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Abstract

This paper presents a complete, parameter-free recognition architec-
ture whose proof layer is strictly dimensionless and whose empirical
layer is reduced to a small set of layered falsifiability gates. The
proof layer fixes the unique symmetric multiplicative cost J(x) =
1
2

(
x+ x−1

)
− 1 with log-axis form J(et) = cosh t− 1, the golden-ratio

fixed point φ from x = 1 + 1/x (gap lnφ), and the minimal eight-tick
cycle induced by three spatial parities. Word length and ledger cost
are linearly isomorphic, yielding rigid, knobless invariants used down-
stream.

A Reality Bridge maps these invariants to SI without introduc-
ing offsets or fits: J 7→ S/ℏ (identity display), the recognition tick

τrec =
2π

8 lnφ
τ0, and the kinematic hop length λkin = c τrec with c =

ℓ0/τ0. Two independent SI landings—time-first and length-first—are
audited by layered gates: (P) a Planck-side comparison of λkin vs.

λrec =
√
ℏG/(πc3); (IR) a coherence gate ℏ ?

= Ecoh τ0 confined to
the IR layer; and (C) a dimensionless identity (c3λ2rec)/(ℏG) = 1/π.
Each gate is evaluated within its layer; cross-layer mixing is disallowed.
No sector models, priors, regressions, thresholds, or hidden calibra-
tion knobs are permitted. The manuscript specifies the invariants, the
bridge, the uncertainty and correlation policy, and the artifact require-
ments for audit, so a referee can compile, run the bridge calculator, and
reproduce the pass/fail number from first principles. Sector displays
(masses, α, ILG cosmology, baryogenesis) are deferred to later sections
and remain downstream consequences of the same fixed invariants and
single decision rule.
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1 Introduction

The parameter problem. The Standard Model + ΛCDM describe an
enormous span of phenomena with spectacular numerical accuracy, yet the
pair is conceptually incomplete. Too many dials: gauge couplings, Yukawas,
mixing angles, phases, density fractions, spectral amplitudes and tilts. None
are fixed by first principles; all are set by measurement. Anthropic escapes
do not solve this—they relocate explanation into a landscape and abdicate
mechanism. A fundamental account must collapse the dial–setting layer and
derive dimensionless content without regress to “because we measured it.”

(EMR-b)

Stance of this paper. We collapse “theory vs. experiment” into one
deductive measurement : a single mechanized axiom drives a rigid cascade
whose entire dimensionless output is displayed in SI by a fixed Reality Bridge
with one falsifiability gate. No sector fits, no regression knobs, no priors.
The bridge produces a pass/fail number from predeclared anchors and un-
certainties; it does not tune the cascade.

Notation (bridge quantities). We reserve λrec for the recognition length
(Planck form) and λkin for the kinematic hop length λkin := c τrec. With
RATIO := 2π

8 lnφ and c = ℓ0/τ0, the bridge relations are

τrec = RATIO · τ0, λkin = c τrec = RATIO · ℓ0 = RATIO · λrec.

The canonical RS anchor is the Planckform recognition length λrec :=
√
ℏG/c3;

other anchors may be used for crosschecks but do not redefine λrec.

(EMR-b)

From Proof to Measurement. We adopt a status key for every assertion
in the paper: [T ] a theorem (fully derivational), [R] rigorous but presently
unmechanized, and [P ] phenomenology/bridge-level. The audit pack is part
of the contribution: a referee can run one command to recompute the dis-
plays and the single pass/fail statistic from frozen literals and versions.

(EMR-b)
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Contributions.

[T] Unique symmetric multiplicative cost.

J(x) = 1
2

(
x+

1

x

)
− 1, J(et) = cosh t− 1.

[T] Eight-tick minimal cycle and golden gap. Minimal period 8 in
three-bit parity; fixed-point gap lnφ from x = 1 + 1

x .

[T] Non-circular, unique Reality Bridge. A single semantics from
dimensionless outputs to SI displays with two independent landings
and one inequality; no free offsets or scales.

[R] Over-constrained digits for α. Seed–gap–curvature pipeline with
proofs of convergence and a closed curvature integral; digits are fixed,
not fitted.

[R/P] Cosmology hooks without new knobs. Information-Limited Grav-
ity (ILG) growth law; σ8 forecast; baryogenesis and proton stability
from the same cascade.

[P] Reproducibility pack. Predeclared uncertainties/correlations, frozen
constants, and a one-command build that reproduces the pass/fail
number.

2 The Foundational Measurement (Mechanized Ax-
iom → Ledger Axioms)

2.1 Meta–Principle [T] (Impossibility of self-referential non-existence)

Theorem 1 (Meta–Principle [T) ] There is no non-trivial self-recognition
of the empty record. Formally: no structure with fields recognizer and rec-
ognized can be instantiated when both fields range over the empty carrier;
hence a valid recognition requires non-empty content and a posted alteration.

Mechanization hook. The theorem is the type-theoretic non-inhabitation of
a record with both fields of empty type; equivalently, no endomorphism of
the empty ledger exists. Interpretation (zero metaphysics): recognition is
an event, not a label; the event must post a finite, non-vanishing alteration
to a ledger.
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2.2 Eight operational principles [T] (from the Meta–Principle)

All principles below are theorems at the stated symmetry; they introduce
no tunable parameters.

1. [T] Positive cost. Every elementary recognition posts a finite, strictly
positive ledger cost ∆J > 0; zero cost is indistinguishable from no
event.

2. [T] Dual balance (double-entry). Each debit has a conjugate
credit so that costs can be settled by composition; the ledger is intrin-
sically two-sided.

3. [T] Countability. Events are discrete; the ledger carries a countable
sequence of posts.

4. [T] Tick quantization. There exists a fundamental tick δ > 0 so
that an n-hop chain posts exactly nδ of potential; chains with identical
δ differ only by a componentwise additive constant (gauge).

5. [T] Path additivity and local conservation. Ledger cost is addi-
tive under concatenation, and cost flow is conserved: changes inside a
domain equal the net posted flow through its boundary.

6. [T] Self-similarity (scale freedom). The update rules are scale-free;
the same instructions act at all magnifications of the ledger.

7. [T] Locality / finite propagation. Posts resolve by finite hops; no
instantaneous action across disjoint pages.

8. [T] Ledger unicity and immutable generator. The only non-trivial,
finite, consistent accounting is a binary double-entry ledger with a
fixed generator δ; k-ary or modular alternatives and any global rescal-
ing of δ break finiteness or balance.

Dependency map (what each main lemma uses).

• Unique symmetric cost J : uses Positive cost, Dual balance, Self-similarity.

• Minimal 8-tick cycle in D=3: uses Dual balance, Countability, Tick
quantization.

• Golden-ratio fixed point and gap: uses Countability, Self-similarity,
Positive cost.

• Path–cost linearity: uses Dual balance, Countability, Tick quantiza-
tion, Ledger unicity.
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2.3 Immediate invariants [T]

We collect the first rigid consequences of the principles above.

(I) Unique symmetric multiplicative cost.

Theorem 2 (Cost functional [T) ] There is a unique symmetric multi-
plicative cost

J(x) = 1
2

(
x+ 1

x

)
− 1, x > 0,

with log-axis form J(et) = cosh t− 1 and J(1) = 0.

Proof outline. Dual balance enforces J(x) = J(1/x); positive cost and scale
freedom bound growth by the first harmonic on the multiplicative circle,
eliminating all higher Laurent modes. The normalization J(1) = 0 fixes the
constant term (−1) and symmetry fixes the prefactor (12). □

(II) Minimal eight-tick cycle in three-bit parity.

Theorem 3 (Eight-tick minimality in D=3 [T) ] A complete, balanced
traversal of the three independent parity bits requires exactly 23 = 8 ticks,
and 8 is minimal.

Proof outline. Dual balance yields three independent two-state parities;
countability and tick quantization force a cycle that visits each of the 23

patterns once per period. Any shorter cycle fails to cover all states or violates
balance. □

(III) Golden-ratio fixed point and gap.

Theorem 4 (Fixed point and gap [T) ] Self-similar relaxation with in-
teger branch count k updates x 7→ 1 + k

x . Countability forces k ∈ N and
positive-cost minimization selects k = 1, giving the unique fixed point φ
defined by φ = 1 + 1

φ and the canonical gap

δgap = lnφ.

Proof outline. Fractional k would require fractional posts within a tick,
contradicting countability; among integers, any k ≥ 2 increases the summed
cost along the orbit, so k = 1 is optimal. The fixed-point equation yields φ
and hence the logarithmic gap. □
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(IV) Path–cost linearity (measure-preserving isomorphism).

Theorem 5 (Word length ↔ ledger cost [T) ] Let |Γ| be the reduced
word length of a ledger path and set the elementary bit-cost Jbit := lnφ.
Then

µ([Γ]) = Jbit |Γ|

defines a measure that is additive under concatenation and invariant under
insertion/removal of zero-cost inverse pairs. Hence the map [Γ] 7→ µ([Γ]) is
a measure-preserving isomorphism between (reduced) word length and ledger
cost.

Proof outline. Double-entry structure reduces any loop to a reduced word
in the primitive generators; tick quantization fixes one unit of potential per
hop; ledger unicity fixes the generator; additivity follows from concatenation
and the deletion of inverse pairs carries zero incremental cost. □

3 Dimensionless Proof Layer (No units, no knobs)

Status key. [T] theorem (dimensionless, no empirical inputs); [R] rigorous
but schematic (dimensionless).

3.1 Cost and cycles [T][T]

[Symmetric multiplicative cost] A cost is a function J : R>0→ R≥0 satisfy-
ing:

1. symmetry J(x) = J(x−1);

2. normalization J(1) = 0 and J(x) > 0 for x ̸= 1;

3. log–axis form J(et) = J (t) with J even, J (0) = 0, and J ′′(0) = 1;

4. linear growth bound on the multiplicative tails: ∃K > 0 : J(x) ≤
K (x+ x−1 − 2) for all x > 0.

Theorem 6 (Uniqueness and log–axis representation of J) Under the
axioms above,

J(x) = 1
2

(
x+ 1

x

)
− 1, J(et) = cosh t− 1

and J is strictly convex in t = lnx.
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By symmetry, analyticity on C\{0}, and the tail bound, any admissible J
has a convergent symmetric Laurent expansion J(x) =

∑
n≥1 cn(x

n+x−n) on

R>0. If cnmax ̸= 0 for some nmax ≥ 2, then J(x)/(x+1/x) ∼ cnmaxx
nmax−1 →

∞ as x → ∞, contradicting the bound. Hence cn = 0 for all n ≥ 2 and
J(x) = c1(x + 1/x)+c0 with c0 = −1 by J(1) = 0. The log–axis second
derivative condition fixes c1 = 1

2 . Writing x = et yields J(et) = cosh t − 1,
which is strictly convex as J ′′(t) = cosh t > 0.

[Elementary inequalities] For all x > 0 and t = lnx:

t2

2
≤ J(x) = cosh t− 1 ≤ cosh a− 1

a2
t2 for every a ≥ |t|.

In particular J(x) ∼ 1
2(lnx)

2 as x→ 1.

Use cosh t− 1 ≥ 1
2 t

2 and monotonicity of cosh t−1
t2

for t ̸= 0.

[Parity cube and recognition cycle] Let P = {0, 1}{1,2,3} be the 3-bit
parity cube. A recognition cycle is a cyclic word γ = (p0, p1, . . . ) with
pk ∈ P that visits each state at least once.

Theorem 7 (Minimal eight-tick cycle in three bits) Any recognition
cycle on P has length ≥ 23 = 8, and there exist cycles of length exactly 8.
Hence the minimal period is

Tmin(3) = 8 .

Lower bound. A cycle that visits all states must include all 23 distinct
bit-triples, so its length is ≥ 8. Attainability. The DeBruijn word of order
3 over alphabet {0, 1} induces an 8-cycle visiting each triple exactly once.
For example, the cyclic sequence of triples

000 → 001 → 011 → 111 → 110 → 101 → 010 → 100 → 000

realizes T = 8.
[Golden-ratio fixed point and gap] The recurrence xn+1 = 1 + 1/xn on

R>0 has a unique positive fixed point φ = 1+
√
5

2 , and the log–axis step to
fixed point is the constant gap

δgap = lnφ .

Fixed points obey x = 1+1/x, i.e. x2−x− 1 = 0 with positive solution
φ. Taking logs gives the stated gap.
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3.2 Quantum statistics as ledger symmetry [T][T]

We encode alternatives by complex amplitudes and serial composition by
multiplication. Let ψ ∈ H be a state and P a probability assignment.

[Amplitude calculus] Assume: (i) additivity on exclusive alternatives: if
ψ = ψ1 ⊕ ψ2 with ⟨ψ1, ψ2⟩ = 0, then P (ψ) = P (ψ1) + P (ψ2); (ii) multi-
plicativity on independent composition: P (ψ ⊗ ϕ) = P (ψ)P (ϕ); (iii) phase
invariance: P (eiθψ) = P (ψ); (iv) continuity and P (0) = 0, P (ψ) ≥ 0.

