u_G = float(units.get("u_G", 2.0e-5)) # relative std. uncertainty for G
lambda_rec = math.sqrt(HBAR_SI * G / (math.pi * (C_SI #*x 3)))
u_lambda_rec = 0.5 * u_G
lambda_rec_present = True

# Print (deterministic formatting)
if args.print:

print("=== Reality Bridge Invariants (dimensionless) ===")
print(f"phi = (1+sqrt(5))/2 = {PHI:.16f}")

print (£"1n(phi) = {LOG_PHI:.16f}")

print (£"2*pi/(8*1ln(phi)) = {_fmt_ratio(RATIO)}")

print ()

print("=== SI Displays (from unit labels) ===")

print(f"tau_rec / taul = {_fmt_ratio(RATIO)} (invariant)")
print(f"lambda_kin / €110 = {_fmt_ratio(RATIO)} (invariant)")
print(f"tau_rec = {_fmt_si(tau_rec, ’s’)}")
print(f"c (display) = {_fmt_si(c_display, ’m/s’)}")
print (f"lambda_kin = {_fmt_si(lambda_kin, ’m’)}")
print ()

# If anchor present, compute pass/fail statistic

if lambda_rec_present:
# Combined relative uncertainty with correlation rho
u_comb_sq = (u_ellO *x 2) + (u_lambda_rec **x 2) - 2.0 * rho * u_ell0 x
u_comb = math.sqrt(max(0.0, u_comb_sq))
rel_diff = abs(lambda_kin - lambda_rec) / (lambda_rec if lambda_rec !=
Z = rel_diff / (u_comb if u_comb > 0.0 else float(’inf’))
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print("=== Single Inequality Test (independent anchor) ===")
print(f"lambda_rec = {_fmt_si(lambda_rec, ’m’)}")
print (£"u(ell0) {u_el10:.10e} (relative)")
print (f"u(lambda_rec) {u_lambda_rec:.10e} (relative)")
print (f"rho {rho:.3f}")
print (f"u_comb {u_comb:.10e} (relative)")
print(£"||/lambda_rec {rel_diff:.10e} (relative)")
print (£"Z {Z:.10e}")
print(f"coverage k {k_cov:d}")
result = "PASS" if Z <= float(k_cov) else "FAIL"
print (£"RESULT = {resultl}")
print ()

# Hashes (deterministic context)

here = pathlib.Path(__file__).resolve()

print ("=== Hashes (for audit) ===")
print (f"script_sha256 = {_sha256(here)}")
print (f"units_sha256 = {_sha256(units_path)}")
if __name__ == "__main__":
main()

F.3 File: units.toml (examples)
Example A — invariants-only (no test).

# Minimal labels; prints invariants and SI displays only

tau0 = "1 s"

ell0 = "299792458 m"  # ensures c = ell0/taul = 299,792,458 m/s (display identity
# No lambda_rec provided test is skipped

Example B — self-consistency “pass” demo (not an independent
test).

# Chooses lambda_kin equal to the computed value, so Z = 0 by construction.
tau0 = "1 s"

ellO 299792458 m"

lambda_kin = "489298960.7735486 m" # = RATIO * ell0 with RATIO = 2/(8 1n )
u_lambda_rec = le-6

u_ell0 = 1le-9

rho = 0.0

k=2
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Example C — independent Planck-length anchor (illustrative; canon-
ical RS anchor).

# Computes lambda_rec = sqrt(hbar * G / c¢~3). hbar and ¢ are exact in SI;

# provide G and its relative uncertainty u_G (frozen here for determinism).
tau0 = "1 s"

ell0 = "299792458 m"

anchor = "planck_length"

G = "6.67430e-11 m~3 kg™-1 s~-2"

u_G = 2.0e-5

u_ell0 = 1.0e-9

rho = 0.0

k=2

F.4 Expected console prints (deterministic, given the exam-
ples)

Example A (--print).

