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Abstract

We address the core question of quantum coherence: when is phase information
preserved and when does it dephase under realistic readout? We show that coherence
is an operational property of a discrete recognition process obeying exact eight-tick
window identities. These identities provide necessary and sufficient conditions for
phase preservation over aligned windows and act as a matched filter that retains
only structure aligned to the eight-tick schedule while canceling everything else.

Quantitatively, a unique convex, multiplicatively symmetric cost on R,

J(x)=3(x+a71) -1, J(e') = cosht — 1, (1)

is characterized by symmetry, unit normalization, and a Jensen-type averaging
principle on the log axis. From J we build a path weight that yields the Born rule
(modulus) and, via permutation invariance, the BE/FD exchange classes. Together
with atomicity and exactness (discrete w = V@), the eight-tick schedule stabilizes
coarse phase and quantifies when interference survives averaging.

We give operational audits and predictions: (i) exact window-8 sum/average
equalities; (ii) a matched-filter coherence theorem with a phase-drift bound; (iii)
multi-probe scaling laws (logarithmic extension of visible coherence time), (iv)
discrete-lag cosines with a stretched-exponential envelope, and (v) a units K-gate
consistency check for display ratios. All statements are presented in classical notation
and are accompanied by mechanized witnesses (Lean) and a minimal audit manifest.
Keywords: quantum coherence, eight-tick schedule, matched filter, Born rule,
BE/FD symmetrization, formal verification
MSC 2020: 81P15, 81P40, 03B35

1 Introduction

The standard account of quantum mechanics treats measurement as a special operation
requiring additional postulates. This paper develops a simpler alternative: measurement
1s recognition. We formalize recognition as a discrete, ledger-like process that renders
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observation an explicit operation with cost and invariants. Within this framing, coherence
emerges as a bookkeeping condition rather than a dynamical mystery; classical appearance
is an averaging effect rather than an ontological add-on; and the usual probability rule
arises from a single, symmetry-and-averaging constrained cost functional. Along the
way, we connect the discrete ledger to a continuum via a coarse-grained bridge, identify
a canonical recognition length from anchors (G, h, ¢), and show how units, scales, and
dimensionless gates fit together coherently.
All claims that follow are checked by machine. The theory is implemented in a proof as-
sistant and compiled into a set of public, automated certificates (e.g., path_cost_isomorphism_report,
certificates_manifest) that accompany this paper.

1.1 Motivation: coherence without added postulates (measure-
ment as recognition)

The empirical weirdness of measurement evaporates if we refuse to smuggle its cost and
structure into the dynamics for free. In our approach:

e A recognition structure is a finite ledger of postings (events) indexed by atomic
ticks, with a unique-posting invariant at each tick. Atomicity guarantees that no
two outcomes are posted at the same tick (no collision); conservation of closed flux
guarantees that consistent ledgers remain consistent when spliced. Formally, these
appear as: (i) a per-tick uniqueness property (72: Atomicity) and (ii) a closed-chain
continuity property (73: Conservation) on the ledger chain.

e (Coherence is the statement that recognitions stitched across a small, fixed microcycle
remain jointly satisfiable. Empirically we find an eight-tick microcycle to be the
minimal stable unit for policy-invariant recognition (“eight-tick coherence”): it is
the smallest window in which the ledger can enforce timeliness, reciprocity, and
temperance simultaneously while maintaining unique postings and closed flux.*

e Measurement is therefore nothing more than a particular recognition protocol over
this ledger: which postings are permitted, when they are permitted (ticks), and
which equivalences are quotiented away by coarse views (averaging).

In this view, the notorious “measurement postulate” is replaced by a concrete, auditable
protocol: a recognition rule with invariants, a microcycle scale (eight ticks), and explicit
averaging (Section 1.2). This shift reduces interpretational load while strengthening
predictive structure: any phenomenon explainable as “collapse” becomes a statement
about which recognitions are admissible and at what cost.

1.2 Prior art reframed as recognition/averaging

The path integral, decoherence, and coarse-graining programs are typically presented as
formal machinery layered on quantum states. We re-express each as recognition/averaging
primitives inside the ledger.

IEight-tick coherence is the operational window in which the recognition gates are jointly satisfiable
without contradiction; in later sections we connect this to arithmetic constraints (the 8 <> 45 interference
window) and to coarse-grained continuum limits.



Path integrals as recognition sums. Sum-over-histories can be recast as a recognition
sum over ledger chains. Each candidate chain v is a sequence of postings satisfying the
atomicity and continuity constraints; amplitudes assign complex weights to these chains.
Recognition does not require adding collapse rules: selecting an outcome corresponds to
choosing an equivalence class of chains (same recognitions up to gauge on constants), and
averaging is the natural coarse view that forgets ledger-exact details outside the eight-tick
window. The phase structure remains in the recognizer through relative costs (see below),
while the act of reading an outcome is just “which chain class did the policy admit?”

Decoherence as admissibility filtering. Traditional decoherence formalizes the
suppression of interference terms by tracing over environments. In a recognition ledger,
this is rephrased as admissibility filtering: the gates that enforce timeliness, reciprocity, and
temperance on eight-tick windows forbid many fine-grained postings (they cannot be jointly
posted without violating atomicity or closed-flux). The resulting block-diagonalization
is simply the set of recognitions that survive the policy at bounded cost, i.e., those that
remain jointly satisfiable under averaging over the unobserved dofs.

Coarse-graining as Riemann recognition. Passing to a continuum description is
not metaphysics; it is a limit of recognition sums. A coarse-graining schema maps ticks to
cells with positive volumes and defines Riemann sums for observables over embedded cells.
In the limit, discrete conservation laws pass to a divergence form continuity equation.
This provides a precise bridge: the continuum PDEs we solve are statements about the
limit of recognitions of conserved ledger flux under averaging.

1.3 This work: discrete ledger — eight-tick coherence, unique
cost — Born, audits — units

This paper contributes three pieces that, together, turn measurement as recognition into
a predictive, auditably coherent framework.

(A) Discrete ledger — eight-tick coherence. We present a recognition ledger with:

1. Atomic ticks (72): a uniqueness guarantee that exactly one posting is recognized
per tick.

2. Closed-flux continuity (7'3): any closed chain of postings conserves its net ledger
flux; chains that begin and end at the same state have zero net flux.

3. Eight-tick microcycles: the minimal window in which timeliness (no late postings),
reciprocity (no stakeholder imbalance), and temperance (bounded magnitudes) are
jointly satisfiable and compatible with T2/T3. We justify eight as the minimal stable
coherence window and characterize how larger windows factor through concatenations
of eight-tick microcycles.

These ingredients are enough to reproduce the qualitative content of decoherence and to
support a coarse-grained bridge to continuum dynamics without auxiliary postulates.



(B) Unique cost — Born. At the heart of recognition is a convex averaging on
the log-axis that quantifies the cost of reconciling candidate recognitions. Symmetry
(invariance under x + 2~!), unit normalization, and Jensen-type averaging on the
exponential axis uniquely determine the cost functional

J(x) = —— — 1, equivalently J(e') = cosht — 1,

and we prove that any F satisfying the symmetry/unit axioms and the averaging bounds
agrees with J on Ryq. In recognition terms: .J is the only admissible distortion measure
compatible with the invariants of measurement-as-recognition.

The Born rule then follows as the unique recognition-consistent weighting. Squared
amplitudes appear as the only weights for which (i) eight-tick coherence is preserved under
admissibility filtering, (ii) costs aggregate additively under coarse-graining, and (iii) the
recognition probabilities are stable under refinement (no Dutch book across concatenated
microcycles). Thus, what is often introduced as an additional axiom is, here, the only
fixed point of the recognition cost calculus.

(C) Audits — units. Finally, we exhibit a minimalist audit that converts recognition
ticks and lengths into display ratios without extra structure. Two ingredients are sufficient:

1. Recognition length from anchors. With anchors (G, h, ¢) we define a recognition

length
|hG
>\rec = 3
e
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which obeys the dimensionless identity = —. This fixes the geometric scale
7r

seen by the ledger.

2. Coherence energy and display gates. The eight-tick coherence defines a tick
scale Ty := Ajec/C and a coherence energy

_: 2mh
Ecoh = ¢ b )
To
where ¢ is the golden ratio. A single dimensionless gate K ensures that the clock-side
and kinematic-side displays agree: 735 /7o = AP /7y = K and (AFP)/(7di50) = .
These relations make the units self-consistent without hidden assumptions.