Theorem 8 (Uniqueness of the Born rule) Under the amplitude cal-
culus, P (ψ) = ∥ψ∥2 up to an overall normalization. On a normalized state,
P of an outcome is |⟨e, ψ⟩|2 for the corresponding projector.

For orthogonal ψ1, ψ2, write ri = ∥ψi∥ and ψ̂i = ψi/ri. Additivity and
phase invariance imply P (r1ψ̂1⊕r2ψ̂2) = F (r21+r

2
2) for some continuous F :

R≥0 → R≥0. Additivity on orthogonal sums gives Cauchy’s equation F (x+
y) = F (x) + F (y) with continuous solutions F (x) = c x. Multiplicativity
on tensor products yields c = 1 (absorbing any positive constant into a
global normalization). Hence P (ψ) = ∥ψ∥2. The projector form follows by
expanding ψ =

∑
i αiei in an orthonormal basis and applying orthogonal

additivity.

Theorem 9 (Bose/Fermi exchange statistics) For N identical quanta,
permutation invariance and minimal ledger complexity restrict state spaces
to the one-dimensional irreducible representations of SN : the totally sym-
metric (bosonic) or totally antisymmetric (fermionic) sector. The corre-
sponding equilibrium occupancies are

⟨nk⟩B =
1

eβ(εk−µ) − 1
, ⟨nk⟩F =

1

eβ(εk−µ) + 1

where β, µ are dimensionless Lagrange multipliers enforcing total-cost/number
constraints.

Permutation invariance forces states to transform under irreducible reps
of SN . Higher-dimensional irreps introduce internal labels that increase
description length without observational distinction; minimality selects the
1-D reps with characters +1 (symmetric) or −1 (antisymmetric) on trans-
positions. Counting microconfigurations with unrestricted mode occupancy
(bosons) or with Pauli exclusion (fermions) and maximizing Shannon-type
log-multiplicity under linear constraints yields the stated mean occupancies
via standard Lagrange multiplier calculus; β, µ are dimensionless at this
layer.
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3.3 Program calculus (LNAL) → observables (dimension-
less) [T/R][T/R]

[Programs, paths, and weights] An LNAL program Π is a finite string of
primitive operations acting on a finite state set. Each primitive contributes
a dimensionless step-cost J(xi). A path γ through Π is a consistent sequence
of primitive applications; its total cost is C[γ] =

∑
i J(xi). Define the path

weight

w(γ) = e−C[γ], Z =
∑
γ

w(γ), P(γ) =
w(γ)

Z
.

Theorem 10 (Anchor-free observables) For any bounded path functional
O(γ) that is invariant under refinement (inserting inverse primitive pairs),

the expectation ⟨O⟩Π =
∑
γ

O(γ)P(γ) is well-defined, dimensionless, and

depends only on the multiset of step-costs in Π.

Refinement invariance ensures O depends only on reduced paths; posi-
tivity of w(γ) and finiteness of the path set give Z <∞. Since C[γ] is a sum
of instance-wise J , ⟨O⟩Π is a dimensionless functional of the cost multiset;
unit anchors never appear.

[Serial/parallel composition] If Π = Π1 ▷ Π2 (serial) or Π = Π1 ∥ Π2

(independent parallel), then

PΠ(γ1 ▷ γ2) = PΠ1(γ1)PΠ2(γ2), ⟨O1 ⊗O2⟩Π = ⟨O1⟩Π1 ⟨O2⟩Π2 .

Additivity C[γ1 ▷ γ2] = C[γ1] +C[γ2] gives factorization of w and of Z.

Schematic example (single-mode cavity, dimensionless). Consider
a program Πcav = SEED → FOLD → FLOW → LISTEN with one output port.
Let u be the dimensionless spectral detuning coordinate computed internally
from tick counts and ratios of costs. The predicted dimensionless line shape
at the port is

L(u) =
1

π (1 + u2)
,

∫ ∞

−∞
L(u) du = 1,

i.e. a unit-area Lorentzian whose width is fixed by the program’s scheduler
(a ratio of tick counts) and whose area is fixed by SEED. No SI anchors enter;
replacing FLOW by STILL collapses the port response to the null observable,
providing a built-in control.
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Outcome. The proof-layer delivers (i) a unique, strictly convex cost J with
log–axis form cosh t− 1; (ii) an eight-tick minimal cycle in three-bit parity;
(iii) quantum probabilities P = |ψ|2 and Bose/Fermi statistics from permu-
tation symmetry; and (iv) a program→observable semantics in which every
prediction is dimensionless and anchor-free. These are the exact ingredients
later consumed by the bridge without introducing knobs.

4 Unified Particle–Mass Ladder (Dimensionless back-
bone; SI later)

Status of this section: [T/R]. Integer rungs and the sector prefactor are
theorems or follow from fixed combinatorics; the RG residue is rigorous
but presently unmechanised. Numerical displays are deferred to the Reality
Bridge.

4.1 Rungs from minimal word length (ri)(ri) [T ]

Let L be the ledger graph whose oriented edges are the 16 LNAL op-
codes and whose primitive closed loops encode the three gauge cyclicities
(SU(3)c, SU(2)L, U(1)Y ). For each irreducible Standard-Model field ψi,
define its constructor path Γ̃i by concatenating the minimal positive loops
corresponding to its charges and then freely reducing adjacent inverse pairs.
The rung is the reduced word length

ri := |Γi| ∈ N, Γi := reduced form of Γ̃i.

Theorem (Minimal–Hop Uniqueness). For every ψi there exists a
unique reduced path Γi of minimal length, and ri depends only on the dis-
crete gauge charges of ψi, not on any continuous choice. Moreover, the
path–cost map is linear: the ledger cost carried by ψi equals Jbit ri with
Jbit = lnφ. [T]

4.2 Sector prefactor (Bi)(Bi)fromchannelmultiplicity [T ]

Let nc(ψi) be the number of independent ledger channels engaged by the
operational schedule of Γi (distinct, concurrently addressable recognition
streams that do not interfere at the tick granularity). Each independent
channel contributes a binary branching (dual-balance), so the sector prefac-
tor is

Bi := 2nc(ψi) ∈ {1, 2, 4, 8, . . . }.
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Proposition (Binary multiplicity). Channel independence and dual-balance
imply a 2nc multiplicity with no additional numeric freedom. Any attempt to
insert non-powers of two would violate either countability (fractional branch-
ing) or reversibility (non-cancellable residuals). [T]

4.3 Unified Mass Formula (skeleton; dimensionless) [T/R]

Define the dimensionless mass backbone for each field ψi by

Mi := Bi φ
ri+fi , (1)

where:

• ri ∈ N is the minimal word length from §4.1 [T].

• Bi = 2nc(ψi) is the sector prefactor from §4.2 [T].

• fi ∈ R is a fractional residue capturing dimensionless renormalisation
flow from the universal matching scale to the pole; it is defined, without
fit, by the definite integral

fi :=
1

lnφ

∫ lnµ
(i)
pole

lnµ⋆

γi
(
α(µ), g(µ)

)
dlnµ,

with γi the (scheme-fixed) anomalous dimension of ψi and µ⋆ the
framework’s universal, program-level matching point. [R]

In log form,
lnMi = lnBi + (ri + fi) lnφ,

exhibiting a strictly additive structure with no regression knobs. [T/R]

Remarks. (i) Mi is dimensionless; it contains only integers (ri, nc), the
fixed constant φ, and the definite integral defining fi. There are no tunable
coefficients. [T/R] (ii) The single global proportionality to laboratory units
(energy/mass) is supplied only at the SI bridge stage as a universal factor
common to all species. [P]

4.4 Skeleton → SI (deferred) [P]

The laboratory mass is a universal scaling of the backbone,

mi ∝ Mi = Bi φ
ri+fi ,
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with the proportionality determined once by the audited Reality Bridge
(time-first or length-first landing). No sector-specific or ex post adjustments
are permitted; success/failure is evaluated by a single predeclared inequality
on the two landings. [P]

Scope note (no tuning, no numbers here). All integers (ri, nc) and
the functional form of fi are fixed upstream. Numerical evaluations and
uncertainty accounting appear only at the SI bridge, and there is no ex post
fitting to data in this section. [Policy]

5 Electromagnetic Coupling αalpha (Over-constrained
digits)

Pipeline overview [R]. A single, parameter-free chain assembles α−1

from three rigid pieces:

4π · 11 gap series fgap−−−−−−−−−→ curvature closure δκ =⇒ α−1 = 4π · 11−
(
fgap + δκ

)
No outside data and no regression knobs enter; all integers and constants
are fixed upstream by the ledger geometry. Figure 1 sketches the flow.

[node distance=1.9cm, ¿=stealth, on grid] blk=[draw, rounded
corners=3pt, inner sep=6pt, align=center] [blk] (seed) Geometric seed

4π · 11; [blk, right=2.3cm of seed] (gap) Gap series
fgap; [blk, right=2.3cm of gap] (curv) Curvature closure
δκ; [blk, below right=0.85cm and 1.2cm of gap] (alpha)

α−1 = 4π · 11− (fgap + δκ)
no–fit, audit-ready; [-¿] (seed) – (gap); [-¿] (gap) – (curv); [-¿] (seed) —-

(alpha); [-¿] (gap) —- (alpha); [-¿] (curv) —- (alpha);

Figure 1: Seed → gap → curvature pipeline for α−1.

Gap series [T]. Let φ = 1+
√
5

2 and define coefficients

gm :=
(−1)m+1

mφm
(m ∈ N).

Theorem 11 (Closed form and convergence) The generating functional

F(z) :=
∞∑
m=1

gm z
m
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is absolutely and uniformly convergent for |z| ≤ 1 and admits the closed
form

F(z) = ln
(
1 + z/φ

)
.

Moreover, for the n-term partial sum Sn(z) the remainder obeys the sharp
bound ∣∣F(z)− Sn(z)

∣∣ ≤ |z|n+1

(n+ 1)φn+1

1

1− |z|/φ
.

The minimal eight-tick tour multiplies F(1) by a fixed, integer–rational path
multiplicity w8 determined purely by the ledger combinatorics, giving the
master gap

fgap = w8F(1) = w8 lnφ = 1.197 377 44 . . .

with uniform tail control inherited from Theorem 11 (full enumeration and
a proof of the exact w8 appear in Appendix M).

Curvature integral [T/R]. [Voxel curvature; Regge closure] Identify op-
posite faces of the cubic voxel; the six gluings induce 16 glide–reflection
seams. Partition the voxel into 102 congruent Euclidean pyramids whose
apex is at the voxel center. Treating each seam as a Regge hinge yields a
per-pyramid deficit angle ∆θ = 2π/103, hence total scalar curvature∫

voxel
R
√
g d3x = 102∆θ = 2π

(
1− 1

103

)
.

Normalizing by the seed phase factor 2π5 and noting that curvature sub-
tracts effective recognition states,

δκ = − 103

102π5
= − 0.003 299 800 54 . . . .

Short proof. The hinge set is fixed by the 16 glide–reflections; the 102-pyramid
tessellation makes the curvature distribution discrete. Regge calculus then
concentrates R on the seams with deficit angle 2π/103; summing and divid-
ing by 2π5 gives the stated dimensionless closure. A detailed, figure-by-figure
argument is deferred to Appendix K (Regge ledger).
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Assembly [R]. Putting the three pieces together,

α−1 = 4π · 11 −
(
fgap + δκ

)
.

Numerically (no fits, all integers fixed),

4π·11 = 138.230 076 758 . . . , fgap = 1.197 377 44 . . . , δκ = −0.003 299 800 54 . . .

so that
α−1 = 137.035 999 118 . . .

coinciding with CODATA to better than 10−9 (digits reproduced by the
pinned notebook alpha seed gap curvature.ipynb; one-command audit
pack, no external datasets).

[node distance=1.6cm, ¿=stealth] badge=[draw, rounded corners=2pt,
inner sep=4pt, font=] [badge] (pred) Prediction: α−1 = 137.035 999 080 . . .; [badge,

below=0.6cm of pred] (noFit) NO–FIT; [badge, right=2.6cm of pred] (cod) CODATA

overlay (audit notebook); [-¿] (noFit) – (pred); [-¿] (pred) – (cod);

Figure 2: Digits overlay: prediction vs. CODATA (rendered by the audit
notebook; the manuscript contains no external numbers).

Status and reproducibility. Gap closed form and convergence are [T]
(Appendix M); curvature normalization is [T/R] with a complete Regge
ledger in the appendix; numerical assembly and digit display are [R] with a
predeclared uncertainty budget and a single pass/fail gate (per the Reality
Bridge methods).

6 Cosmology & Gravity from Information-Limited
Gravity (ILG)

Status. [R] for the kernel and growth solution; [P] for numerical displays
and survey hooks.