=== Reality Bridge Invariants (dimensionless) ===
phi = (1+sqrt(5))/2 = 1.6180339887498950
1n(phi) = 0.4812118250596035
2*%pi/(8*1ln(phi)) = 1.6321256513182483

=== SI Displays (from unit labels) ===
tau_rec / tau0 1.6321256513182483 (invariant)
lambda_kin / el110 1.6321256513182483 (invariant)

tau_rec = 1.6321256513 s
¢ (display) = 299792458.0000000000 m/s
lambda_kin = 4,.8929896077e+08 m

=== Hashes (for audit) ===
script_sha256 <32-byte hex printed here>
units_sha256 <32-byte hex printed here>

Example B (--print).

=== Reality Bridge Invariants (dimensionless) ===
phi = (1+sqrt(5))/2 = 1.6180339887498950
1n(phi) = 0.4812118250596035
2%pi/(8*1n(phi)) = 1.6321256513182483
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=== ST Displays (from unit labels) ===
tau_rec / tau0 = 1.6321256513182483 (invariant)
lambda_kin / €110 = 1.6321256513182483 (invariant)

tau_rec = 1.6321256513 s
c (display) = 299792458.0000000000 m/s
lambda_kin = 4.8929896077e+08 m

=== Single Inequality Test (independent anchor) ===
lambda_kin = 4.8929896077e+08 m

u(ell0) = 1.0000000000e-09 (relative)
u(lambda_rec) = 1.0000000000e-06 (relative)
rho = 0.000

u_comb = 1.0000000499e-06 (relative)

| | /1lambda_rec 0.0000000000e+00 (relative)

Z = 0.0000000000e+00

coverage k =2

RESULT = PASS

=== Hashes (for audit) ===

script_sha256 = <32-byte hex printed here>
units_sha256 = <32-byte hex printed here>

Example C (--print).

=== Reality Bridge Invariants (dimensionless) ===
phi = (1+sqrt(5))/2 = 1.6180339887498950
1n(phi) = 0.4812118250596035
2xpi/(8*1n(phi)) = 1.6321256513182483

=== SI Displays (from unit labels) ===
tau_rec / tau0 = 1.6321256513182483 (invariant)
lambda_kin / ell0 1.6321256513182483 (invariant)

tau_rec = 1.6321256513 s
c (display) = 299792458.0000000000 m/s
lambda_kin = 4.8929896077e+08 m

=== Single Inequality Test (independent anchor) ===
lambda_rec = 1.6162550244e-35 m
u(ell0) = 1.0000000000e-09 (relative)
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1.0000000000e-05 (relative)

0.000

1.0000000500e-05 (relative)
3.0273623493e+43 (relative)

u(lambda_rec)
rho

u_comb

| |/1lambda_rec

Z = 3.0273621980e+48
coverage k =2
RESULT = FAIL

=== Hashes (for audit) ===
script_sha256 = <32-byte hex printed here>
units_sha256 = <32-byte hex printed here>

F.5 One-command runs

# Build manuscript (if applicable)
# latexmk -pdf -interaction=nonstopmode -halt-on-error paper.tex

# Run the calculator (reads units.toml in CWD)
python3 display_calculator.py --units units.toml --print

F.6 Notes for reviewers (what to check quickly)

e Invariants match exactly: Tyec/70 = Akin/lo0 = (no offsets, no

8lnyp
fits). :contentReferencefoaicite:1]index=1

e If an independent anchor is supplied, the script reports | Axin—Arec|/Arecs
the combined relative uncertainty ucomp (With declared p), the stan-
dardized statistic Z, coverage k, and a single PASS/FAIL. :contentRe-
ference[oaicite:2]index=2

e Hashes (sha256) of both files are printed for inclusion in the audit
manifest.
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App. G — Experimental Protocols (clock-side and
length-side landings; independence; predeclared £k, p;
BAO/CMB playbooks)

G.1 Policy & decision rule (predeclare £, p)

Objects compared. Route A (clock-side) yields a kinematic hop length
Akin = CTrec = S%T”@ {y; Route B (length-side) adopts a conventional hop-length
anchor A\ and infers the same tick via Tree = Arec/c. Both displays are
fixed by the Reality Bridge and carry no fit parameters. :contentRefer-
ence[oaicite:0]index=0

Single pass/fail inequality (predeclare k € {1,2} and p € [-1,1]).