This audit aligns time- and length-side displays (K-gate) and provides a consistency check
for unit choices; it is not needed to state the coherence theorems.

Remark (normalization of F..,). The factor ¢~ fixes a conventional IR normalization
consistent with the recognition scheduling used elsewhere; it is not a tunable dial and
does not enter the coherence theorems. All audit ratios (e.g., K-gate) are invariant under
a common rescaling of E,, and thus remain unaffected by this choice. When needed,
a derivation can be supplied from the underlying gap/geometry pipeline; we keep the
present paper focused on coherence resolution.



1.4 Related work and positioning

Standard decoherence/open-systems frameworks explain suppression of off-diagonal terms
via environment tracing and Lindblad-type dynamics. Decision-theoretic, envariance,
and measure-theoretic routes justify probabilities or amplitude structures under distinct
axioms, and GPT reconstructions and consistent histories offer alternative formalisms. Our
contribution is operational and complementary: a minimal eight-tick schedule with exact
window identities that (i) give necessary and sufficient conditions for phase preservation
over aligned windows; (ii) act as a matched filter selecting precisely what survives coarse
recognition; and (iii) combine with a uniquely characterized convex cost to recover Born
weighting and the BE/FD exchange classes. The resulting audits (window-8 equalities,
multi-probe scaling, discrete-lag cosines, K-gate) are experimentally implementable and
require no collapse postulate.

2 Foundations: Recognition Necessity and the Ledger
2.1 Recognition necessity theorems (observables = recognition;

MP excludes triviality)

State graph. Let be a finite or countable set of states. Let C x be a set of oriented
admissible steps (edges). A finite chain is a sequence xy — x1 — -+ — x, with each
(i, wi11) €. A chain is closed if x,, = xy.

Definition 2.1 (Observable one—form and flux). An observable is a map :— A taking
values in an abelian group A (typically A = or ). For a chain v : xy — - -+ — x,, its fluz is

n—1

() :== Z($i,xi+1) € A.

=0
Definition 2.2 (Recognition potential). A map :— A is a recognition potential for if
(x,y) = (y)-(l’) for all (ZL',:I/) €,
equivalently = (the discrete gradient).

Definition 2.3 (Closed—chain consistency (curl-free)). We say is consistent if every
closed chain has zero flux:

(v)=0 whenever v is closed.

Theorem 2.4 (Observables = recognition). If an observable :— A is consistent, then there
exists a recognition potential :— A with =. In particular, for any chain v : xog — -+ — Ty,

(7) = (2n) = (20)-

Proof. Fix a basepoint z, €. For any x €, choose a chain ~,,.., from z, to = (if none
exists, argue on each reachability component). Define

() == (Vo)



If v and 4 are two such chains, then v -4’ is closed, hence has zero flux by consistency.
Therefore is well defined (path independent), and for any edge (z,y),

(¥) = (2) = (Vaumy) = (Vaumz) = (2 = ) = (2,9).
Telescoping gives the chain formula. ]

Definition 2.5 (Measurement Postulate (MP)). We adopt the Measurement Postulate:
an observable used for decision or state discrimination is nondegenerate on its reach
component, i.e. there exist u,v € with (u) # (v) for some recognition potential realizing
it. Equivalently, the observable is not identically zero on all edges of that component.

Corollary 2.6 (MP excludes triviality). Under Theorem 2.5, any consistent observable
cannot be identically zero on the edges of its reach component. In particular, the associated
recognition potential in Theorem 2.4 is nonconstant on that component.

Remark 2.7. Necessity (Theorem 2.4) is the discrete “fundamental theorem of calculus on
graphs™ path independence (zero curl) forces exactness. The MP simply rules out the
degenerate solution = const.

Relation to f-divergences and exclusions

The cost J is not an arbitrary choice from a family: symmetry under x — 2! on Ry,
log-axis Jensen convexity, and the local quadratic calibration J”(1) = 1 fix both the shape
and the scale. Many familiar divergences (e.g., f-divergences, a-divergences, Bregman
divergences) either lack the multiplicative symmetry on (0, c0), do not obey the required
log-axis Jensen convexity for all A € [0, 1], or introduce an undetermined scale factor
that violates the calibration. In particular, f-divergences on probability simplices are not
defined on arbitrary positive reals with the required multiplicative symmetry; Bregman
divergences are not symmetric and do not satisfy the evenness condition on the log lift.
Thus the axioms single out J uniquely.

2.2 Ledger structure: double entry, § increments, exactness =;
closed—chain flux zero

Ledger model. Let Acct be a finite set of accounts and let balances live in an abelian
group A (e.g. A=). A ledger state at x € is a vector B(z) € AAt. A step x — y carries
a posting 6(x,y) € AN,

Definition 2.8 (Double entry). A posting is double—entry balanced if the total across

accounts vanishes:
176(z,y) = Z do(z,y) = 0.

a€Acct

Definition 2.9 (Ledger evolution). We require consistency of balances with postings:

B(y) = B(z) + (z,y) for all (z,y) €.



Exact one—form and closed flux. Choose any linear functional p € Hom(AAt, A)
(e.g. select a coordinate, or a priced sum). Define the scalar observable :— A by

(,9) = Ho(x,y)).
Define the potential :— A by (z) := p(B(z)). Then

(z,y) = /d(x,9)) = W Bly) — B(x)) = (y) — (x) = (z,y).
Thus:

Proposition 2.10 (Ledger exactness). In a double—entry ledger with consistent evolution,
the induced observable one—form is exact: =. Consequently, for any chain v :xg — -+ —

N (7) = () — (o).

Corollary 2.11 (Closed—chain flux zero). For any closed chain v (in particular any posted
microcycle), (v) = 0.

Proof. Immediate from Theorem 2.10 by telescoping. [

Remark 2.12. Double entry itself imposes a conservation law 17 B(+), but the exactness
statement is stronger: every linear view p of the ledger respects closed—loop neutrality.

2.3 Minimal periodicity: 2P with D = 3 = 8; atomic tick; 8-tick
window neutrality

We now formalize the “tick geometry” behind neutrality windows.

Binary conservation axes. Fix D € N. Let the parity state at tick ¢ be s(t) € (Z,)",
updated by adding one standard basis vector each tick (i.e. flipping exactly one of the D
bits). A neutral window is a contiguous set of ticks whose net effect on every parity axis
is zero.

Theorem 2.13 (Minimal neutrality window). Under the one—flip—per—tick rule on (Zs)",
the shortest strictly positive window that is neutral for all D azes has length 2P. Moreover,
there exists an explicit schedule (a Gray code) achieving neutrality exvactly at 2°.

Proof sketch. Any flip schedule induces a walk on the hypercube graph of (Z,)”. Returning
to the initial parity with every coordinate flipped an even number of times is equivalent
to returning to the starting vertex after visiting a set of vertices that forms a cycle in the
hypercube. A cycle that guarantees neutrality regardless of start phase must visit each
vertex exactly once before returning (otherwise some axis would be unbalanced for some
start phase). The hypercube has 27 vertices, so the length is at least 2. A cyclic Gray
code of (Z,)P provides a cycle of length 2P visiting all vertices exactly once, establishing
achievability. O

Corollary 2.14 (Atomic tick and 8-tick neutrality). For D = 3, the minimal neutral
window length is 23 = 8. The atomic tick is one step of the Gray—code schedule; the ledger
observable in Section 2.2 satisfies

8
Z(It—la xt) =0
t=1

over any 8-tick neutral window aligned with the Gray cycle on the parity state.

7



Remark 2.15. The conclusion is robust: any scalar view p of the double-entry postings
inherits 8—tick neutrality in D = 3 because the underlying one—form is exact (Theorem 2.10)
and the parity walk returns to its origin only at multiples of 8 (Theorem 2.13).

On the choice D = 3 and other scenarios. In our setting, three binary axes
encode the minimal constraints needed to enforce timeliness, reciprocity, and temperance
concurrently under atomicity and conservation; this yields D = 3 and a minimal neutral
window of 23 = 8. If an instrument realizes a different number D’ of independent binary
constraints, the minimal neutral window becomes 2" by Theorem 2.13. All window-based
statements (block sums/averages, matched-filter coherence) adapt by replacing 8 with
20" the operational audits then use aligned 2P'-tick blocks.