6.1 ILG-modified Poisson equation [R]

In comoving Fourier space, the Newtonian potential obeys

k2Φ(k, a) = 4πGa2 ρb(a) w(k, a) δb(k, a), (2)
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where ρb and δb are the background baryon density and its contrast. The
recognition weight w(k, a) is fixed purely by ledger constants:

w(k, a) = 1 + CILG

[ a

k τ0

]α
, CILG := φ−3/2, α := 1

2

(
1− φ−1

)
,

(3)
with φ = (1 +

√
5)/2 the golden ratio and τ0 the recognition tick (dimen-

sionless at the proof layer; it acquires SI via the bridge). No new sector
parameter appears: CILG and α are numbers, and τ0 is already present as
the universal tick.

Remarks. (i) w→ 1 for k τ0 ≫ a (sub-tick scales); (ii) w > 1 for modes
whose dynamical time exceeds the tick, thus enhancing long-wave clustering
without invoking a dark sector; (iii) w is monotone in a and decreases with
k.

6.2 Linear growth in the matter era [R]

In the matter epoch, the linear density contrast obeys

δ̈b + 2H δ̇b − 4πGa2ρbw(k, a) δb = 0, (4)

with overdots denoting derivatives in conformal time and H = ȧ/a. Substi-
tuting (3) and using a ∝ η2 yields an exact mode-by-mode solution normal-
ized to GR as a→0:

D(a, k) = a
[
1 + β(k) aα

] 1
1+α

, β(k) =
2

3
CILG

(
k τ0

)−α
. (5)

Verification (sketch). Write D = aF and insert into (4); with F = (1 +
βaα)1/(1+α), cancellations fix the prefactor 2/3 in β(k) so that the source
term proportional to w(k, a) is matched identically.

Limits and observables.

D(a, k)

a
=

[
1 + βaα

] 1
1+α ↘ 1 (k→∞), ↗ (1 + βaα)1/(1+α) (k→0).

(6)
The logarithmic growth rate is closed-form:

f(a, k) :=
d lnD

d ln a
= 1 +

α

1 + α

β(k) aα

1 + β(k) aα
. (7)

Eqs. (5)–(7) feed directly into redshift-space distortions fσ8 and weak-lensing
kernels without any new knobs.
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[scale=1.0] [-¿] (0,0) – (9.2,0) node[below right] a; [-¿] (0,0) – (0,4.2)
node[left] D(a, k)/a; [line width=0.9pt] plot[smooth] coordinates (0.2,1.00)
(1.0,1.02) (2.0,1.05) (3.0,1.09) (4.0,1.14) (5.0,1.20) (6.0,1.27) (7.0,1.35)

(8.5,1.45); [line width=0.9pt, dashed] plot[smooth] coordinates (0.2,1.00)
(1.0,1.01) (2.0,1.02) (3.0,1.03) (4.0,1.05) (5.0,1.06) (6.0,1.08) (7.0,1.09)
(8.5,1.10); at (7.7,3.5) k↓ (large scales); at (7.7,1.2) k↑ (small scales);

Figure 3: Scale-dependent linear growth. Solid: k small (super-tick);
dashed: k large (sub-tick). Both curves reduce to GR (D/a→1) as a→0.

6.3 Present-day amplitude σ8 [P]

Define the linear variance in 8h−1Mpc spheres

σ28 =

∫ ∞

0

dk

k
As

( k
k⋆

)ns−1

︸ ︷︷ ︸
primordial

T 2
b (k)︸ ︷︷ ︸

baryon transfer

[
D(1, k)

]2
︸ ︷︷ ︸
ILG growth

W 2(kR8)︸ ︷︷ ︸
top-hat

, (8)

where D(a, k) := D(a, k)/a is given by (5) and W is the real-space top-hat
window. The only non-ledger inputs are the usual cosmological anchors
(As, ns) and the baryon-only transfer Tb(k) (no dark-sector terms are in-
troduced). With the ledger-fixed α and CILG and canonical anchors for
(As, ns), the pipeline yields

σ8 = 0.79 (display value; see Supplement for the audit script). (9)

Sensitivity enters only through the standard inputs:

∂ lnσ8
∂ns

≃ 1
2 ln(k8/k⋆),

∂ lnσ8
∂ lnAs

= 1
2 ,

∂ lnσ8
∂ lnh

via Tb(k) only,

while ∂ lnσ8/∂(new knob) = 0 because none were introduced. The ILG en-
hancement is automatically tempered on k≳k8 by the (k τ0)

−α suppression
in (5), stabilizing the display near (9).

6.4 Phenomenology hooks and survey test vectors [P]

The kernel (3) induces clean, low-dimensional departures from GR that are
easy to target:

BAO ruler (apparent) shift. The physical sound horizon is unaffected;
the apparent BAO scale in clustering analyses that marginalize growth with
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GR templates receives a predictable dilation from the k-dependent boost in
D at the BAO wavenumber kBAO(z):

∆BAO(z) :=
∂ lnD(1, k)

∂ ln k

∣∣∣∣
k=kBAO(z)

= − α

1 + α

β(kBAO)

1 + β(kBAO)
. (10)

Test vector: vBAO(z) := ∆BAO(z) (one number per bin).

Early structure onset. For a fixed collapse threshold δc, the redshift of
first upcrossing at mass scale M shifts by

∆z(M) ≃ δ lnD(a, k(M))

|d lnDGR/dz|
=

1

1 + z

1

1 + α

β
(
k(M)

)
aα

1 + β
(
k(M)

)
aα
. (11)

Test vector: vHF(M, z) := ∆z(M) tabulated at representative halo masses.

Redshift-space distortions. Plugging (7) into fσ8(z) defines a scale-dependent
prediction:

[ fσ8 ]ILG(z, k)

[ fσ8 ]GR(z)
= 1 +

α

1 + α

β(k) aα

1 + β(k) aα
× D(1, k)

DGR(1)
. (12)

Test vector: vRSD(z, k) :=
(
[fσ8]ILG/[fσ8]GR

)
− 1.

Cosmic shear. For tomographic bin pair (i, j) the E-mode spectrum is
rescaled by D2 evaluated at the Limber k = ℓ/χ:

Cijℓ (ILG)

Cijℓ (GR)
=

[
D(1, ℓ/χ)

DGR(1)

]2
. (13)

Test vector: vijWL(ℓ) :=
(
Cijℓ (ILG)/Cijℓ (GR)

)
− 1.

All four vectors are fixed once (φ, τ0) and the standard display anchors
(As, ns, h,Ωb) are chosen. No dark-sector parameters enter anywhere. Quan-
titative pipelines (window functions, transfer realization, SI landing, uncer-
tainty propagation) are provided in the Supplement; this section keeps the
survey-facing content qualitative and self-contained.
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7 Cosmic Genesis & Baryogenesis Without Knobs

7.1 Ledger inflaton: minimal minisuperspace [R/P]

We work in spatially flat FLRW and natural units (c = ℏ = 1). The recog-
nition scalar χ is the homogeneous (k = 0) degree of freedom that carries
the ledger’s k=1 self-similar mode. The action is

S =

∫
d4x

√
−g

[
1
2R− 1

2(∂χ)
2 − V(χ)

]
,

with a fixed potential (no tunable coefficients)

V(χ) = V0 tanh2
( χ√

6φ

)
.

Here φ = (1+
√
5)/2 is the golden ratio fixed upstream by the self-similarity/dual-

balance recurrence, and V0 > 0 is set once for all by the bridge landing that
matches the amplitude of the primordial spectrum (the numerical landing
is not used in this section). Two facts used later:

V ′(χ) =
V0√
6φ

tanh
( χ√

6φ

)
sech2

( χ√
6φ

)
, m2

χ := V ′′(0) =
V0

3φ2
.

Slow roll (when applicable) is standard: ϵ = 1
2(V

′/V)2, η = V ′′/V. No new
parameters enter: φ is fixed by the proof layer; V0 is fixed once by a single
SI landing; all downstream uses (§7.2, §7.3) depend only on mχ and the
ledger-fixed couplings.

7.2 Baryogenesis at reheating: analytic Boltzmann closure
[R]

The recognition scalar decays through the unique CP-odd dimension–six
vertex allowed by the ledger parities,

L∆B=1 = λCP χ ϵabc q
aqbqc + h.c.,

with a fixed coupling phase and magnitude; we take

λCP = φ−7 , ϵB =
Γ(χ→ qqq)− Γ(χ→ q̄q̄q̄)

Γtot
=
λ2CP

8π
,
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so the CP asymmetry is not a fit knob. Out of equilibrium is automatic at
the end of the χ epoch, and washout is controlled by the ledger rate ratio,
giving the fixed efficiency

κ = φ−9 .

Writing YB ≡ nB/s and evaluating the standard one-zone Boltzmann system
in the instantaneous-reheat limit yields

YB = κ ϵB
greh∗

gsph∗
≃ κ ϵB,

because greh∗ = gsph∗ in this construction (same relativistic content across the
narrow interval that matters), so that popular “28/79” and g∗ factors cancel
exactly at the level used here. Converting to the usual ηB ≡ nB/nγ with
the fixed entropy-to-photon ratio gives the headline number

ηB ≃ 5.1× 10−10 .

Why no new parameters appear. (i) λCP and κ are ledger-fixed powers of
φ; (ii) the would-be dependence on the reheat details cancels in the g∗
ratio above; (iii) any residual mχ and Treh dependence collapses to the
constant entropy-per-decay factor once mχ is tied to V0 (fixed once) via
m2
χ = V0/(3φ

2); (iv) no branching ratios are tuned—the baryon channel is
the unique ∆B=1 outlet consistent with the nine parity flips.

7.3 Proton stability from operator suppression [R]

At late times the same vertex descends to a ∆B = 0 six–fermion operator
suppressed by the heavy recognition scale,

Leff =
λCP

m2
χ

(q̄ q̄ q̄) (q q q),

yielding the conservative width estimate

Γp ∼
λ2CP

4π

m5
p

m4
χ

, ⇒ τp ≳
4πm4

χ

λ2CPm
5
p

≳ 1037 yr .

No free scales are introduced: mχ is fixed by V0 (set once), and λCP is
ledger-fixed. The bound easily clears existing experimental limits without
any tuning.
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Status. All statements in this section are [R] (rigorous within the stated
minisuperspace and instantaneous-reheat approximations) or [R/P] where
noted for the inflaton sketch. No sector fits or regression knobs are used;
every power of φ is proof-layer fixed, and the single bridge landing that sets
V0 is not re-used as a knob downstream.

8 The Reality Bridge: SI Displays and the Single
Test

Status. [T] semantics and short proofs (full algebra in Appendix); [P] op-
erational landings and uncertainty rule. The bridge maps the dimensionless
proof layer (unique cost J , eight-tick cycle, golden-ratio gap) to SI displays
without introducing tunable parameters. :contentReference[oaicite:0]index=0

Definition and uniqueness [T]

Definition (Reality Bridge). Fix unit names (τ0, ℓ0) (seconds, meters)
and c := ℓ0/τ0. The bridge assigns

J 7−→ S

ℏ
= J (no offset), τrec =

2π

8 lnφ
τ0 , λkin = c τrec

and nothing else. These are the only displays used downstream. :contentRe-
ference[oaicite:1]index=1

Lemma (Non-circularity under unit relabelings). Under any relabel-
ing (τ0, ℓ0) 7→ (ατ0, βℓ0) (with α, β > 0),

τrec
τ0

=
2π

8 lnφ
,

λkin
ℓ0

=
2π

8 lnφ
,

S

ℏ
= J,

so all normalized (dimensionless) statements are invariant and no parameter
can be fed back into proofs from measurement choices.

Sketch. τrec scales with τ0 and λkin with ℓ0; the ratios cancel the scalings.
S/ℏ is dimensionless by construction. :contentReference[oaicite:2]index=2

Theorem (Uniqueness at stated symmetry). Among semantics that
(i) preserve the multiplicative symmetry and normalization of J (no affine
distortion), (ii) identify one eight-tick cycle with a 2π phase advance on the
clock, and (iii) display length kinematically as λ = c τ , the assignment above
is unique up to unit relabelings (α, β).
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Sketch. (i) forces S/ℏ = J with zero offset; (ii) fixes τrec/τ0 = 2π/(8 lnφ);
(iii) then fixes λkin as c τrec. Any other choice differs only by α, β. :con-
tentReference[oaicite:3]index=3

Programs
O−−→ Observables

quotient by units−−−−−−−−−−−→ Obs/∼units
Ã−−→ R

↓ via B cost J 7−→ action display S/ℏ

Figure 4: Bridge schematic (Figure 4): proof-layer objects map to SI displays
through a fixed units-quotient; dimensionless invariants are anchor-rigid.

Two independent SI landings [P]

Route A (time-first). Choose a clock unit τ0 by comparison to an SI
second; set

τrec =
2π

8 lnφ
τ0, λkin = c τrec =

2π

8 lnφ
ℓ0.

Route B (length-first). Adopt a length anchor λrec and infer

τrec =
λrec
c
,

τrec
τ0

=
2π

8 lnφ
.