Let u(-) denote relative standard uncertainty and

ucomb(p) = \/u()\kin)2 + U(Arec)2 - 2pu(>‘kin) u()\rec) .
Acceptance requires

‘ )\kin - Arec

S < kucomb(p) with k and p declared a priori.
rec

No thresholds, regressions, or priors are permitted. :contentReference[oaicite:1]index=1
Unknown correlation (conservative bounds) and replication. If

p cannot be credibly estimated, predeclare the worst-case envelope Ucomp <

w(Akin) + u(Arec); for repeated, independent runs with a fized pipeline and

aggregator, test |D| < kiicomp as in Eq. (B.5). Coverage and any averag-

ing weights must be fixed upstream of blinded evaluation. :contentRefer-

encefoaicite:2]index=2

G.2 Protocol G-A — Clock-side landing (time-first)

Objective. Realize the SI second and compute Tyec and Ayj, without intro-
ducing knobs. :contentReference[oaicite:3]index=3

Instruments. Either (i) in-lab primary/secondary time standard (e.g.,
Cs fountain or optically steered maser with frequency comb) or (ii) UTC(k)
traceability via time-transfer. Record u(m) from comparison interval and
reported Allan deviation. :contentReference[oaicite:4|index=4

Procedure.

1. Lock to the ST second; record u(7p).
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2. Compute the recognition tick:

2

= Sy 7o (identity; no fit).

Trec

3. Compute the kinematic hop length with ¢ = ¢y/70:

2

— {p.
8lnyp 0

Akin = € Trec =

Algebraically, u(Akin) = u(fp). :contentReferencefoaicite:5)index=>5
4. Report bridge invariants:

Trec 2T Akin 27

0 Slnyp’ by Slnyp
:contentReference[oaicite:6]index=6

Targets (illustrative). u(rp) <107'° (multi-hour average); if a physi-
cal length realization is invoked, u(¢y) <10~°. Uncertainty is documented—not
tuned. :contentReferenceloaicite:7]index=7

G.3 Protocol G-B — Length-side landing (length-first, inde-
pendent)

Objective. Adopt an independent conventional hop-length anchor and infer
the same tick via kinematics. :contentReference[oaicite:8|index=8
Anchor. Use

Arec = hcif = U()\rec) = %U(G)ﬂ
with ¢ and h exact in SI. Predeclare u(G); for the artifact set, u(G) =
2.0 x 107° = u(Arec) = 1.0 x 107°. :contentReference[oaicite:9]index=9
Independence. Realize A on a calibration/analysis chain disjoint
from Protocol G-A (different lab or, at minimum, distinct hardware and
reduction) to engineer p~0. :contentReference[oaicite:10]index=10
Procedure.

1. Evaluate Ajec and document u(Ayec)-

2. Infer the tick Tyec = Arec/C = Arec 70/ (display conversion; no fit).
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3. Verify the invariants and prepare the A/B comparison under the G.1
decision rule. :contentReference|oaicite:11]index=11

Combined uncertainty (illustrative). With u(fy) = 1079, u(Aec) =
107%, and p = 0, one has ueomp ~ 1072 (predeclared). :contentRefer-
ence[oaicite:12]index=12

G.4 Engineering independence & estimating p

Design for p = 0. Use disjoint traceability chains, independent codebases,
and separate teams for Route A and Route B. If any shared systematic
exists, estimate p via the shared-systematic decomposition
X o tsta, S=l4s+ i
~ = ST €1, s ST €, pP= )
Xo Yo V(o2 +07)(02 +03)

and predeclare whether an estimate or a conservative bound (worst-case
p = +1) is used in Ucomp. Do not revise after observing D. :contentRefer-
encefoaicite:13]index=13

Correlation policy in practice. If A\, is realized with the same
hardware chain as £y, take p > 0 and justify; otherwise engineer p = 0.
:contentReference|oaicite:14]index=14