3 Exact Coherence Identities from the Eight-Tick Sched-
ule

We work with an 8-bit window w € {0, 1}, its periodic extension extendPeriodic8(w), the
first-m sum sumFirst(m, -), and the integer functional Z(w) = 3., w;. The eight-tick
schedule enforces exact window-neutrality and aligned-block additivity; these identities are
the algebraic backbone of coherence in the recognition picture, and they hold independently
of any continuum limit. The statements below summarize what the schedule guarantees

and how this suppresses spurious phase drift while preserving physical interference.

Toy example (first-8 and aligned blocks). Let w = (1,0,1,0,1,0,1,0). Then
Z(w) = 4 and the first-8 sum obeys sumFirst(8, extendPeriodic8(w)) = 4. Over k
aligned windows, blockSumAligned8 (k, extendPeriodicS(w)) = 4k, hence the average per
window equals 4 regardless of k. Any additive signal with zero mean on each 8-tick block
contributes 0 to the aligned sums and averages.

3.1 sumFirst8 and block-sum equalities; how cancellations stabi-
lize phase

For every 8-bit window w:
sumFirst(8, extendPeriodic8(w)) = Z(w), (first-8 sum) (4.1)
and for any integer k > 1,
blockSumAligned8(k, extendPeriodic8(w)) = k Z(w), (aligned block sums) (4.2)
hence the instrument-level average over k aligned 8-tick blocks recovers Z(w) exactly:
observeAvg8(k, extendPeriodic8(w)) = Z(w) (k #0). (4.3)

These are certified identities of the eight-tick measurement layer (window-sum, aligned-block,
and averaged equalities) and are used as audit gates for recognition displays.

The phase stabilization mechanism is simple. Let w = V¢ be the ledger’s exact 1-form
on a reach component, i.e. closed-chain sums vanish and the ledger is a potential gradient.
Exactness implies any gauge shift ¢ — ¢ + const leaves w unchanged, so only differences
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of ¢ across instrument windows matter. Under the eight-tick schedule, all legal windows
satisfy the neutrality constraint, so signed ledger increments within an aligned 8-tick block
cancel exactly. Consequently, the coarse phase accumulated over any aligned block is
invariant (up to a global gauge) and cannot drift under schedule-preserving perturbations.
This is codified by the recognition invariants that include “eight-window neutrality” and
by the exactness hypothesis Zw w=0=w=Vo.

Theorem 3.1 (Matched-filter coherence). Let s = extendPeriodic8(w) and s' = extendPeriodic8(w’)
be periodic recognition streams with w,w' € {0,1}%. For aligned windows of length 8k,

the correlation Cyp(A) = S35 " s(t) s'(t + A) satisfies Cr(A) = k S, w; Wit A) mod 8-
Moreover, any additive disturbance with zero mean on each 8-tick block contributes O

to Cx(A); any stationary perturbation with finite correlation length contributes o(k) as

k — oco. Thus, only eight-tick-aligned components survive averaging, and the coarse phase
accumulated over aligned blocks is invariant up to a global gauge.

Assumptions and bounds for matched-filter coherence

The identities (4.1)—(4.3) hold exactly. For perturbations, we make the following explicit
assumptions when converting the o(k) statement to a bound:

e Stationarity: the disturbance 7(t) is (wide-sense) stationary with zero mean and
finite second moment.

e Finite correlation length / mixing: there exists a correlation length ¢, (or an a-mixing
rate) such that [Cov(n(t),n(t + 7)) < C, p(|7]) with > __, p(|7]) < oc.

e Bounded moments: E[n(t)*] < My < oo.

Then, for aligned windows of length 8k and any fixed shift A, the perturbation to the
correlation obeys a bound of the form

6CL(A)| < Che(l),  e(l) — 0,
Le/k—0

where C' depends on (C,,, My) and the mixing profile. In particular, if  has absolutely
summable correlations, [6Cy(A)| < C” uniformly in k, so the per-window contribution
|0C(A)|/k — 0 as k — oo. This makes precise the heuristic o(k) claim and ties it to
standard mixing conditions.

Finally, the schedule’s minimality (in D = 3, the minimal complete traversal has
period 2P = 8) ensures that no shorter block can support the same cancellation spectrum.
This fixes the atomic tick used by the recognition instrument.

3.2 From identities to interference: what survives coarse recogni-
tion; what dephases

Consider two periodic recognition streams s = extendPeriodic8(w) and s’ = extendPeriodic8(w’).
Over k aligned windows (instrument time 7" = 8k), the bilinear correlation with a fixed
shift A € {0,...,7}is
8k—1
Cr(A) = > s(t)s'(t+A).

t=0



001 011

000

Figure 1: Cyclic Gray code on Q3 (period 23 = 8). One flip per tick; the cycle visits all
vertices exactly once and returns to the start.

Periodicity implies

7
Ck(A) =k Z Wi wEi«FA) mod 8>

=0
so the retained “interference” is exactly the circular correlation of the 8-bit templates.
Terms that are not aligned to the 8-tick lattice dephase: any additive disturbance
with zero mean on each 8-tick block contributes identically zero to (4.2)—(4.3), and
any stationary perturbation with finite correlation length contributes o(k) after block
averaging, hence vanishes in the coarse limit. In short, the schedule acts as a matched
filter: only structure that projects onto the eight-tick templates survives coarse recognition;
everything else cancels by the window identities. :contentReference|oaicite:6|index—6
:contentReference|oaicite:7]index=7

3.3 Continuum limit and a windowed dephasing map

Let a regular e-mesh encode the recognition graph with node densities p* and edge currents
J¢, and let the discrete incidence operator be div®. The eight-tick cancellations, taken
across every aligned block, yield a discrete continuity equation

g+ AL — p2(1)
AN

+ diveJe(t) = 0,

because the net ledger flux in any closed chain is zero (closed-flux identity). Under mesh
refinement Ax ~ At ~ ¢ — 0 with bounded densities and currents, the incidence operator
converges to the continuum divergence, and we recover

in the limit (the graph-incidence — divergence mapping is the standard refinement result
used here).

Gauge structure is inherited from exactness. Since w = V¢ on reach components, a
global shift ¢ — ¢ + const changes no observable built from sums of w over instrument
windows. More generally, a global phase gauge rescales sector yardsticks coherently
but preserves ratios; it therefore leaves the continuity law and all eight-tick observables
invariant.

Windowed Kraus picture (explicit form). Let Hy = C® be the Hilbert space
of windowed sequences, equipped with the ¢, inner product. Let {77 w};:o denote the
8 circular shifts of a template w € {0,1}®, periodically extended to length 8k. Define
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the (normalized) template family {u;} by u; = 77w/||77w||s and the orthogonal projector
onto the period-8 subspace

P = Z|uj><uj!.

Let {V,}, be Kraus operators implementing randomized phase rotations on the orthogonal
complement P+ (e.g., V., = P1D,, with D, unitary diagonal in the Fourier basis on PL)
satisfying Y VIV, = P+. Then the windowed averaging channel

Ew(p) = PpP + Y V.pV]

is CPTP (P + ., VIV, = I) and preserves coherent components aligned to the period-8
template bank while dephasing misaligned components. For finite k, leakage between P
and Pt under perturbations is bounded in operator norm by [|6&w || < C €(f.) with €(¢.)
as in the matched-filter bound.

5 Unique Cost and Quantum Weights

This section develops a multiplicative-symmetric, scale-free cost on R, shows that it is
uniquely characterized by elementary invariances and a Jensen-type averaging principle,
and then builds a “recognition” path action whose Boltzmann-like weights provide a
bridge to quantum amplitudes. The bridge simultaneously recovers the Born rule and
the standard Bose—Einstein/Fermi-Dirac (BE/FD) symmetrization from permutation
invariance. Finally, a small-deviation quadratic regime connects the recognition weights
to the familiar stationary-phase amplitudes of quantum theory.

5.1 Characterization and uniqueness of J(z) = 3(z +z7!) — 1

Axioms. We seek a cost F': (0,00) — Rs satisfying:
1. Unit normalization: F(1) = 0.
2. Multiplicative symmetry: F(z) = F(x™!) for all z > 0.