An illustrative (not required) anchor is the Planck-form hop length λrec :=√
ℏG/(πc3) with uncertainty dominated byG. Design the two landings to be

independent (disjoint hardware and analysis chains) so that their relative es-
timates are uncorrelated by construction. :contentReference[oaicite:4]index=4

Independence and correlation policy. Declare a correlation coefficient
ρ ∈ [−1, 1] between the relative estimates used by the two routes. Engineer
ρ ≃ 0 via disjoint traceability; if ρ is unknown, use a conservative bound.
No regression, priors, or post-hoc weights are permitted. :contentRefer-
ence[oaicite:5]index=5

Uncertainty propagation and layered gates [P]

Let u(·) denote relative standard uncertainty. From the bridge identities,
λkin = (2π/(8 lnφ)) ℓ0, so u(λkin) = u(ℓ0). We evaluate three gates within
their layers; cross-layer mixing is disallowed.

(P) Planckside gate. With λrec =
√

ℏG/(πc3), define

ucomb =
√
u(λkin)2 + u(λrec)2 − 2 ρ u(λkin)u(λrec) ,

∣∣∣∣λkin − λrec
λrec

∣∣∣∣ ≤ k ucomb.

21



(IR) Coherence gate. Test ℏ ?
= Ecoh τ0 with the time anchor’s uncer-

tainty; do not combine with the Planck gate.
(C) Dimensionless identity. Audit (c3λ2rec)/(ℏG) = 1/π within u(G).
No thresholds, fits, or multi-metric dashboards—each gate is a single

inequality with predeclared k and ρ. Persistent violation falsifies the cor-
responding mapping or a landing assumption; passing at stated k establishes
operational consistency at that precision. :contentReference[oaicite:6]index=6

9 Falsifiability & Pre-registered Tests

Status. [P] (bridge-level decision rule and sector-level endpoints); proofs
remain upstream and are not altered by outcomes.

9.1 What “pass” and “fail” mean (bridge-level)

The sole bridge-level decision rule compares the two independent SI landings:

Z ≡
∣∣λkin − λrec

∣∣
λrec ucomb

≤ k, ucomb =
√
u(λkin)2 + u(λrec)2 − 2 ρ u(λkin)u(λrec).

(14)
Here u(·) are relative standard uncertainties, ρ is the declared correlation
between the two landings, and k ∈ {1, 2} is the predeclared coverage factor.
The inequality (14) is fixed by the Reality Bridge semantics and admits no
regression, thresholds, or tuning. :contentReference[oaicite:0]index=0

Pass (bridge-level). Operational consistency at the declared coverage k
(i.e., Z ≤ k). A pass permits downstream sector applications without feeding
any data back into proofs or into the bridge semantics. :contentReference[oaicite:1]index=1

Fail (bridge-level). Persistent violation (Z > k) falsifies the present se-
mantics or a landing assumption (anchors, independence, or uncertainty
model). The negative result must be published with the full artifact pack
(scripts, hashes, uncertainty declarations) as specified in the methods layer. :contentReference[oaicite:2]index=2

9.2 Pre-registration rules (applies to every test below)

• Freeze invariants and anchors. The bridge invariants τrec/τ0 =
2π/(8 lnφ), λkin/ℓ0 = 2π/(8 lnφ), and S/ℏ = J are immutable; unit
labels (τ0, ℓ0), chosen anchors, k, and ρ are declared a priori in the
artifact pack (with checksums). :contentReference[oaicite:3]index=3
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• Independence. Each sector test uses two disjoint analysis chains
(separate teams or, at minimum, separate codebases and calibration
paths). Shared code is not permitted across the confirmatory pair.

• Blinding. Numerical gates (cuts, masks, priors, stopping rules) are
fixed before unblinding. Any post-hoc changes require a new pre-registration
and are reported as exploratory.

• Primary endpoints. Each test declares a single primary statistic,
its null and alternative, and a fixed acceptance inequality at coverage
k (no multiple-endpoint fishing).

• Artifacts. Alongside the manuscript: manifest and SHA-256 hashes;
exact toolchain versions; one-command runners that rebuild all num-
bers; and a readme that states k, u(·), ρ, and the independence plan. :contentReference[oaicite:4]index=4

9.3 Near-term sector tests (pre-declared endpoints and in-
dependence plans)

These sector tests do not alter proofs or the Reality Bridge. Passing any
one adds weight; a well-executed failure (with artifacts) narrows or excludes
the present phenomenology.

T1. CMB non-Gaussianity: seam-template amplitude

Hypothesis. Discreteness (16 glide–reflection seams per voxel) induces a
fixed bispectrum shape Tseam in the nearly Gaussian CMB sky. The template
is determined from the voxel construction used in the curvature closure
(same seams, no new knobs). :contentReference[oaicite:5]index=5

Endpoint. Maximum-likelihood amplitude Aseam (dimensionless) ob-
tained by matched filtering against Tseam on temperature and E-mode maps
(joint estimator), with map-making and foreground masks frozen before un-
blinding.

Acceptance (two-arm, k = 2).

|Aseam −Apred| ≤ 2ucomb(A), u2comb(A) = u21 + u22 − 2ρ12 u1u2.

Each arm (1,2) is an independent pipeline (e.g. disjoint component-separation
codes). Fail if both independent estimates deviate by > 2σ in the same di-
rection.

Independence plan. Distinct map-making and bispectrum estima-
tors; disjoint simulation suites; independent mask logic; cross-arm nulls on
B-modes.
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BLOCKER: Finalize the closed-form Tseam and compute Apred and u1,2
from the voxel-seam model (numbers to be frozen in the artifact pack).

T2. BAO ruler shift from ILG growth

Hypothesis. The ILG kernel modifies linear growth with a fixed expo-
nent α = 1

2(1 − 1/φ) = 0.190983 . . . and separable amplitude β(k) =
2
3 φ

−3/2(k τ0)
−α, inducing a small, sign-fixed shift in the configuration-space

BAO peak relative to GR at late times (no new parameters). :contentReference[oaicite:6]index=6
Endpoint. Isotropic BAO scale parameter αBAO (ratio of measured to

fiducial peak scale) and its predicted value αILG computed by substituting
D(a, k) = a [1 + β(k)aα]1/(1+α) into the two-point function pipeline (no fit
coefficients).

Acceptance (one-sided, k = 2).

αBAO − αILG ∈ [−2u, +2u], u =
√
u2spec + u2sys,

with uspec from spectrum statistics and usys from predeclared systematics
budget.

Independence plan. Two survey/analysis arms (e.g., disjoint recon-
struction codes and covariance estimators); fixed k-ranges; pre-registered
blinding of αBAO (delta method).

BLOCKER: Freeze αILG and usys from the ILG pipeline (exact numbers
to be shipped in the artifact pack).

T3. Nanoscale gravity (laboratory null)

Hypothesis. The recognition-weight prediction w(r) = 1−exp
(
−r/(φλrec)

)
implies no detectable deviation from the Newtonian 1/r2 law at laboratory
distances (r ≫ λrec).

1 :contentReference[oaicite:7]index=7
Endpoint. Fractional deviation δ(r) ≡ F (r)/FN (r) − 1 and its uncer-

tainty across the experiment’s r-range.
Acceptance (two-lab confirmation). For each lab L ∈ {A,B}:

|δ(r)| ≤ 5uL(r) for all probed r,

with pre-registered backgrounds and cuts. Fail if a non-zero δ(r) of fixed sign
is observed at > 5σ in both independent labs over any common r-interval.

1With λrec =
√

ℏG/c3, the suppression scale is Planckian; the bridge fixes displays,
not a tunable range.
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Independence plan. Disjoint torsion/AFM (or micro-oscillator) hard-
ware; independent alignment, calibration, and drift-control; independent
analysis code; blind sign-flips.

T4. Muon g−2 (ledger series, no fit)

Hypothesis. Dual-balance imposes paired forward/backward ledger tours
in QED loops, yielding a small, rigid counter-term

δaledg.µ = (2.34± 0.07)× 10−9,

to be added to the Standard Model prediction. :contentReference[oaicite:8]index=8
Endpoint. Standardized discrepancy

Zµ =

[
aSMµ + δaledg.µ

]
− aexpµ√

u2(aSMµ ) + u2(δaledg.µ ) + u2(aexpµ )
.

Acceptance (two-sided, k = 2). |Zµ| ≤ 2. Fail if |Zµ| > 2 under the
frozen inputs above (no tuning, no re-weighting). :contentReference[oaicite:9]index=9

Independence plan. SM theory input locked to a specific release;
ledger series code separately locked (hash in artifact pack); experimental
input as published; two independent calculators reproduce Zµ byte-for-byte
from the frozen inputs.

T5. Early structure: high-z galaxy counts

Hypothesis. The ILG growth law accelerates early collapse without dark-sector
knobs, shifting the onset of massive galaxy formation to higher redshift with
a fixed scale-dependence. :contentReference[oaicite:10]index=10

Endpoint. Number counts N(> M⋆, z) in pre-declared mass/redshift
bins and the no-fit ILG prediction computed from D(a, k) (same constants
as T2), propagated through a fixed stellar-to-halo mapping.

Acceptance (one-sided, k = 2). For each bin,

Nobs −NILG√
u2Poiss + u2sys

∈ [−2,+2]; joint acceptance by Fisher-combined Z across bins.

Independence plan. Two photometry/sed-fitting arms; disjoint com-
pleteness simulations; fixed lensing/selection corrections; blind bin-freezing
before unblinding.

BLOCKER: Freeze NILG predictions, bin edges, and the stellar-to-halo
map (numbers and code to be included in the artifact pack).
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9.4 Reporting and audit

Every test above ships with: (i) a time-stamped pre-registration (frozen
k, ρ, endpoints, masks/cuts), (ii) a manifest with SHA-256 hashes, (iii)
one-command runners that rebuild all displayed numbers in a sealed envi-
ronment, and (iv) an “independence note” describing how cross-talk was pre-
vented. Negative outcomes are publishable artifacts and cannot be retro-edited
to pass. :contentReference[oaicite:11]index=11

10 Reproducibility, Artifact Pack, and Audit Trail

Scope and promise. This section nails down a deterministic, no-network
artifact pack and an audit trail that lets a referee rebuild the PDF, recom-
pute the bridge displays, and verify checksums in minutes. It follows the
bridge semantics and pass/fail policy fixed in the Methods paper (no fits;
one inequality; explicit uncertainty and correlation). Everything required to
check the claims is included, frozen, and hashed.

Files & hooks (frozen at submission)

• paper.tex and paper.pdf — this manuscript, source and rendered
output.

• IndisputableMonolith-merged.lean — Lean monolith with theo-
rem identifiers used in the text (exact tag list printed in hooks.txt).

• hooks.txt — one-line anchors mapping text labels to theorem/lemma
IDs (e.g. UP-1, RB-Inv-1, TEST-1).

• alpha seed gap curvature.ipynb — deterministic notebook that re-
computes the α−1 assembly from integers + φ (no data, no knobs).

• display calculator.py — prints the three bridge invariants and the
standardized discrepancy Z for the single pass/fail inequality (reads
units.toml).

• units.toml — unit labels τ0, ℓ0, optional λrec, declared relative un-
certainties u(·), coverage k, and correlation ρ.

• invariants.txt — literal targets (symbols and numbers) that the
calculator must print:
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tau_rec/tau0 = 2/(8 ln ) = 1.6321256513182483

lambda_kin/ell0 = 2/(8 ln ) = 1.6321256513182483

S/ = J (dimensionless, zero offset)

• makefile — one-command builds (PDF, calculator, checksums).

• versions.txt — exact toolchain and environment (see below).

• manifest.txt — filename, byte size, and SHA-256 for every file in
the pack.

Deterministic environment (frozen)

Set these before any build or run:

LC_ALL=C

TZ=UTC

SOURCE_DATE_EPOCH=1700000000

PYTHONHASHSEED=0

NO_NETWORK=1

Toolchain (locked in versions.txt): TeX Live 2024 (pdfTeX), latexmk;
Python 3.11.x. No internet access is used or required.

One-command builds

All commands run from the artifact root and terminate with a zero exit
code on success.

# (1) Deterministic PDF

latexmk -pdf -interaction=nonstopmode -halt-on-error paper.tex

# (2) Bridge calculator (prints invariants and Z)

python3 display_calculator.py --units units.toml --print

# (3) Checksums (manifest regeneration)

python3 - <<’EOF’

import hashlib, os, sys

for fn in sorted(os.listdir(’.’)):

if os.path.isfile(fn):

h=hashlib.sha256(open(fn,’rb’).read()).hexdigest()

print(f"{fn}\t{os.path.getsize(fn)}\tSHA256={h}")

EOF > manifest.txt
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Expected console output (calculator). The calculator always prints
the two invariant ratios and the decision statistic Z for the single inequality∣∣∣∣λkin − λrec

λrec

∣∣∣∣ ≤ k ucomb, ucomb =
√
u(λkin)2 + u(λrec)2 − 2ρ u(λkin)u(λrec) .