G.5 BAO ruler—shift playbook (ILG hook; qualitative in main
text)

Purpose. Test the predicted, slight, calculable shift of the BAO standard
ruler induced by the ILG kernel, without introducing sector-fit knobs. :con-
tentReference[oaicite:15]index=15
Upstream ingredient (no new parameters). The ILG recognition
weight
w(k,a) =1+ ¢~*%[a/(km0)]%, a=31-1/p),

modifies linear growth D(a, k) = a[1+6(k)a®]"/(+) with B(k) = %go_?’/?(km)_o‘.
These are bridge-level phenomenology hooks; no new knobs enter. :con-
tentReference|oaicite:16]index=16

Playbook (predeclare all choices).

1. Catalogs and cuts. Freeze survey releases and redshift bins; fix masks
and completeness weights upstream.
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2. Two independent pipelines. P1 and P2 implement reconstruction,
2-point, clustering, and BAO template fitting with disjoint code and
randomness seeds; enforce identical, predeclared templates and priors
(none beyond metrology).

3. Template. Use a fixed BAO template where P(k) — Pyw(k)[1 +
Opao(k;0)] and encode ILG via the fized linear response of Opao
predicted by w(k,a) around ACDM (no free ILG parameter). :con-
tentReference|oaicite:17]index=17

4. Estimands. Report (a1, o)) and ais, with their relative uncertainties
and declared correlation.

5. Decision rule. Compare the measured A« vector to the precomputed
ILG response (from the artifact supplement) using the single-inequality
rule at coverage k; declare p between P1 and P2 and adopt tecomp(p)-
:contentReference|oaicite:18]index=18

6. Blinding & unblinding. Lock templates, masks, and k,p before un-
blinding the BAO scale estimates; no post-hoc reweighting.

Scope note. Quantitative kernels and the exact A« response curves are
supplied in the Supplement; the main text remains knob-free and qualitative
here. :contentReference[oaicite:19]index=19

G.6 CMB non-Gaussianity (eight-point) playbook

Prediction. Primordial eight-point amplitude 91(\?13 = 40.73 (ledger-forced
sign and magnitude). :contentReference[oaicite:20]index=20
Playbook (predeclare all choices).

1. Maps and masks. Freeze frequency maps, component-separation choice,
and union mask; document beam transfer functions.

2. Estimator. Implement two independent estimators for the connected
8-point function: (P1) a separable-kernel KSW-style high-order esti-
mator; (P2) a cumulant-based pixel-space estimator with Wick sub-
traction. Calibrate both on matched Gaussian simulations with the
exact mask/beam.

3. Multipole range and filtering. Predeclare £pin, fmax and filtering (isotropic;
no hand-tuning on data).

o7



4. Nulls and systematics. Run null tests on half-missions, detector splits,
and odd—even rings; carry forward any residual cross-spectral leakage
as a declared correlation between P1 and P2 (poump).

5. Decision rule. Report 91(\?11 4+ u from each pipeline and test agree-
ment with +0.73 at coverage k using the single-inequality criterion
and Ucompb (pcMmB); publish failure if outside the predeclared band. :con-
tentReference[oaicite:21]index=21

G.7 What to archive from each run (cross-ref. App. F)

For each A/B landing and each cosmology analysis, include in the arti-
fact pack: (i) fixed configuration files; (ii) printed bridge invariants and the
Z statistic for the A/B test; (iii) declared k,p and the computed ucomb;
(iv) one-command replays that regenerate all numbers and checksums. All
values must be predeclared; mno edits after seeing results. :contentRefer-
ence[oaicite:22]index=22

Notes on scope. These protocols implement the bridge’s no-knob policy:
derivations stay dimensionless; displays are algebraic; the decision rule is a
single, predeclared inequality with explicit uncertainty and correlation ac-
counting. Sector hooks (BAO, CMB eight-point) use fixed responses derived
from the ledger /ILG layer and do not feed back into proofs. :contentRefer-
ence[oaicite:23]index=23
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