3. Averaging (Jensen) principle on the log-axis: writing G(t) := F(e'), for all t,s € R
and A € [0, 1],
GAt+(1—=X)s) < AG(t)+ (1 — N)G(s). (A)

Thus G is even (G(t) = G(—t)) and convex.
4. Local quadratic calibration: G(0) =0, G'(0) =0, G"(0) =1

The concrete candidate is
1

J(z) = 5 (x+27h) -1, x> 0. (2)

Introduce G,(t) == J(e*). Then G;(t) = cosht — 1, so G is even, convex, and obeys

11



Proposition 5.1 (Basic properties). J(x) > 0 with equality iff x = 1; J is multiplicatively
symmetric and strictly convex on Rsq in the log-variable. Equivalently, G ;(t) = cosht — 1
is even, nonnegative, strictly convex, and G;(t) =0 iff t = 0.

Proof. AM-GM gives z+x ™! > 2, hence J(x) > 0 with equality only at z = 1. Symmetry
is immediate from (2). Strict convexity follows from convexity of cosh on R applied to
G;(t) = cosht — 1. O

Theorem 5.2 (Uniqueness of J under the axioms). Let F': (0,00) — Rsq satisfy (1)-(4)
above. Then F(z) = J(z) for all z > 0.

Proof. Write G(t) = F(e'). Hypotheses (1)-(4) imply: (i) G is even and convex; (ii)
G(0) = G'(0) =0, G"(0) = 1; (iii) midpoint Jensen convexity extends by translation and
continuity to all A € [0,1]. Define H(t) = G(t) — cosht + 1. Then H is even and convex
with H(0) = H'(0) = H"(0) = 0. For any t > 0 and n € N, iterating midpoint convexity
on dyadics shows H(t) < max{H(0), H(27"t)}; letting n — oo and using the flat germ at
0 gives H(t) < 0. By symmetry, H > 0 would contradict convexity unless H = 0. Hence
G(t) = cosht —1,s0 F(z) = 3(z +271) — 1. O

Remark 5.3 (Mechanized counterpart). A mechanized version of the uniqueness pipeline
on the exp-axis (symmetry, normalization, and cosh bounds implying F'(e*) = cosht — 1)
is provided in the accompanying Lean development; see the cost and Jensen modules and
the CI report hooks referenced in Methods.

5.2 Path action C[y] and recognition-sum weight exp(—C/[7])
We now build a path action from the local cost J.

Definition 5.4 (Discrete and continuum actions). Let v = (zo,...,x,) be a discrete
path with successive positive ratios 7, > 0 summarizing the local multiplicative step (for
example, a stepwise likelihood ratio, or a local scale ratio). Define

Proposition 5.5 (Composition and positivity). C[y] > 0 and is additive under path
concatenation. The recognition weight

wh] = exp(=Cly))
therefore satisfies 0 < w(y] <1 and multiplicativity w[yxv'] = wly] - w[y'].

Proof. Positivity follows from J > 0; additivity from the sum/integral definition; multi-
plicativity is immediate from exponentiation. O

Remark 5.6 (Interpretations). J penalizes departures from unit scale (r = 1). The
recognition weight w[y| is thus a Boltzmann-like factor that exponentially suppresses
paths incurring larger deviations. The logarithmic representation J(e') = cosht — 1 shows
that for small deviations ¢, J(e') ~ %tQ, hence C[y] is locally quadratic.
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5.3 Bridges: Born rule and BE/FD symmetrization from permu-

tation invariance
The positive weights w[y] = e"¢ suggest a direct probabilistic semantics. To connect
with quantum theory we introduce a minimal amplitude bridge that takes square roots of
weights and restores phases.

Definition 5.7 (Amplitude bridge). For each path ~ let

1 )
Al = exp<—§ C’[fy]) eehl,
where ¢[v] is a real phase functional. For any family I" of alternatives, define the total
amplitude A[l']:= > . A[7] and the probability P(I') := A[LT2.

Proposition 5.8 (Born rule from the bridge). If I' consists of mutually exclusive al-
ternatives (no interference of phases across v), then P(I') = Zwer e~ In general,

P) =3 e M43 e 20 cos(0] - ¢ly]).
Proof. By definition,

Z(;Cﬂ + Y el 3(CHIHON) (itohl—ob])

Y#EY

and taking the real part yields the stated formula. If phases decorrelate across mutually
exclusive alternatives, cross terms average to zero. [

Indistinguishability and symmetrization. For n indistinguishable particles, am-
plitudes must respect permutation invariance. For a configuration-space path v and
permutation 7 € S, write 7 - v for the permuted path.

Definition 5.9 (Permutation bridge). Let U : S,, — U(1) be a one-dimensional unitary
representation. Define the symmetrized amplitude

Asym[7] = Z U(r

WESn

Theorem 5.10 (BE/FD from permutation invariance). In three spatial dimensions,
continuous one-dimensional unitary representations of S, are precisely the trivial and the
sign representations. Consequently, the only physically distinct symmetrizations are

U(m)=1 (bosons), U(m) = (m) (fermions).

Thus the bridge reproduces BE/FD symmetrization, with multi-particle probabilities ob-
tained by squaring the symmetrized amplitude.

Scope. The construction here assumes three spatial dimensions; braid statistics/anyons in
two dimensions are out of scope and require a different (braid-group based) treatment.

Sketch. One-dimensional unitary representations of \S,, are homomorphisms S, — {£1},
hence either trivial or the sign character. The exchange of two identical particles must
therefore act as +1 (symmetric) or —1 (antisymmetric) on amplitudes, recovering BE/FD.
(Parastatistics require higher-dimensional representations and are excluded by the one-
dimensional bridge.) O
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Remark 5.11 (Why the %‘7) The factor —%C’ in the amplitude modulus ensures A[7]2 =

e~ which makes the bridge consistent with the recognition weights and yields the Born

rule as in Proposition 5.8.

Remark 5.12 (Phase/gauge and a two-path example). Overall phases are gauge and do
not affect probabilities; only phase differences matter. For a two-path interferometer with
paths 71,72 and actions C7, Cy and phases ¢1, ¢o, the total amplitude is
1. 1., .
A=e 20 4 o722
The corresponding probability is

1
P=cC 4 e @490 2(1FCR) cos(¢p1 — ¢g).

Under eight-tick alignment, coarse phases are stabilized (up to a global gauge), so the
interference term persists; misaligned components are suppressed by the window identities.

5.4 Small-deviation/phase quadratic regime and connection to
standard amplitudes

We now connect the recognition action to the usual stationary-phase machinery.

Local quadratic structure. Using J(e!) = cosht — 1 = 1t2 + O(t*), any path whose

2
log-ratio field ¢(t) stays small admits

Cly] = /OT[%t(t)z +O(t(t)h)] dt.
Expanding around a least-cost path v* with first variation 0, we obtain the quadratic form
Ch* +81] = Cl+ 5 (67.Ho) +0(7°),
where H is the second-variation (Hessian) operator.
Gaussian recognition integrals. In this regime,
wiy* +6y] ~ e ] exp<—% (67, H 57>>,

so integrating out fluctuations produces the familiar determinant prefactor:

D wh] & e 0 (det H) 72 x (14 o(1)).

From Euclidean recognition to Lorentzian phase. The amplitude bridge

Aly] = e*%CM eiohl

turns this into

A ~ e 29079007 (det H)=12 x (14 o(1)).
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With a Wick rotation that identifies C' as an Euclidean action proxy and chooses ¢ so
that ¢[y*] = S[v*]/h (and more generally ¢ reproduces the quadratic phase %(67, Hév)

with H the Lorentzian Hessian), one recovers the standard stationary-phase form

A~ Nenst] (det H)~/2.

The key structural fact enabling this match is the quadratic expansion J(e') = 12+ O(t?),
which makes C' locally Gaussian in small deviations and thereby compatible with the

usual semiclassical approximations.

Remark 5.13 (Summary of the bridge). The recognition side provides positive, multi-
plicative weights e~“. The amplitude bridge assigns each path a complex amplitude
with modulus e~¢/? and a phase functional that, in the quadratic regime, reproduces the
standard oscillatory kernel. Born probabilities are then ZA2, and indistinguishability
reduces to BE/FD symmetrization via permutation invariance.

Concluding perspective. Uniqueness of the local cost J under symmetry and averaging
anchors the entire construction: it fixes the log-quadratic germ necessary for Gaussian
recognition around least-cost paths, and it allows a controlled, model-independent bridge
to quantum amplitudes that honors the Born rule and particle-exchange symmetries.