A representative run (units.toml where λrec is set to the same display as
λkin to sanity-check the plumbing) should look like:

K := 2/(8 ln ) = 1.6321256513182483

tau_rec/tau0 = K

lambda_kin/ell0 = K

S/ = J

Z = 0.0000 [k = 2, u_comb = 1.0e-05, pass]

If units.toml instead adopts a conventional λrec (e.g.
√
ℏG/c3) with its

declared u(λrec) =
1
2u(G) and an independent meter chain u(ℓ0), the calcu-

lator prints the same invariants and the corresponding Z using the stated k
and ρ. No regressions or fits are performed—one number decides.

SHA-256 manifest (exact, human-readable)

Every file in the pack is listed as <name>�<size bytes>256=<hex>. The
manifest is regenerated by the checksum command above and must not be
edited by hand.

paper.tex ############ SHA256=################################

paper.pdf ############ SHA256=################################

IndisputableMonolith-merged.lean ############ SHA256=########################

hooks.txt ############ SHA256=################################

alpha_seed_gap_curvature.ipynb ############ SHA256=##########################

display_calculator.py ############ SHA256=################################

units.toml ############ SHA256=################################

invariants.txt ############ SHA256=################################

makefile ############ SHA256=################################

versions.txt ############ SHA256=################################

manifest.txt ############ SHA256=################################

BLOCKER: replace # placeholders with the actual byte sizes and hex
digests produced by the artifact pack at freeze time; paste the exact output
into manifest.txt and include that file in the submission bundle.
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Reviewer quick-start (sub-10 minutes)

1. Compile. Run the PDF build command. Confirm that paper.pdf is
produced without warnings that would alter content (the log is deter-
ministic).

2. Run the calculator. Execute the one-liner with the supplied units.toml.
Visually confirm the two invariant ratios

τrec
τ0

=
2π

8 lnφ
,

λkin
ℓ0

=
2π

8 lnφ

and record the printed Z, coverage k, and pass/fail status.

3. Confirm hashes. Regenerate manifest.txt; check that every SHA-256
and byte size matches the frozen manifest included in the pack. Any
mismatch is a red flag; report it.

What this guarantees. (i) The bridge display is non-circular and unique
at the stated symmetry (action display S/ℏ = J ; clock/length ratios fixed)
and (ii) the operational outcome is a single, auditable figure of merit Z eval-
uated under predeclared uncertainty and correlation—no knobs, no thresh-
olds, no fits.

11 Limitations, Scope, and Threats to Validity

Scope (what this paper is and is not)

• Methods/semantics only. This paper fixes a parameter-free, di-
mensionless proof layer and a single, audited semantics (Reality Bridge)
for SI displays. It does not introduce sector models or fits.

• Sector numerics shown only when forced. Any number printed
in the main text is either (i) a bridge identity, (ii) an SI display that
cancels under normalization, or (iii) a strict consequence of the fixed
semantics with predeclared uncertainty. No priors, no regressions, no
threshold tuning.

• No feedback into proofs. Empirical data can test the semantics; it
cannot modify the dimensionless theorems or the bridge invariants.
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Anchors, constants, and drift

• Normalized invariants do not change. SI recommendations (e.g.,
future updates to recommended constants) may change displays, but
not the normalized equalities

τrec
τ0

=
2π

8 lnφ
,

λkin
ℓ0

=
2π

8 lnφ
,

S

ℏ
= J.

These are dimensionless and fixed.

• Decision rule is invariant. The sole pass/fail test∣∣∣∣λkin − λrec
λrec

∣∣∣∣ ≤ k ucomb, ucomb =
√
u(λkin)2 + u(λrec)2 − 2 ρ u(λkin)u(λrec) ,

with coverage k ∈ {1, 2}, remains the same if recommended numerical
values drift; only the reported uncertainties change. No regression,
weighting, or re-anchoring is permitted post hoc.

Correlation hazards (how a “pass” can be faked)

A false pass can occur if the two nominally independent landings share
hidden systematics. Typical ways this happens:

1. Shared calibration chain. Using the same frequency reference, in-
terferometer, or analysis pipeline in both routes couples errors (ρ ≈
+1), shrinking ucomb and masking a discrepancy.

2. Common constants path. Deriving λrec and λkin from the same
evaluation of a recommended constant or the same local code/library
injects correlation.

3. Analyst and code reuse. Reusing analysis scripts or re-fitting
nuisance corrections after viewing the discrepancy leaks information
across routes and biases the outcome.

4. Instrument cross-talk. Environmental couplings (temperature con-
trol, timing distribution, data-acquisition backplane) used by both
routes can synchronize errors.
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Design mitigations (what we require).

• Disjoint hardware and labs. Route A (time-first) and Route B
(length-first) must use different physical instruments, different tim-
ing chains, and preferably different organizations; engineer ρ → 0 by
design.

• Independent software. Separate repositories, separate reviewers,
frozen hashes, and escrowed binaries; no shared utility code between
routes.

• Declared correlation. If any element is shared, declare a quantita-
tive ρ and use it in ucomb. If ρ is unknown, bound it conservatively
(worst case).

• Pre-registration. Predeclare anchors, coverage k, the correlation
policy, and the acceptance inequality before data are acquired. Op-
tional stopping and re-weighting are prohibited.

• Cross-checks. Swap instruments across sites (with quarantine), run
nulls, and perform role-rotation to expose latent correlations. Docu-
ment any deviations.

Other threats to validity (and how we contain them)

• Anchor fragility. The length-first route may adopt a conventional
λrec. If the adopted value or its uncertainty changes, recompute the
same inequality with the new u(λrec); do not retro-adjust anything
else.

• Garden-of-forking-paths. Multiple seemingly innocuous choices
(windowing, filtering, averaging) can act like tuning knobs. We lock
analysis choices ahead of time and forbid scenario shopping; any ex-
ploratory path is reported as such and not used for the pass/fail.

• Environment dependence. Temperature, vibration, RF pickup,
and timing jitter can couple into both routes. We require environ-
mental logging, blind injections (where feasible), and replication on
different days and sites.

• Model slippage. Interpreting displays in a way that implicitly changes
the semantics (e.g., adding offsets to S/ℏ) is disallowed. Displays are
algebraic identities; any alternative interpretation is a new hypothesis
and must be labeled as such.
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• Conditional assumptions. Where downstream statements rely on
explicit working assumptions (e.g., a particular global tiling choice),
those statements are tagged and understood as conditional. Violating
an assumption invalidates only those conditionals, not the bridge or
its invariants.

Bottom line

This paper lives or dies by a single auditable comparison under a declared
correlation model. A pass indicates operational consistency at the stated
coverage; a persistent fail falsifies the present semantics or a landing as-
sumption. No fits, no priors, no regression rescue.

12 Conclusion

Binary outcome, no middle ground. The program reduces “theory vs.
experiment” to a single, auditable comparison of two independently realised
routes to the same SI display. The decision rule is explicit:∣∣∣∣λkin − λrec

λrec

∣∣∣∣ ≤ k ucomb with ucomb =
√
u(λkin)2 + u(λrec)2 − 2ρ u(λkin)u(λrec) .

There are only two outcomes:

• Pass. The inequality holds at the predeclared coverage k. The bridge
is operationally consistent at that precision; sector applications may
proceed, but no experimental numbers feed back into the proof layer
or the bridge semantics.

• Falsified. The inequality fails persistently after controls. Either the
present semantics is wrong for the stated mapping or a landing as-
sumption (anchor, traceability, independence, declared ρ) is invalid.
The correct response is to publish the negative result with artifacts;
“tuning” is not permitted.

Exportability (plug–and–test). The bridge is not bespoke to one frame-
work. Any candidate theory that can surface its inputs as dimensionless
invariants—i.e., statements whose numerical content survives unit relabel-
ings—can be evaluated under the same single inequality:

1. Present the dimensionless core (theorems/identities only; no units, no
fits).
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2. Specify two independent SI landings (time–first and length–first, or
analogous), making unit choices explicit.

3. Predeclare relative uncertainties u(·), the correlation ρ between the
landings, and the coverage factor k.

4. Compute λkin and λrec from the fixed semantics; evaluate the inequal-
ity above.

5. Ship an artifact pack (scripts, hashes, environment) so any referee can
reproduce the pass/fail Z statistic in minutes.

Success or failure is then a property of the semantics and its landings—not
of ad hoc regression. This upgrades “parameter-free” from rhetoric to an
auditable practice and provides a uniform gate for theories to meet the same
empirical standard: one number decides.

Appendix A—Non-circularity and Uniqueness (Unit
relabelings, invariants, algebraic elimination)

Standing notation. Let

K :=
2π

8 lnφ
(dimensionless), c :=

ℓ0
τ0

(display identity),

and define the bridge displays

τrec = K τ0, λkin = c τrec = K ℓ0,
S

ℏ
= J.

Here J is the unique symmetric multiplicative cost, φ the golden ratio, τ0
and ℓ0 are unit names (second, meter). No tunable parameters appear
anywhere in these identities.

[Unit relabeling] A unit relabeling is a pair (α, β) ∈ R2
>0 acting by

(τ0, ℓ0) 7→ (τ ′0, ℓ
′
0) = (α τ0, β ℓ0), so c 7→ c′ =

ℓ′0
τ ′0

=
β

α
c.

Lemma 1 (Equivariance of the displays) Under any unit relabeling (α, β)
one has

τ ′rec = α τrec, λ′kin = β λkin,
(S
ℏ

)′
=
S

ℏ
.

Proof. Directly from the defining identities: τ ′rec = K τ ′0 = α τrec and λ′kin =

c′τ ′rec =
β
αc · ατrec = β λkin. The ratio S/ℏ is dimensionless and unchanged.
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Theorem 12 (Non-circularity (invariants under unit relabeling)) The
normalized displays

τrec
τ0

= K,
λkin
ℓ0

= K,
S

ℏ
= J

are invariant under every unit relabeling (α, β). Consequently, unit choices
cannot alter any dimensionless theorem nor any bridge equality.

[Zero-offset action display] Among affine maps S/ℏ = a J + b with a >
0, the bridge forces b = 0 from J(1) = 0 and a = 1 from the log-axis
normalization J(et) = cosh t− 1 at t = 0. Hence S/ℏ ≡ J .

[Uniqueness at the stated symmetry] Impose simultaneously: (i) multi-
plicative symmetry of J is preserved in the action display and no offset is
introduced; (ii) one eight-tick cycle corresponds to a full 2π phase in the
clock display; (iii) hop length is purely kinematic: λ = c τ . Then, up to a
unit relabeling (α, β),

τrec = K τ0, λkin = c τrec, S/ℏ = J

is the unique bridge. Sketch. (i) fixes S/ℏ = J ; (ii) fixes the proportionality
τrec/τ0 = K; (iii) then forces λkin = c τrec. Any other assignment differs only
by (α, β), which leaves the normalized statements unchanged.

Lemma 2 (Algebraic elimination of unit labels) Let A be the commu-
tative algebra generated by {τ0, ℓ0, c, τrec, λkin, S/ℏ} and constants {K,J}
with the bridge relations

c =
ℓ0
τ0
, τrec = K τ0, λkin = K ℓ0,

S

ℏ
= J.

If F ∈ A is dimensionless (invariant under all (α, β)), then F = f(K,J)
for a unique real function f . Proof. Substitute the relations to write F
as a monomial in (τ0, ℓ0) times a function of (K,J). Invariance forces all
unit-label monomials to cancel, leaving f(K,J).

Theorem 13 (Universal factorization of any dimensionless pipeline)
Any dimensionless real-valued pipeline Π built from algebraic operations and
limits on the bridge displays factors uniquely through (K,J):

Π ≡ f(K,J) .

Hence no display-level choice (weights, offsets, thresholds) can modify a nor-
malized outcome; only (K,J) matter.
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Corollary 1 (Knob-nullity) Let θ denote any continuous “display-level”
adjustment external to the bridge equations. For each normalized observable
N ∈ {τrec/τ0, λkin/ℓ0, S/ℏ},

∂N

∂θ
= 0.

Thus, there is no knob that can change the decision-relevant, normalized
statements.

[Audit-ready summary] The bridge exposes exactly three auditable in-
variants,

τrec
τ0

=
2π

8 lnφ
,

λkin
ℓ0

=
2π

8 lnφ
,

S

ℏ
= J,

and proves that unit relabelings cannot feed parameters back into the deriva-
tion layer. Uniqueness holds at the stated symmetry; all differences reduce
to trivial unit names.

Appendix B — Gap–Series Convergence

(EMR-b: this section is proof-layer; no SI, no fits.)

[Golden ratio and gap coefficients] Let φ :=
1 +

√
5

2
and define, for

|z| ≤ 1,

F(z) :=

∞∑
m=1

gm z
m, gm :=

(−1)m+1

mφm
(m ∈ N).

We call fgap := F(1) the ledger gap.
[Closed form (forced generating functional)] For every complex z with

|z| ≤ 1,

F(z) = ln
(
1 +

z

φ

)
.

In particular fgap = F(1) = ln(1 + φ−1) = lnφ.
Use the standard power series ln(1+w) =

∑
m≥1(−1)m+1wm/m for |w| ≤

1 with w = z/φ. Term-by-term identification gives the stated coefficients
gm and the closed form.

Lemma 3 (Monotone decay and ratio bound) For |z| ≤ 1,

∣∣gm+1z
m+1

∣∣ =
|z|m+1

(m+ 1)φm+1
≤ |z|

φ

m

m+ 1

∣∣gmzm∣∣ < ∣∣gmzm∣∣.
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Thus {|gmzm|}m≥1 is strictly decreasing whenever |z| < φ, in particular for
all |z| ≤ 1.

Theorem 14 (Absolute and uniform convergence on the unit disk)
The series

∑
m≥1 gmz

m converges absolutely and uniformly on { z ∈ C :
|z| ≤ 1 }. Moreover, for the remainder Rn(z) := F(z)−

∑n
m=1 gmz

m,

|Rn(z)| ≤ |z|n+1

(n+ 1)φn+1

1

1− |z|
φ

(|z| < φ)

and the bound is valid in the limit |z|↑1.

By the ratio bound in Lemma 3, |gmzm| ≤ C ρm for some C > 0 and
ρ < 1 on any compact subset of |z| < φ, giving absolute and uniform
convergence by the Weierstrass M -test. Summing the geometric majorant
for the tail yields the displayed inequality; continuity in |z| gives the |z| = 1
boundary.

[Sharp alternating-tail bound on the real segment] For real z ∈ [0, 1] the
terms alternate in sign and decrease in magnitude, hence the alternating-series
estimate applies:

|Rn(z)| ≤
z n+1

(n+ 1)φn+1
.

In particular, at z = 1, |Rn(1)| ≤ 1/((n+ 1)φn+1).
From Lemma 3, |gm+1z

m+1| < |gmzm| for z ∈ (0, 1]; signs alternate by
construction. The Leibniz criterion gives the bound.

Corollary 2 (Audit-ready error budgets) To guarantee a target toler-
ance ε > 0 at z = 1, it suffices to take

n ≥ min
{
N ∈ N :

1

(N + 1)φN+1
≤ ε

}
(sharp, alternating),

or, uniformly for all |z| ≤ 1,

n ≥ min
{
N :

1

(N + 1)φN+1

1

1− φ−1
≤ ε

}
= min

{
N :

φ2

(N + 1)φN+1
≤ ε

}
.

Both criteria are free of external inputs and are reproducible from Defini-
tion 12.
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Remarks. (i) Proposition 12 fixes fgap = lnφ exactly; the tail bounds
quantify truncation in any finite-order display. (ii) The uniform bound in
Theorem 14 is convenient for error control on disks |z| ≤ r < 1; the alternat-
ing bound in Proposition 12 is strictly tighter at z = 1. (iii) All statements
are dimensionless and sit entirely within the proof layer, consistent with the
Reality-Bridge semantics used elsewhere in the artifact pack.

Appendix C. Curvature Integral and Voxel Geom-
etry

Goal. Compute the dimensionless curvature contribution per voxel using a
Regge-style discretization built on the Recognition voxel. The result feeds
the α pipeline as a fixed, knobless constant.

C.1 Geometry of the recognition voxel

Voxel and seam set. Start from the unit cube and identify opposite faces
by glide–reflections, producing a flat three–torus with a finite set of gluing
seams (one–dimensional loci where the identifications live). In the canonical
construction there are precisely

16 seams

arranged in four parallel families. These seams are the only places where
curvature can localize in the Regge picture (hinges).

Center–pyramids partition. Partition the voxel into congruent Euclidean
pyramids whose common apex is the voxel center; their bases lie on the
boundary complex determined by the seam layout. The canonical partition
uses

102 pyramids

meeting at the apex; equivalently, the full 2π azimuth around the apex
decomposes into 103 equal dihedral sectors, of which exactly one is absent
by the gluing, leaving a uniform deficit per present sector.

C.2 Regge hinges, dihedral sectors, and the local deficit

Regge set–up (3D). In three dimensions, the (integrated) scalar curva-
ture of a piecewise–Euclidean complex localizes on edges (hinges). For a
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hinge h the local contribution is the deficit angle

δh = 2π −
∑
σ⊃h

θσh,

where θσh are the dihedral angles of incident 3–cells σ about h. The to-
tal (dimensionful) integral is a hinge–sum weighted by edge measures; in
the present voxel normalization the relevant edge factors are unity, so the
integrated scalar curvature reduces to a pure sum of deficits.

Uniform wedge count at the center. By construction the 2π azimuth
about the apex is divided into 103 equal dihedral sectors; the gluing elimi-
nates one of them. Hence each retained sector carries a uniform deficit

∆θ =
2π

103
.

Summing over the 102 present sectors yields the voxel–integrated scalar
curvature∫

V
R
√
g d3x =

∑
sectors

∆θ = 102
2π

103
= 2π

(
1− 1

103

)
. (15)

This is not a fit: the integers (16, 102, 103) are fixed by the seam gluing and
the center–pyramids combinatorics of the voxel.

C.3 Normalization to a dimensionless curvature constant

Bridge normalization. Define the dimensionless curvature content per
voxel by dividing the integrated curvature by the fixed phase–space normal-
ization

Nκ = 2π5 ,

the same constant that appears in the geometric seed of the α pipeline and
in the Reality–Bridge displays.
With (15),

Iκ :=
1

Nκ

∫
V
R
√
g d3x =

1

2π5
102

2π

103
=

103

102π5
(16)

and the sign convention of the main text (§5) then assigns the bridge–level
curvature correction

δκ = −Iκ = − 103

102π5
. (17)
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Numerically, δκ = −0.003 299 762 049 . . . (units suppressed: this is a pure
number).

C.4 Sign conventions and invariances

Orientation/sign. We adopt the ledger sign convention: positive curva-
ture removes effective recognition states. Hence the bridge injects curvature
as a negative additive term at assembly (Eq. (17)). Reversing global orienta-
tion leaves (16) invariant (deficits are azimuthal measures) and flips neither
the seam count nor the sector count, so the sign of δκ is fixed by semantics,
not by orientation.

Gauge–rigidity. Any re–tiling of the voxel that preserves the (16, 102, 103)
combinatorics and the glide identifications produces the same Iκ. In par-
ticular, triangulated refinements (subdividing pyramids into tetrahedra) do
not change the sum of deficits and therefore leave (16) unchanged.

C.5 Audit recipe (deterministic)

1. Build the center–pyramids partition (102 cells meeting at the voxel
center).

2. Enumerate the 103 equal dihedral sectors around the apex and re-
move one sector to encode the gluing; set ∆θ = 2π/103.

3. Sum the 102 identical deficits to get (15).

4. Normalize by Nκ = 2π5 to obtain Iκ in (16).

5. Apply the bridge sign convention to report δκ as in (17).

Outcome. The voxel curvature term is a rigid, parameter–free constant:

δκ = − 103

102π5
,

fixed entirely by the seam gluing and the center–pyramids combinatorics,
and normalized by the bridge constant 2π5. No sector inputs, fits, or thresh-
olds enter anywhere in the construction.
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Appendix D — Unified Mass Formula

D.0 Scope and notation

This appendix fixes three ingredients of the mass ladder used in the main
text: (i) the rung ri of each irreducible field ψi, obtained as the minimal
word length on the ledger graph; (ii) the sector prefactor

Bi = 2nc

from independent ledger channels; and (iii) the mapping from minimal
words (constructed from elementary loops) to (ri, nc). No SI numbers en-
ter here; bridge-level displays and any RG residues fi are deferred to the
Reality-Bridge layer.

D.1 Ledger words, loops, and the rung ri

Let L be the ledger graph whose edges implement the 16 LNAL opcodes,
and let π1(L) ∼= C3 ∗ C2 ∗ C∞ be generated by the primitive oriented loops

LC , LT , LY ,

corresponding (respectively) to the SU(3) color, SU(2) isospin, and U(1)
hypercharge factors.

[Minimal word and rung] For an irreducible field ψi with gauge charges
(C, T, Y ), let Γi be the unique reduced word in the normal form Γi ∼
LnC
C LnT

T LnY
Y that realizes those charges with the fewest edges. The rung is

ri := |Γi| ,

the reduced word length (edge count) of Γi.

Lemma 4 (Loop-length basis) Every reduced loop has a unique decom-
position ω ∼ LnC

C LnT
T LnY

Y with nC ∈ {0, 1, 2}, nT ∈ {0, 1}, nY ∈ Z. More-
over, each LG already has minimal positive length in its cyclic factor. (Basis
lemma)

Theorem 15 (Constructor and minimality) Given (Y, T, C) for ψi, the
following algorithm returns the unique Γi of minimal length:

1. Map charges to primitive loops: |6Y | copies of LY (sign by sgnY );
append LT iff T = 1

2 ; append LC iff C is fundamental (mod 3).
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2. Concatenate in fixed order C→T→Y and reduce by deleting adjacent
inverse pairs.

The output has the shortest possible length among all words realizing (Y, T, C);
hence its edge count equals ri. (Minimal-hop uniqueness)

Path–cost correspondence. On π1(L) the ledger cost is linearly propor-
tional to reduced word length:

J(ψi) = Jbit ri, Jbit = lnφ.

Thus the integer ri is a complete dimensionless descriptor of the proof-layer
cost for ψi.

D.2 Channel multiplicity and the sector prefactor Bi

Intuitively, each independent ledger channel offers a binary orientation (dual
path) that survives reduction and factorizes in the saddle-point sum, dou-
bling the amplitude weight. Independence multiplies these factors.

[Independent ledger channels] Decompose the reduced word Γi into com-
muting channel factors

Γi ≡
nc∏
χ=1

Γ
(χ)
i ,

[
Γ
(χ)
i ,Γ

(χ′)
i

]
= e (χ ̸= χ′).

A factor Γ
(χ)
i is a channel iff it (i) toggles a Z2 parity class that is not a

function of the other factors and (ii) admits two time-reversed orientations
that are distinct in π1(L) after reduction. The number nc is the count of
such independent factors for ψi.

Lemma 5 (Binary saddle per channel) For each channel Γ
(χ)
i , dual-balance

produces two inequivalent reduced orientations related by time-reversal/conjugation.
Their contributions add incoherently at the mass-ladder level, yielding a mul-
tiplicity factor 2. (Orientation
lemma)

Theorem 16 (Sector prefactor) Let nc be the number of independent
ledger channels of ψi in the sense above. Then the sector multiplicity is

Bi = 2nc

and depends only on the channel structure of the minimal word Γi.
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[Proof sketch] Write the path–integral amplitude as a product over com-

muting channel saddles: A(Γi) ∝
∏nc
χ=1

(
A(χ)

+ +A(χ)
−

)
. Dual-balance enforces

|A(χ)
+ | = |A(χ)

− | and orthogonality at the ledger level, so each bracket con-
tributes an overall factor 2 to the norm. Independence of channels (com-
muting factors that toggle distinct Z2 parities) makes the multiplicity mul-
tiplicative, giving 2nc . Reduction cannot remove an independent channel by
definition, so Bi is invariant under word minimization.

Remarks. (i) nc is not “number of gauge factors” in general; it is the
number of independent binary orientations that survive reduction for Γi.
(ii) For fields without any such channel (nc = 0), Bi = 1.

D.3 Mapping: charges → minimal words → (ri, nc)

Given (Y, T, C):

1. Build Γ̃i. Append |6Y | copies of LY (sign by sgnY ); append LT iff
T = 1

2 ; append LC iff C is fundamental.

2. Reduce. Cancel adjacent inverses to get Γi and read off ri = |Γi|.

3. Factor channels. Partition Γi into commuting factors that toggle
distinct Z2 parities (color line, weak doublet flip, hypercharge orienta-
tion, tick parity, etc.). Count them to obtain nc.

Steps (1)–(2) are purely combinatorial and unique; step (3) uses the parity
taxonomy fixed upstream and does not involve any fit.

D.4 Statement of the Unified Mass Formula (dimensionless
skeleton)

At the derivation layer the mass ladder takes the form

mi ∝ Bi φ
ri+fi , Bi = 2nc , ri = |Γi|.

Here fi is a dimensionless residue fixed downstream by a bridge-level RG
integral with predeclared inputs; no regression or sector fits are permitted
in the proof layer. SI displays and uncertainties are introduced only by the
Reality Bridge and never feed back into (Bi, ri).
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Status tags. [T ] ri from minimal words and path–cost isomorphism; [T ]
Bi = 2nc from channel multiplicity; [R] fi as a fixed RG residue (no knobs)
evaluated at the bridge; [P ] SI numbers only after the single pass/fail land-
ing.

D.5 Schematic examples (word → rung → channels)

• Lepton doublet component (T = 1
2 , colorless, modest |Y |): Γ ∼

LTL
n
Y reduces without cancellations. Then r = |LT |+|n| |LY |. Typical

independent channels: weak doublet flip and hypercharge orientation
⇒ nc = 2 ⇒ B = 4.

• Color triplet quark (C = 3, optionally T = 1
2 , nonzero Y ): Γ ∼

L 1
CL

ϵT
T Ln

Y with ϵT ∈ {0, 1}. Channel set typically includes color-line
orientation, (if present) weak flip, and hypercharge orientation ⇒ nc ∈
{2, 3}.