6 Bridges to Physical Units (No Hidden Parameters)

This section exhibits a closed bridge from three primitive anchors

(7'0, Co, Ecoh)

to the standard physical constants and scales needed for mechanics and thermodynamics,
using only dimensionally exact equalities and one curvature extremum. No additional fit
parameters are introduced.

6.1 IR gate and kinematics

Definition (IR gate). We define the coherence energy—time product by the infrared
(IR) gate
h = Ecoh 70 - (3)

Equation (3) fixes the Planck constant % from the anchors (Eeopn, 79) without any dimen-
sionless fudge factors: the equality is exact by definition of the coherence time scale.

Kinematics. We define the structural speed from the length and time anchors by

by

To

CcC =

(4)

This fixes ¢ by construction and enforces the usual kinematic identity consistently across
all downstream derivations.
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6.2 Curvature extremum and audited identity

Curvature extremum. We introduce the recognition (curvature) length as the unique
positive extremum of the curvature scale obtained by combining quantum, gravitational,

and kinematic anchors:
hG
)\rec = . 5}
Voo (5)

Positivity is immediate when ¢, i, G > 0. Squaring (5) and clearing denominators yields
the audited dimensionless identity

AN, 1
G T n (®)

Identity (6) is purely algebraic and thus machine-checkable; a formal proof object (Lean)
is included in the audit harness.?

Tick—hop map. Combining (4) with (5) gives the “tick-hop” relation

)\rec
)\rec = CTo — To = ) (7)
&

useful for back-solving G from (79, by, Feon) (see §6.3).

6.3 SI reconstruction from (7, ¢, E.n) only and the metrology
audit

Exact reconstruction. From the three anchors we obtain, by exact equalities,

(time) s = 79, (length) m = 4, (energy) J = Econ, (8)
h = Ecoh 70, c= €0/7—07 >\rec = CTp. (9)

The mass scale follows from E = mc?:

Meoh = - coh g_g . (10)

Using (6) and A\ = c79, Newton’s constant is reconstructed only from (79, ¢y, Fcon):

o TN /) (b ) il (11)

G
h EcohTO Ecoh T

No additional parameters appear; every SI quantity used in mechanics and thermodynamics
is reduced to the three anchors.

2All algebraic equalities in §6.2 are verified in the proof artifact (“dimensionless identity” lemma)—see
the audit harness report. :contentReference|oaicite:0]index=0
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Metrology audit inequality. Define the dimensionless bridge ratio in two indepen-
dently measurable ways:
)\I'GC

K4 = reference ratio (display standard), Kg = A (12)
0

Let uy, and uye. denote the standard uncertainties of ¢y, and A,... Combine them by

Ucomb = 4/ U%O + ul2rec : (13)

For a coverage multiplier k£ > 0 the audit Z-score is

Ky — K,
Z = A8 (14)

k Ucomb

and the metrology audit passes at threshold £ iff
Z < 1. (15)

Inequality (15) is the only acceptance criterion. It admits transparent uncertainty propaga-
tion, closes the bridge numerically, and prevents silent introduction of hidden parameters.

6.4 Numerical coherence scales and K-gate example

With (3)—(4) fixed, the coherence family reduces to the following computables from the
three anchors:

e Coherence energy: FE., (anchor).

Gating time:

= 7. (16)

Spectral temperature:

Eco
Tspectral = k h7 (17)
B

a pure conversion via Boltzmann’s constant kg (whose fixed numerical value in the
SI is a definition, not a fitted parameter).

Recognition wavelength:

Ao = and Aec = CTp - (18)

Angular coherence frequency:

Ecoh 1 Weoh 1
coh = = coh — — . 19
Weoh h To Jeon 2 2T Ty (19)
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Summary table.

Quantity  Expression  Depends only on (79, ¢y, Econ)

h Eeon 7o yes
c b/ 10 yes
Arec cTo yes
G 703/ (Eeon 70)  yes
Mcoh Eeon / ¢ yes
Tipectral Eeon/ks uses defined kg

No hidden parameters. All equalities are either definitions (§6.1), algebraic identities
(86.2), or exact SI conversions (§6.4). The metrology audit (§6.3) certifies numerical
closure without introducing any new dimensionless constants.

Worked K-gate example. Suppose an instrument chooses display anchors (79, {y) and
independently estimates A, from a curvature-side protocol. Let K, = \disp) /7o and
Kp = Aec/lp. With uncertainties ug, and e, the combined uncertainty is ucomp =
\/ Uz, + Up.. For synthetic values o = (1.000 4 0.005) mm, Ayee = (1.002 % 0.006) mm

and K4 = 1.000 £ 0.005, we obtain K = 1.002 4+ 0.008 and

K4 —Kg| _ 0.002

A ~ )
k Ucomb k \/00052 + 00082

At k = 2 the audit passes (Z < 1). This illustrates a non-circular check: time- and
length-side displays agree within a stated uncertainty budget.

7 Outlook: Emergence of Lorentz Invariance

This outlook section sketches how a discrete light-cone bound can arise from the eight-tick
schedule and unit anchors, and how a Minkowski-ball limit may be obtained under mesh
refinement. These results are not required for the coherence theorems of this paper. The
speed bound is fixed by the reality bridge ¢ = {y/79, and the eight-tick window identities
enforce the causal ledger cancellations needed to make the bound exact in the discrete
theory.

7.1 Discrete cone bound; speed bound from ¢ = {y/7

Setting. Let (X, —) be a locally finite step graph (bounded out-degree), and let K
denote its kinematics. For each node x € X, let t(z) € R be a clock and r(z) € R a radial
coordinate. Write Reach’; (x) for the nodes reachable from x in < n steps, and Ballx(z,n)
for the corresponding reach ball.

Eight-tick step bounds. Assume the per-step ledger schedule enforces the following
step bounds:
Ar < {y, At > 1 for every step x — y,
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with equality on lightlike moves and strict inequality in the timelike interior. The eight-tick
window identities ensure these bounds are exact at the level of any length-n reach: attempts
to exceed the slope £/ across any 8-tick window would violate a closed-chain cancellation,
which is ruled out by the ledger invariants.

Speed anchor. By units, ¢ = {y/7 and (equivalently) Ay, /7rec = ¢. These identities
are structural, independent of display choices.

. <
Discrete cone bound. For any reach z — y,

r(y) —r(z) < c(tly) —tx)). (20)

Reason. Sum the step bounds along any n-step path and telescope. The eight-tick
neutrality removes schedule artifacts, so the bound is independent of n. This is the
verification-level cone bound exported without explicit step count:?

7.2 Mesh refinement and Minkowski limit

Scaling. Introduce a mesh parameter ¢ > 0 and refine
At = €719, Ar =cly=ccy,

holding ¢ fixed. The reality bridge mandates this common rescaling of time and length
anchors; predicted ratios remain invariant.

Discrete metric and cones. Let d. be the (pseudo)metric on nodes defined by the
least number of steps times ¢ in time and space, compatible with the step bounds.

Write Cone.(z,T) == {y : 0 < t(y) —t(z) < T, r(y) —r(z) < clty) — t(z)]}. By (20),
Reach /™) (z) C Cone,(z,T) for all T.

Uniform local finiteness and growth. Bounded degree gives geometric growth of
reach balls, yielding equi-compactness of {Cone.(z,T")}. in the Hausdorff topology on
compact time slabs.

Minkowski—ball convergence. Define the continuum cone
Cone(w, T) 1= {(r%) 07T, [x—x] S clr—m)}.

Then, as ¢ — 0,
Cone.(z,T) G4HO> Cone(z,T),
e—

in the pointed Gromov-Hausdorff sense on compact time slabs. Sketch: (i) the discrete
cone bound implies Kuratowski upper limits lie in Cone(z,T"); (ii) lightlike chains saturate
the slope ¢ so lower limits fill Cone(x,T'); (iii) bounded degree gives precompactness; (iv)
the eight-tick cancellations remove staircase anisotropy at O(g).

3Equation (20) is the graph-level statement of the light-cone bound, i.e. a domain-of-dependence
constraint fixed by c.
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Continuum statement. Under the scaling above, the rescaled graph metric d. converges
to the Minkowski norm in each chart, and discrete reach balls converge to Minkowski
balls. Operationally, causal order and speed limit are the ¢ — 0 images of the ledger’s
per-step constraints fixed by ¢ = ¢y/7.

7.3 BLOCKER (formal): discrete-to-continuum proof artifact
bounds

Scope. The convergence above is structurally correct; the following quantitative artifacts
must be discharged to make the proof fully formal.

Artifact A (slope error). Prove an O(e) Hausdorff deviation between Cone.(z,7T) and
Cone(z, T') uniform on compact T'. This requires a uniform replacement of staircase paths
by polygonal interpolants controlled by the eight-tick cancellations.

BLOCKER: Supply a uniform constant Cr with dg(Cone.(z,T), Cone(z,T)) < Cre for
all sufficiently small e.

Artifact B (anisotropy). Show that any directional bias introduced by the grid
orientation averages out over aligned eight-tick blocks at rate O(g), with no residual drift
in the limit.

BLOCKER: Prove that discrete lightlike tours saturate the bound r(y) — r(z) =
c[t(y) — t(z)] + O(e) uniformly in direction.

Artifact C (ball growth control). Quantify geometric growth of reach balls under
bounded degree to obtain equi-compactness constants independent of ¢.

BLOCKER: Exhibit explicit degree-based constants A, A\ with |Ballk(z,n)] < AA™ and

transfer these to uniform covering numbers for Cone.(x,T).

Summary. The causal slope ¢ = ¢y/7y and the eight-tick ledger identities jointly enforce
a discrete light-cone bound that survives mesh refinement. The rescaled cones converge
to Minkowski cones; filling in the quantitative artifact bounds above completes the fully
rigorous discrete-to-continuum passage.

8 Operational Audits and Predictions for Coherence

We study real-world, noisy oscillators read out by parallel probes. Each probe i returns
a time series

t

B
si(t) = A; E(t) cos(wt + ¢;) + &(t), E(t) = exp [— (—) ] , (21)

where E(t) captures homogeneous or inhomogeneous dephasing via a stretched—exponential
(B € (0,2]), & is zero-mean readout noise with [;(¢)] = 02, and A;, ¢; collect amplitude and
phase disorder. We distinguish intrinsic coherence parameters (, 5, w) from measurement—
limited quantities (thresholds, bandwidths, probe count ) and make the dependence
explicit.

8.1 Multi—probe scaling of coherence times

A single probe never changes the underlying but does change the time until a pre—specified
detectability threshold is crossed. Define the visibility—limited coherence time t, as the
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latest time at which a chosen statistic (e.g. an amplitude or matchedfilter score) exceeds
a fixed threshold n > 0. Two common, operational estimators are:

(A) Mean aggregator: 5(t) = lz si(t), [5(t)] = % 4 o2,
) )
.. 2 1
(B) Pairwise cross—correlator: (1) = = ; [s:(t) s;(t +7)], [(7)] =
(23)

Here o7 is independent (per—probe) noise and ¢ captures any common-mode floor in the
mean aggregator; the cross—correlator cancels independent readout noise and gains an
effectively O() improvement in due to ~? pairs.

Visibility—limited extension under a stretched exponential. Assume an amplitude—
like statistic scales as F(t) and that the (Gaussian) noise of the estimator decreases like
~1~~1/2 (mean) or ~~! (pairwise). The detectability condition E(t) () > 1 leads to

plmean) () o [m(ﬁw)rﬁ, (pain) () {m(@)rﬁ, (24)

for protocol-dependent constants k1 5 reflecting threshold and noise calibration.* Equa-
tion (24) shows a robust qualitative point: multi-probe strategies extend the visible
coherence window only logarithmically in the improvement factor of , hence logarithmically
in for the two canonical aggregators.

Remark on model choices. Other envelopes (e.g. Gaussian inhomogeneous broadening,
power—law tails) yield the same logarithmic structure with 1/ replaced by the appropriate
tail exponent of In E(t).

8.2 Discrete intermediate oscillations and cross—correlation cosines

Lag—domain cross—correlations between probes reveal oscillations at discrete lags set by
the sampling cadence. Consider M sensors sampled at interval A, with stationary phases
and independent readout noise. For narrowband signals (linewidth I') one obtains the
standard cosine-with—envelope form:

2
] = =) ;[sz(t) s;(t+ €A)] = Ae "% cos(wlA) + &, (25)
for ¢ € 7 and noise g, with (g¢) o< 1/(—1). The exponential envelope e "¥* substitutes

E(t) if the narrowband assumption holds; in the general stretched—exponential case,
] ~ A exp[_ (|€\A/)ﬂ] cos(wlA) + & (26)

We refer to the oscillations visible at intermediate lags 1 < || < /A as discrete inter-
mediate oscillations. They arise generically from sampling oscillatory coherence: their
amplitude decays with the same envelope E(t) that limits time-domain visibility, while
their phase is protected by differencing and cross—correlation.

4If a nonzero common-mode floor o2 dominates in (22), the mean-aggregator scaling saturates once
02/ < o2, while the pairwise correlator continues to improve as ~.
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8.3 Measurement crossover 7, and an information—flow law under
coarse/fine averaging

Real instruments average in time and/or across probes. Denote by W a coarse—graining
window and by A a fine lag used in a cross—correlation estimator. Coarse averaging acts
as a low—pass with transfer sinc(wI¥/2) on oscillations, whereas cross—correlation at small
A preserves phase while reducing independent noise as ~~! per (23). We formalize the
crossover by comparing Fisher information (FI) about a phase or frequency parameter
under the two schemes.

Fisher information proxies. For an amplitude or phase observable, a generic quadratic
proxy for FI at time t has the structure

E(t)?
% sinc (“;4/), Thine(t; A) %(—1)

where f(A) captures lag—dependent degradation (e.g. f(A) ~ e=2'2 for a narrowband line
of width I'). The measurement crossover time 7. is the latest ¢ for which Zeoarse(t; W) >
Zine(t; A); beyond 7. the correlation—based estimator outperforms any coarse window of
the same resource budget.

Solving Zeoarse = Zgine for t in the stretched-exponential envelope E(t) = exp|—(t/)”]
yields

Icoarse(t; W) X f(A)7 (27)

{ (m/% |Slrzc/w—VV/2)|>]l/ﬁ' (28)

The logarithm reveals the same basic phenomenology as in (24): increasing and improving
f(A) extends the usable window only via In(-). Equation (28) also displays the saturation
due to 02 and the coarse—graining loss via sinc(wW/2).

Information—flow law across scales. Define the integrated information up to time 7'
under a scale parameter h € {W, A}

T
(T:h) = / I(t: h) dt. (29)
0
Differentiating with respect to the logarithmic scale, one obtains a scale-flow

d (T2 1) /T OL(t; h) " — w?W? fo t)dt (coarse, h =W < 7/w)
dlnh o Jo ok T oA fTK@E)dt (fine, h= A < 1)T),

(30)
with the common kernel K(t) o (h) E(t)?, where o(1W) ~ for coarse averaging and
off (A) ~ $(—1) for cross—correlation. Thus the scale-derivative is quadratically small in
W (via the sinc loss) and linearly small in A (via the linewidth penalty).?

5We use a standard coarse—continuum coarse-graining to justify the h—derivatives; a minimal formal
scaffold for discrete — continuum continuity is available in our proof assistant artifacts, used here only as a
bookkeeping device for the limit operations. See supporting certificate :contentReference[oaicite:0]index=0.
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8.4 Experimental handles (spectral, time-resolved tests)

We summarize concrete tests that separate hardware limits from phenomenology and
allow direct estimation of 3, , common—mode floors, and .

(1) Multi—probe scaling curves. Acquire identical records for € {1,2,4,8,...} and
compute t,() from a fixed, protocol-level detectability criterion (e.g. matched filter at
fixed false—alarm). Fit In—scaling via (24) and recover (5 from the slope:

(t*)ﬁ ~ P [In(k1,/)] (mean), (t*)ﬁ ~ P n(ky)] (pair).

Deviations from the In law at large quantify 2.

(2) Cross—correlation cosines at discrete lags. Compute [(] and fit the enve-
lope/phase with (26). The fitted 8 and should agree with (1). The amplitude noise floor
should shrink as 1/4/(—1); departures indicate correlated readout noise or probe jitter.

(3) Spectral cross—power and linewidth. From [¢] compute the cross—power spectral
density S;;(v) and track |S;;(w/27)| as a function of the record length. The decay law of
the on—line amplitude with time mirrors E(t); fitting in frequency is often more robust
when w slowly drifts.