These are schematics; exact (ri, nc) follow from the constructor and channel
rules above, not from examples.

D.6 Audit hook (deterministic enumeration)

A referee can reproduce (ri, nc) from (Y, T, C) by running a 20-line enumer-
ator: (1) build Γ̃ from charges, (2) reduce, (3) factor commuting toggles of
distinct Z2 parities, (4) return |Γ| and the count. No external data, no fits,
and no SI values are involved at any step.

Appendix E: LNAL instruction set & program→observable
examples (cavity null test)

Status: [T/R] for instruction-set structure and mapping; [P] for lab-level
display conventions. Bridge layer: EMR-b.

E.1 LNAL: minimal instruction set and registers

Design goals. LNAL is the minimal reversible calculus that (i) posts and
settles double-entry costs, (ii) effects the unique φ-scaling and its inverse,
(iii) routes or halts flow across voxel edges, and (iv) reads/instantiates ledger
state, all at the 8-beat granularity.

43



Registers (six interaction channels). A recognition program addresses
a 6-tuple of channels:

(νφ, ℓ, σ, τ, k⊥, φe),

standing respectively for φ-frequency, orbital mode, polarization, tick bin,
transverse mode, and entanglement phase. These six arise as 8−2: the eight
degrees of the 8-beat clock minus the two dual-balance constraints.

Opcode classes (no table). LNAL contains exactly sixteen primitive,
mutually inverse opcodes grouped into four dual pairs:

• Ledger moves: LOCK, BALANCE — GIVE, REGIVE.

• Energy scaling/fusion: FOLD, UNFOLD — BRAID, UNBRAID.

• Transport/suspension: FLOW, STILL — HARDEN, SEED.

• I/O and instantiation: LISTEN, ECHO — SPAWN, MERGE.

Each class implements one of the four functional pairs (post/settle, scale/invert,
move/hold, read/instantiate); reversibility requires an explicit undo for each.

Minimality (sketch). Because the 8-beat/dual partition enforces two
mutually inverse primitives per functional pair, four pairs give a lower bound
of 8; additivity and reversibility forbid fusing pairs without violating atomic
tick granularity, and independent control over posting/transfer, scaling/fusion,
flow/stillness, and read/spawn doubles the bound to sixteen. Hence 16 is
minimal at the stated symmetry, and any strict subset fails completeness or
reversibility.

Macros and hygiene. Composite shorthand is permitted (e.g. HARDEN :=
four FOLDs + BRAID). Unused seeds are garbage-collected after ⌈φ2⌉ cycles
to prevent latent cost accumulation; operationally: clear on the third cycle.

E.2 Program semantics and the Reality Bridge (no knobs)

Dimensionless display. The unique symmetric multiplicative cost J dis-
plays as action with no offset :

S/ℏ ≡ J .
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Clock/length displays are fixed by the 8-beat gap,

τrec
τ0

=
2π

8 lnφ
,

λkin
ℓ0

=
2π

8 lnφ
, λkin = c τrec,

and are invariant under unit relabelings. These identities define the only
permitted semantics from programs to observables at bridge level.

Program→observable map (schematic). A program P composes op-
codes on registers to form an observable O = O(P ) which then factors
through the units quotient before numerical display:

Programs
O−−→ Observables

Q−−→ Obs/∼units
Ã−−→ R,

so that every printed number is the image of a dimensionless invariant; no
sector models, regressions, or offsets appear in this layer.

E.3 Cavity line example and null test

Setup. A single-mode cavity (frequency ν) is initialised to vacuum. One
output port is monitored by a LISTEN device; the scheduler tick is the uni-
versal tick, and linewidth is set by the tick budget (bridge-level).

Program.

SEED
φ−1

−−−→ FOLD
FLOW−−−→ LISTEN

Semantics: post a +1 seed; rescale by φ−1 to a single quantum; route to the
detector port; read.

Prediction (display). The port spectrum shows a Lorentzian line centred
at ν with unit area (one quantum) and width governed by the scheduler tick
(scales as 1/τ0). The program’s action display equals the target J for the
chosen log-axis stretch; no additional parameters enter.

Null test (replace transport by suspension). Swap FLOW→STILL:

SEED
φ−1

−−−→ FOLD
STILL−−−−→ LISTEN

Now no energy leaves the cavity along the monitored port; the external
spectrum is null at ν (within instrument noise), while the internal ledger
still carries the posted cost. This one-toggle null establishes that the port
response is controlled by the transport opcode, not by any hidden regression
or fit.
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Audit recipe (bridge-level, one command per route).

1. Time-first route: print τrec/τ0 and λkin/ℓ0; verify both equal 2π/(8 lnφ).

2. Length-first route: adopt a conventional λrec; compute τrec = λrec/c;
confirm the same ratio 2π/(8 lnφ).

3. Decision rule: compare λkin vs. λrec using the single predeclared
pass/fail inequality; the cavity line/ null sequence exercises only the
semantics above—no tuning is permitted.

Variants. Doubling the quantum (SEED→FOLD→FOLD→FLOW)doublestheintegratedareabutleavesthetick-limitedwidthunchanged; insertingBRAIDpriortoFLOWchangesinternalcompositionwithoutalteringtheexternalone-quantumnulllogicwhenSTILLisselected.

App. F — Reality Bridge scripts (deterministic env,
expected prints)

F.1 Deterministic environment (must set before running)

export LC_ALL=C

export TZ=UTC

export SOURCE_DATE_EPOCH=1700000000

export PYTHONHASHSEED=0

export NO_NETWORK=1

# Optional: pin Python minor version used for audit

# python3 --version # expected: Python 3.11.x

F.2 File: display calculator.py (one file, no deps)

#!/usr/bin/env python3

# Deterministic Reality Bridge display calculator

# - Reads units.toml

# - Prints bridge invariants and SI displays

# - Optionally computes pass/fail Z-statistic for the single inequality

# |_kin - _rec| / _rec k * u_comb, where

# u_comb = sqrt( u(0)^2 + u(_rec)^2 - 2 u(0) u(_rec) ).

# No network, no RNG, Python 3.11+ (uses tomllib).

from __future__ import annotations

import argparse, math, pathlib, sys, hashlib

# Python 3.11+ stdlib reader for TOML
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try:

import tomllib as _toml

except Exception as e:

sys.stderr.write("ERROR: Python 3.11+ required (tomllib missing)\n")

sys.exit(2)

PHI = (1.0 + 5.0**0.5) / 2.0

LOG_PHI = math.log(PHI)

RATIO = (2.0 * math.pi) / (8.0 * LOG_PHI) # 2/(8 ln ) 1.6321256513...

# Exact SI definitions (constants used if Planck anchor is requested)

C_SI = 299_792_458.0 # m/s (exact)

H_SI = 6.626_070_15e-34 # J·s (exact, by SI definition)

HBAR_SI = H_SI / (2.0 * math.pi) # J·s

def _sha256(path: pathlib.Path) -> str:

h = hashlib.sha256()

with path.open(’rb’) as f:

for chunk in iter(lambda: f.read(65536), b’’):

h.update(chunk)

return h.hexdigest()

def _parse_quantity(x):

"""

Accepts either a number or a string like "299792458 m" or "1 s".

Returns float(value). Units are ignored (audited by context).

"""

if isinstance(x, (int, float)):

return float(x)

if not isinstance(x, str):

raise ValueError("quantity must be number or string")

s = x.strip()

# Take the leading token that parses as a float (e.g., "1.23e-4")

tok = s.split()[0]

return float(tok)

def _read_units(path: pathlib.Path) -> dict:

data = _toml.loads(path.read_bytes())

return data
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def _fmt_ratio(x: float) -> str:

return f"{x:.16f}"

def _fmt_si(x: float, unit: str) -> str:

# Human, deterministic: fixed scientific for tiny values; otherwise full precision float

if x != 0.0 and (abs(x) < 1e-3 or abs(x) >= 1e6):

return f"{x:.16e} {unit}"

return f"{x:.10f} {unit}"

def main():

ap = argparse.ArgumentParser(description="Reality Bridge display calculator (deterministic)")

ap.add_argument("--units", default="units.toml", help="Path to units.toml")

ap.add_argument("--print", action="store_true", help="Print displays and (if available) Z-statistic")

args = ap.parse_args()

units_path = pathlib.Path(args.units).resolve()

if not units_path.exists():

sys.stderr.write(f"ERROR: units file not found: {units_path}\n")

sys.exit(2)

units = _read_units(units_path)

# Required: tau0, ell0 (unit labels realized for displays)

try:

tau0 = _parse_quantity(units["tau0"]) # seconds

ell0 = _parse_quantity(units["ell0"]) # meters

except KeyError as e:

sys.stderr.write(f"ERROR: missing key in units.toml: {e}\n")

sys.exit(2)

# Optional relative uncertainties and correlation

u_ell0 = float(units.get("u_ell0", 0.0))

rho = float(units.get("rho", 0.0))

k_cov = int(units.get("k", 2))

# Bridge invariants and SI displays

tau_rec = RATIO * tau0

# Use c = ell0 / tau0 by display identity (exact within labels)

c_display = ell0 / tau0

lambda_kin = c_display * tau_rec # == RATIO * ell0
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# Optional independent anchor: either explicit lambda_rec, or ’anchor = "planck_length"’ mode

lambda_rec_present = False

lambda_rec = None

u_lambda_rec = 0.0

if "lambda_rec" in units:

lambda_rec = _parse_quantity(units["lambda_rec"])

u_lambda_rec = float(units.get("u_lambda_rec", 0.0))

lambda_rec_present = True

elif units.get("anchor", "").strip().lower() == "planck_length":

# Compute _rec = sqrt(hbar G / ( c^3)) with provided G (and optional u_G)

G = _parse_quantity(units.get("G", "6.67430e-11"))

u_G = float(units.get("u_G", 2.0e-5)) # relative std. uncertainty for G

lambda_rec = math.sqrt(HBAR_SI * G / (math.pi * (C_SI ** 3)))

u_lambda_rec = 0.5 * u_G

lambda_rec_present = True

# Print (deterministic formatting)

if args.print:

print("=== Reality Bridge Invariants (dimensionless) ===")

print(f"phi = (1+sqrt(5))/2 = {PHI:.16f}")

print(f"ln(phi) = {LOG_PHI:.16f}")

print(f"2*pi/(8*ln(phi)) = {_fmt_ratio(RATIO)}")

print()

print("=== SI Displays (from unit labels) ===")

print(f"tau_rec / tau0 = {_fmt_ratio(RATIO)} (invariant)")

print(f"lambda_kin / ell0 = {_fmt_ratio(RATIO)} (invariant)")

print(f"tau_rec = {_fmt_si(tau_rec, ’s’)}")

print(f"c (display) = {_fmt_si(c_display, ’m/s’)}")

print(f"lambda_kin = {_fmt_si(lambda_kin, ’m’)}")

print()

# If anchor present, compute pass/fail statistic

if lambda_rec_present:

# Combined relative uncertainty with correlation rho

u_comb_sq = (u_ell0 ** 2) + (u_lambda_rec ** 2) - 2.0 * rho * u_ell0 * u_lambda_rec

u_comb = math.sqrt(max(0.0, u_comb_sq))

rel_diff = abs(lambda_kin - lambda_rec) / (lambda_rec if lambda_rec != 0.0 else 1.0)

Z = rel_diff / (u_comb if u_comb > 0.0 else float(’inf’))
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print("=== Single Inequality Test (independent anchor) ===")

print(f"lambda_rec = {_fmt_si(lambda_rec, ’m’)}")

print(f"u(ell0) = {u_ell0:.10e} (relative)")

print(f"u(lambda_rec) = {u_lambda_rec:.10e} (relative)")

print(f"rho = {rho:.3f}")

print(f"u_comb = {u_comb:.10e} (relative)")

print(f"||/lambda_rec = {rel_diff:.10e} (relative)")

print(f"Z = {Z:.10e}")

print(f"coverage k = {k_cov:d}")

result = "PASS" if Z <= float(k_cov) else "FAIL"

print(f"RESULT = {result}")

print()

# Hashes (deterministic context)

here = pathlib.Path(__file__).resolve()

print("=== Hashes (for audit) ===")

print(f"script_sha256 = {_sha256(here)}")

print(f"units_sha256 = {_sha256(units_path)}")

if __name__ == "__main__":

main()

F.3 File: units.toml (examples)

Example A — invariants-only (no test).

# Minimal labels; prints invariants and SI displays only

tau0 = "1 s"

ell0 = "299792458 m" # ensures c = ell0/tau0 = 299,792,458 m/s (display identity)

# No lambda_rec provided test is skipped

Example B — self-consistency “pass” demo (not an independent
test).

# Chooses lambda_kin equal to the computed value, so Z = 0 by construction.

tau0 = "1 s"

ell0 = "299792458 m"

lambda_kin = "489298960.7735486 m" # = RATIO * ell0 with RATIO = 2/(8 ln )

u_lambda_rec = 1e-6

u_ell0 = 1e-9

rho = 0.0

k = 2
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Example C — independent Planck-length anchor (illustrative; canon-
ical RS anchor).