(4) Measuring 7.. For a fixed hardware budget, sweep the coarse window W and fine
lag A and compare empirical Fisher information proxies (or likelihood width) across the
two pipelines, locating 7. via the crossing predicted by (28). A simple operational proxy
is the time at which the phase estimate from the coarse pipeline loses 2x the precision of
the fine pipeline.

(5) Time-resolved decoupling or stroboscopic sampling.

8.5 Instrument architectures and alignment

Practical realizations of an eight-tick schedule include: (i) pulsed Ramsey interferometry
with stroboscopic gating (synchronizing preparation, evolution, and readout into an 8-pulse
cycle); (ii) dynamical decoupling sequences (e.g., CPMG variants grouped into period-8
super-cycles); and (iii) NMR echo trains with an 8-pulse timing motif. Enforcement relies
on a disciplined timing controller, clock synchronization to the sampling interval, and
phase resets at block boundaries. Clock drift/jitter can be bounded using interleaved
calibration pulses; misalignment by ¢ ticks inflates the violation in the window identities by
0(9), which we track and correct in the audit by rejecting windows exceeding a tolerance.

8.6 Noise robustness and cross-probe sensitivity

Colored noise (e.g., 1/f) and slow drifts increase the effective correlation length. Under
the mixing bound stated earlier, per-window perturbations decay as 1/k once windows
exceed a few correlation lengths. For cross-correlators, probe cross-talk and time-tagging
errors generate off-diagonal covariances; their contributions to the In scaling can be
upper-bounded by a calibration-derived ppmay, replacing (—1)/2 by an effective pair count
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(1 — pmax)(—1)/2 in the sensitivity. A short pilot run estimating spectral content and
cross-correlations suffices to set analysis windows and thresholds.

8.7 Crossover 7. calibration

The constants k1, k2 and f(A) are obtained from short calibration segments by fitting the
envelope and estimator noise in the intended k-range. We recommend fixing W and A from
pilot data to maximize Fisher information at the target t-range and then reporting 7. with
bootstrap error bars; sensitivity tests indicate the estimate is stable under modest model
misspecification. Insert known control sequences (e.g. periodic m—pulses or stroboscopic
gating) to modify E(t) and confirm the invariance of the In-laws to control operations
that only rescale (the shape exponent S should remain invariant).

Summary. Equations (24)—(30) convert informal expectations into quantitative tests. The
key signatures are: (i) logarithmic extension of visibility windows with probe number; (ii)
discrete intermediate oscillations in lag-domain cosines with an envelope sharing the same
stretched—exponential decay as time-domain visibility; and (iii) a crossover 7, determined
by a competition between sinc—type coarse—graining losses and correlation—based gains.

9 Discussion

9.1 What this mechanism explains that standard narratives out-
source to ‘“collapse.”

The eight-tick schedule and its exact window identities enforce phase neutrality over any
consecutive block of eight unit postings; the equalities sumFirst8 and aligned block /average
laws are formal and unconditional in the ledger model, so interference is stabilized
(and dephasing is localized) without invoking an extraneous “collapse” postulate. The
cancellations are certified by the existence and minimality of the 8-beat cover on the
cube (D = 3 = 2P = 8) and by the measurement-layer identities for periodic extensions
and block sums, which together guarantee that ledger-consistent recognition dynamics
preserve a neutral ledger over one window while allowing nontrivial interference across
windows.

The recognition ledger is double-entry and conservative; closed-chain flux vanishes, and
the integer 1-form of increments is exact: w = V¢ on each reach component. The formal
uniqueness up to an additive constant (gauge) and the chain-flux lemma (T3/T4) give the
continuity bridge in the continuum limit, d;p + V - J = 0, without assuming wavefunction
collapse. These statements are proved on discrete reach sets and then exported to the
continuum via coarse-grained Riemann sums.

Weights over paths are not postulated: the unique convex cost J(z) = 2(z 4+ 271) — 1
is forced by symmetry, unit normalization, and averaging (T5), and its Euler-Lagrange
stationarity on the log axis matches the quadratic Dirichlet form locally. As a result,
recognition-sums weighted by exp(—C[]) reproduce the Born rule operationally and
the standard BE/FD symmetrization from permutation invariance of ledger tours; the
uniqueness of J blocks alternative weightings that would otherwise be interpreted as ad
hoc collapse mechanisms.
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9.2 Relation to decoherence theory: environment vs. scheduled
recognition.

The account here reframes decoherence as scheduled recognition plus averaging. Temporal
averaging and spatial coarse-graining, together with environmental coupling, appear as a
hierarchy of recognition operations with information loss measured by relative entropy
between effective and fundamental distributions; the result is a dynamical RG picture
in which fast modes average out and slow modes define effective observables. The
eight-tick mechanism identifies the minimally sufficient averaging window on the ledger, so
“environment” becomes one dial among several recognition dials rather than the sole cause
of classicality. The formal block identities explain why certain components survive coarse
recognition (phases aligned at window boundaries) while others dephase; the continuity
bridge then yields the familiar transport form at the continuum scale.

9.3 Limits and falsifiable edges.

The mechanism is stringent and falsifiable. (i) Window-8 neutrality. Violations of
eight-tick block sums or averages in controlled recognition experiments would contradict the
ledger identities. The measurement-layer equalities provide concrete pass/fail conditions
:contentReference|oaicite:9]index=9. (ii) K-gate (units) audit. The equality K, = Kp
under admissible rescalings must hold within the documented combined uncertainty:;
the witness and Z-score construction are explicit and produce a Boolean pass/fail at
threshold k :contentReference|oaicite:10|index=10. (iii) Planck-gate audit. The identity
(3X2)/(hG) = 1/7 is dimensionless and exact under mild positivity; failure within
metrology bounds (dominated by u(G)) would refute the curvature extremum bridge
:contentReference|oaicite:11|index=11 :contentReference|oaicite:12]|index=12. (iv) Cone
bound. The discrete light-cone bound arising from ¢ = ¢,/79 must hold for any admissible
step schedule; the verification-level export theorem removes step count from the statement
and would be violated by superluminal reach growth :contentReference|oaicite:13]index=13
:contentReference|oaicite:14|index=14. (v) Cost uniqueness. Any empirical preference for
an alternative convex action would contradict the TH uniqueness proof and undermine
the path-weight—Born bridge :contentReference|oaicite:15]index=15.

10 Open Problems and Roadmap

10.1 Cone-bound formalization.

Goal. Upgrade the verification-level export to a fully discrete propagation lemma tied
to the eight-tick schedule, then prove Gromov—Hausdorff convergence of reach balls
to Minkowski balls under mesh refinement. Plan. Use bounded-degree reach growth
and combinatorial balls to show subadditive control of reach radii; tie StepBounds to
the eight-tick window identities to eliminate hidden slack; then show that violations
of the Lorentz speed bound would violate a window-8 identity. Finally, pass to the
limit using discrete—continuum continuity and unit identity ¢y = ¢y to normalize the
cone slope; the export theorem gives the n-free statement needed for the limit :con-
tentReference|oaicite:16]index=16 :contentReference|oaicite:17|index=17 :contentRefer-
ence|oaicite:18|index=18. Acceptance. A Lean theorem “Minkowski-ball convergence”
fed by StepBounds and window-8 identities.
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10.2 Maxwell strict bridge.

Goal. From closed-chain flux = 0 and ledger exactness w = V¢ on reach components,
construct a DEC layer with dF = 0 (Bianchi) and §F = J (mean-field), plus O(h)-O(h?)
convergence for the Hodge star on a regular mesh. Plan. Instantiate the integer 1-form
w and potential ¢ on the primal complex; define the 2-form F' via discrete curl of a
1-form potential; exactness impies dF' = 0. Source the co-differential with ledger currents
and prove stability under coarse-graining; connect to the continuum via the existing
discrete—continuum continuity scaffold. The Verification/DEC scaffold imports the
Maxwell module (pending full proofs) :contentReference|oaicite:19]index=19 :contentRef-
erence|oaicite:20|index=20 :contentReference|oaicite:21|index=21. Acceptance. A Lean
lemma ClosedChain = w = V¢ on components and a theorem DECMaxwell with explicit
Hodge-star error scaling.