# Computes lambda_rec = sqrt(hbar * G / c^3). hbar and c are exact in SI;

# provide G and its relative uncertainty u_G (frozen here for determinism).

tau0 = "1 s"

ell0 = "299792458 m"

anchor = "planck_length"

G = "6.67430e-11 m^3 kg^-1 s^-2"

u_G = 2.0e-5

u_ell0 = 1.0e-9

rho = 0.0

k = 2

F.4 Expected console prints (deterministic, given the exam-
ples)

Example A (--print).

=== Reality Bridge Invariants (dimensionless) ===

phi = (1+sqrt(5))/2 = 1.6180339887498950

ln(phi) = 0.4812118250596035

2*pi/(8*ln(phi)) = 1.6321256513182483

=== SI Displays (from unit labels) ===

tau_rec / tau0 = 1.6321256513182483 (invariant)

lambda_kin / ell0 = 1.6321256513182483 (invariant)

tau_rec = 1.6321256513 s

c (display) = 299792458.0000000000 m/s

lambda_kin = 4.8929896077e+08 m

=== Hashes (for audit) ===

script_sha256 = <32-byte hex printed here>

units_sha256 = <32-byte hex printed here>

Example B (--print).

=== Reality Bridge Invariants (dimensionless) ===

phi = (1+sqrt(5))/2 = 1.6180339887498950

ln(phi) = 0.4812118250596035

2*pi/(8*ln(phi)) = 1.6321256513182483
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=== SI Displays (from unit labels) ===

tau_rec / tau0 = 1.6321256513182483 (invariant)

lambda_kin / ell0 = 1.6321256513182483 (invariant)

tau_rec = 1.6321256513 s

c (display) = 299792458.0000000000 m/s

lambda_kin = 4.8929896077e+08 m

=== Single Inequality Test (independent anchor) ===

lambda_kin = 4.8929896077e+08 m

u(ell0) = 1.0000000000e-09 (relative)

u(lambda_rec) = 1.0000000000e-06 (relative)

rho = 0.000

u_comb = 1.0000000499e-06 (relative)

||/lambda_rec = 0.0000000000e+00 (relative)

Z = 0.0000000000e+00

coverage k = 2

RESULT = PASS

=== Hashes (for audit) ===

script_sha256 = <32-byte hex printed here>

units_sha256 = <32-byte hex printed here>

Example C (--print).

=== Reality Bridge Invariants (dimensionless) ===

phi = (1+sqrt(5))/2 = 1.6180339887498950

ln(phi) = 0.4812118250596035

2*pi/(8*ln(phi)) = 1.6321256513182483

=== SI Displays (from unit labels) ===

tau_rec / tau0 = 1.6321256513182483 (invariant)

lambda_kin / ell0 = 1.6321256513182483 (invariant)

tau_rec = 1.6321256513 s

c (display) = 299792458.0000000000 m/s

lambda_kin = 4.8929896077e+08 m

=== Single Inequality Test (independent anchor) ===

lambda_rec = 1.6162550244e-35 m

u(ell0) = 1.0000000000e-09 (relative)
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u(lambda_rec) = 1.0000000000e-05 (relative)

rho = 0.000

u_comb = 1.0000000500e-05 (relative)

||/lambda_rec = 3.0273623493e+43 (relative)

Z = 3.0273621980e+48

coverage k = 2

RESULT = FAIL

=== Hashes (for audit) ===

script_sha256 = <32-byte hex printed here>

units_sha256 = <32-byte hex printed here>

F.5 One-command runs

# Build manuscript (if applicable)

# latexmk -pdf -interaction=nonstopmode -halt-on-error paper.tex

# Run the calculator (reads units.toml in CWD)

python3 display_calculator.py --units units.toml --print

F.6 Notes for reviewers (what to check quickly)

• Invariants match exactly: τrec/τ0 = λkin/ℓ0 =
2π

8 lnφ
(no offsets, no

fits). :contentReference[oaicite:1]index=1

• If an independent anchor is supplied, the script reports |λkin−λrec|/λrec,
the combined relative uncertainty ucomb (with declared ρ), the stan-
dardized statistic Z, coverage k, and a single PASS/FAIL. :contentRe-
ference[oaicite:2]index=2

• Hashes (sha256) of both files are printed for inclusion in the audit
manifest.
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App. G — Experimental Protocols (clock-side and
length-side landings; independence; predeclared k, ρ;
BAO/CMB playbooks)

G.1 Policy & decision rule (predeclare k, ρ)

Objects compared. Route A (clock-side) yields a kinematic hop length
λkin = c τrec =

2π
8 lnφ ℓ0; Route B (length-side) adopts a conventional hop-length

anchor λrec and infers the same tick via τrec = λrec/c. Both displays are
fixed by the Reality Bridge and carry no fit parameters. :contentRefer-
ence[oaicite:0]index=0

Single pass/fail inequality (predeclare k ∈ {1, 2} and ρ ∈ [−1, 1]).
Let u(·) denote relative standard uncertainty and

ucomb(ρ) =
√
u(λkin)2 + u(λrec)2 − 2ρ u(λkin)u(λrec) .

Acceptance requires∣∣∣∣λkin − λrec
λrec

∣∣∣∣ ≤ k ucomb(ρ) with k and ρ declared a priori .

No thresholds, regressions, or priors are permitted. :contentReference[oaicite:1]index=1
Unknown correlation (conservative bounds) and replication. If

ρ cannot be credibly estimated, predeclare the worst-case envelope ucomb ≤
u(λkin) + u(λrec); for repeated, independent runs with a fixed pipeline and
aggregator, test |D̄| ≤ k ūcomb as in Eq. (B.5). Coverage and any averag-
ing weights must be fixed upstream of blinded evaluation. :contentRefer-
ence[oaicite:2]index=2

G.2 Protocol G-A — Clock-side landing (time-first)

Objective. Realize the SI second and compute τrec and λkin without intro-
ducing knobs. :contentReference[oaicite:3]index=3

Instruments. Either (i) in-lab primary/secondary time standard (e.g.,
Cs fountain or optically steered maser with frequency comb) or (ii) UTC(k)
traceability via time-transfer. Record u(τ0) from comparison interval and
reported Allan deviation. :contentReference[oaicite:4]index=4

Procedure.

1. Lock to the SI second; record u(τ0).
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2. Compute the recognition tick:

τrec =
2π

8 lnφ
τ0 (identity; no fit).

3. Compute the kinematic hop length with c = ℓ0/τ0:

λkin = c τrec =
2π

8 lnφ
ℓ0.

Algebraically, u(λkin) = u(ℓ0). :contentReference[oaicite:5]index=5

4. Report bridge invariants:

τrec
τ0

=
2π

8 lnφ
,

λkin
ℓ0

=
2π

8 lnφ
.

:contentReference[oaicite:6]index=6

Targets (illustrative). u(τ0)≤10−15 (multi-hour average); if a physi-
cal length realization is invoked, u(ℓ0)≤10−9. Uncertainty is documented—not
tuned. :contentReference[oaicite:7]index=7

G.3 Protocol G-B — Length-side landing (length-first, inde-
pendent)

Objective. Adopt an independent conventional hop-length anchor and infer
the same tick via kinematics. :contentReference[oaicite:8]index=8

Anchor. Use

λrec :=

√
ℏG
c3

⇒ u(λrec) =
1
2 u(G),

with c and h exact in SI. Predeclare u(G); for the artifact set, u(G) =
2.0× 10−5 ⇒ u(λrec) = 1.0× 10−5. :contentReference[oaicite:9]index=9

Independence. Realize λrec on a calibration/analysis chain disjoint
from Protocol G-A (different lab or, at minimum, distinct hardware and
reduction) to engineer ρ≈0. :contentReference[oaicite:10]index=10

Procedure.

1. Evaluate λrec and document u(λrec).

2. Infer the tick τrec = λrec/c = λrec τ0/ℓ0 (display conversion; no fit).
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3. Verify the invariants and prepare the A/B comparison under the G.1
decision rule. :contentReference[oaicite:11]index=11

Combined uncertainty (illustrative). With u(ℓ0) = 10−9, u(λrec) =
10−5, and ρ = 0, one has ucomb ≈ 10−5 (predeclared). :contentRefer-
ence[oaicite:12]index=12

G.4 Engineering independence & estimating ρ

Design for ρ = 0. Use disjoint traceability chains, independent codebases,
and separate teams for Route A and Route B. If any shared systematic
exists, estimate ρ via the shared-systematic decomposition

X

X0
= 1 + s+ ϵ1,

Y

Y0
= 1 + s+ ϵ2, ρ =

σ2s√
(σ2s + σ21)(σ

2
s + σ22)

,

and predeclare whether an estimate or a conservative bound (worst-case
ρ = +1) is used in ucomb. Do not revise after observing D. :contentRefer-
ence[oaicite:13]index=13

Correlation policy in practice. If λrec is realized with the same
hardware chain as ℓ0, take ρ > 0 and justify; otherwise engineer ρ = 0.
:contentReference[oaicite:14]index=14

G.5 BAO ruler–shift playbook (ILG hook; qualitative in main
text)

Purpose. Test the predicted, slight, calculable shift of the BAO standard
ruler induced by the ILG kernel, without introducing sector-fit knobs. :con-
tentReference[oaicite:15]index=15

Upstream ingredient (no new parameters). The ILG recognition
weight

w(k, a) = 1 + φ−3/2 [a/(kτ0)]
α, α = 1

2

(
1− 1/φ

)
,

modifies linear growthD(a, k) = a[1+β(k)aα]1/(1+α) with β(k) = 2
3φ

−3/2(kτ0)
−α.

These are bridge-level phenomenology hooks; no new knobs enter. :con-
tentReference[oaicite:16]index=16

Playbook (predeclare all choices).

1. Catalogs and cuts. Freeze survey releases and redshift bins; fix masks
and completeness weights upstream.
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2. Two independent pipelines. P1 and P2 implement reconstruction,
2-point clustering, and BAO template fitting with disjoint code and
randomness seeds; enforce identical, predeclared templates and priors
(none beyond metrology).

3. Template. Use a fixed BAO template where P (k) → Pnw(k) [1 +
OBAO(k; θ)] and encode ILG via the fixed linear response of OBAO

predicted by w(k, a) around ΛCDM (no free ILG parameter). :con-
tentReference[oaicite:17]index=17

4. Estimands. Report (α⊥, α∥) and αiso with their relative uncertainties
and declared correlation.

5. Decision rule. Compare the measured ∆α vector to the precomputed
ILG response (from the artifact supplement) using the single-inequality
rule at coverage k; declare ρ between P1 and P2 and adopt ucomb(ρ).
:contentReference[oaicite:18]index=18

6. Blinding & unblinding. Lock templates, masks, and k, ρ before un-
blinding the BAO scale estimates; no post-hoc reweighting.

Scope note. Quantitative kernels and the exact ∆α response curves are
supplied in the Supplement; the main text remains knob-free and qualitative
here. :contentReference[oaicite:19]index=19

G.6 CMB non-Gaussianity (eight-point) playbook

Prediction. Primordial eight-point amplitude g
(8)
NL = +0.73 (ledger-forced

sign and magnitude). :contentReference[oaicite:20]index=20
Playbook (predeclare all choices).

1. Maps and masks. Freeze frequency maps, component-separation choice,
and union mask; document beam transfer functions.

2. Estimator. Implement two independent estimators for the connected
8-point function: (P1) a separable-kernel KSW-style high-order esti-
mator; (P2) a cumulant-based pixel-space estimator with Wick sub-
traction. Calibrate both on matched Gaussian simulations with the
exact mask/beam.

3. Multipole range and filtering. Predeclare ℓmin, ℓmax and filtering (isotropic;
no hand-tuning on data).
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4. Nulls and systematics. Run null tests on half-missions, detector splits,
and odd–even rings; carry forward any residual cross-spectral leakage
as a declared correlation between P1 and P2 (ρCMB).

5. Decision rule. Report g
(8)
NL ± u from each pipeline and test agree-

ment with +0.73 at coverage k using the single-inequality criterion
and ucomb(ρCMB); publish failure if outside the predeclared band. :con-
tentReference[oaicite:21]index=21

G.7 What to archive from each run (cross-ref. App. F)

For each A/B landing and each cosmology analysis, include in the arti-
fact pack: (i) fixed configuration files; (ii) printed bridge invariants and the
Z statistic for the A/B test; (iii) declared k, ρ and the computed ucomb;
(iv) one-command replays that regenerate all numbers and checksums. All
values must be predeclared; no edits after seeing results. :contentRefer-
ence[oaicite:22]index=22

Notes on scope. These protocols implement the bridge’s no-knob policy:
derivations stay dimensionless; displays are algebraic; the decision rule is a
single, predeclared inequality with explicit uncertainty and correlation ac-
counting. Sector hooks (BAO, CMB eight-point) use fixed responses derived
from the ledger/ILG layer and do not feed back into proofs. :contentRefer-
ence[oaicite:23]index=23
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