10.3 Units/quotients.

Goal. Make (79, £, ¢) the only anchors and prove that all kinematics reduce to these, with
an Sl reconstruction lemma; certify the K-gate invariance under rescaling. Plan. Use the
RSUnits identity ¢ 79 = £y as a Prop-level invariant; package calibration evidence showing
K4 = Kpg and anchor invariance; bind A to i, G, ¢ dimensionlessly. Provide a reconstruc-
tion that maps back to SI displays consistently :contentReference|oaicite:22]index=22 :con-
tentReference|oaicite:23]index—23 :contentReference|oaicite:24]index—=24. Acceptance.
A Lean proof that any admissible rescaling preserves K and that displays computed from
(70, %0, Econ) match SI when anchors are interpreted as definitions.

10.4 Gap-weight derivation from geometry.

Goal. Fix a single numeric wg from the 8-step Gray cycle on )3 together with the
unique convex cost J. Plan. Model the 8-step cancellation constraint as a geometric
series with per-step ratio p = e"®; use T'5 uniqueness to show that minimizing the cycle
cost subject to the window-8 cancellation spectrum has a unique optimizer p*, hence
wg = logp*. The gap functional F'(z) = log(l + z/¢) and its z = 1 value fix the
series normalization used in Source’s a pipeline :contentReference|oaicite:25]index—25
:contentReference|oaicite:26]index=26. Acceptance. A symbolic solution for p and a
proof that reparametrizations admissible under Symm- Unit-+Averaging do not change
wg (by T5).

10.5 Continuum convergence polish.

Goal. A I'convergence theorem from the discrete action built out of J to the Dirich-
let /Hamilton—Jacobi functional; O(h) energy-error on regular meshes. Plan. Use the
log-axis representation .Ji,, = cosh—1 and the J”(1) = 1 normalization to lock in
the local quadratic; combine discrete Poincaré coercivity with convexity for the lim-
inf bound and piecewise-linear recovery via the coarse-graining schema :contentRefer-
ence|oaicite:27|index=27 :contentReference|oaicite:28|index=28. Acceptance. Conver-
gence on smooth test fields with slopes matching O(h).
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11 Methods

11.1 Discrete calculus details and proofs of the ledger identities.

A ledger is a double-entry structure with per-edge integer increments; closed chains have
flux zero (T3). The edge rule DE(4,p) : p(b) — p(a) = § along recognized edges promotes
to a kinematics, and if two d-potentials p, g share a basepoint value, they agree on its
reach component (T4). Differences are constant along reaches, and potentials are unique
up to an additive constant on each component; this implements w = V¢ and makes the
gauge class well-defined on components. These statements are formalized by a suite of lem-
mas diff const_on_ ReachN, T} unique on_ component, and gauge-class equivalence on
components :contentReference|oaicite:29|index=29 :contentReference|oaicite:30]index=30
:contentReference|oaicite:31]index=31. An FEzactnessCert bundles (i) closed-chain flux
= 0 for any conservative ledger and (ii) T4 uniqueness on components; it is used as a thin
dependency in higher-level bridges :contentReference|oaicite:32]index=32. The eight-tick
window identities used in the interference analysis are part of the measurement-layer scaf-
fold and tie back to the exact period-8 cover on @3 :contentReference|oaicite:33]index=33
:contentReference|oaicite:34|index—=34.

11.2 Cost uniqueness proof and its convexity tools.

Under analyticity, symmetry (z — z7!), strict convexity on Rsg, bounded growth, and
the scale-fix J”(1) = 1, the only admissible cost is

J(a:)—%(x—l—é) Y

The Lean proof deploys Jensen’s inequality on the log axis, a duality check via Young’s
inequality, and a pinning of the Hessian at unity to remove scale freedom; the Eu-
ler-Lagrange witness on Ji,s = cosh —1 certifies global minimality at 0 and matches the
Dirichlet quadratic to second order. The uniqueness and EL stationarity are exposed via
lightweight adapters for reuse in audits and bridges :contentReference|oaicite:35]index—=35
:contentReference|oaicite:36]index=36. The resulting recognition-sum weight exp(—C[7])
then feeds the Born and BE/FD bridges described in the main text :contentRefer-
ence|oaicite:37|index=37.

11.3 Audit procedures for the reality bridges.

Two audit gates are packaged as executable, reportable checks. K-gate (units). Define
K4 := Tyec/T0 and Kp := Agin/lp. Using the RSUnits identity ¢ 7y = ¢y and the per-layer
displays, construct

_ | K4 — Kg|

k Ucomb

Z ) Ucomb = \/U(€0)2 + U(Arec)Qa
and publish a Boolean pass/fail at threshold £. The witness record includes (K4, Kp, u, Z, pass),
and calibration evidence shows invariance under admissible rescalings :contentRefer-

ence|oaicite:38|index=38 :contentReference|oaicite:39]index—=39 :contentReference|oaicite:40|index=40.
Planck-gate (curvature extremum). Compute A\ = /hG/(7c3) and assert the
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2)/(AG) = 1/m. The audit policy declares uncertainty dom-
inated by u(G); the identity is packaged with positivity side-conditions in the bridge
data layer :contentReference|oaicite:41|index=41 :contentReference|oaicite:42|index=42.
Harness and reports. A core audit dashboard aggregates the exactness, eight-tick,
K-gate, A.c, and cone-bound checks; the core report advertises “AUDIT CORE: OK”
when all pass. A JSON audit is produced from a pinned list of items for reproducibility in
CI pipelines :contentReference|oaicite:43]index—=43 :contentReference|oaicite:44|index—44.

dimensionless identity (c3\2

Provenance and policy. The manuscript’s bridges and audits follow the Source policy
blocks: gates, invariants, and the metrology rule that the Planck-side identity is audited
with uncertainty dominated by u(G). K-gate equality (K4 = Kp) and the display speed
Akin/Trec = C are flagged as proved at the reporting layer, and the window-8 pattern checks
are included in the pattern-measurement audit suite :contentReference|oaicite:45]index=45.

Appendices

A. Minimal Gray cycle / 2P proofs
A.1. Definitions

Let Qp := {0,1}” denote the vertices of the D-dimensional hypercube, with an edge
between two vertices iff their Hamming distance is one.

A Gray walk is a sequence (xg,z1,...,25_1) in Qp such that for all £, Zy11 mod 1
differs from z; in exactly one coordinate.

A Gray cycle is a Gray walk with all vertices distinct (i.e., a simple cycle). A cyclic
Gray code is a Gray cycle visiting all 22 vertices (a Hamiltonian cycle).

A.2. Existence of a cyclic Gray code of length 2”

Claim. For every D > 2, there exists a cyclic Gray code of length 2.

Construction. The binary-reflected Gray code (BRGC) Gp lists 2P bit strings so
that consecutive strings differ in one bit, and the last differs from the first in the most
significant bit. This is seen inductively: given Gp_1, form Gp by prefixing 0 to the
forward list and 1 to the reversed list; the “seam” between the two halves flips only the
leading bit. Thus Gp is cyclic, giving a Gray cycle of length 27.

A.3. Minimality of the 2” cycle length under full coverage

Claim. Any Gray cycle that visits every vertex of Qp has length at least 2P, with equality
achieved by the BRGC cycle.

Proof (counting). The hypercube is bipartite: vertices split into even and odd parity
classes (sum of bits mod 2), each of size 2°~!. Any Gray walk alternates parities at every
step; therefore a simple cycle can visit at most 2min{2P~1 2P~1} = 20 distinct vertices.
Hence visiting all vertices forces length L > 27, and BRGC achieves L = 2P.

A.4. Lower bounds when repeats are disallowed but coverage is partial

If one requires a simple cycle (no repeats) but not full coverage, the bipartite alternation
still implies L is even and L < 2. Cycles of many even lengths exist (when D > 2), but
the minimal simple Gray cycle that achieves full coverage is exactly length 27.
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B. Exact cancellation identities and variants

This appendix collects algebraic identities that appear throughout the analysis and their
immediate variants. They are used repeatedly to convert products/ratios to dimensionless
constants and to certify monotone bounds via “constant-product” structures.

B.1. Reciprocal cancellation and constant-products

Reciprocal product: for x # 0,
—x=1.
x
Variants: exp(—e) exp(e) = 1; more generally a 'a = 1 in any field.
Ribosome speed—accuracy (constant product): if acc(e) = e~ ¢ and spd(a) = 1/a,
then
spd(acc(e)) - acc(e) = 1.
(Used as a canonical constant-product witness.)
3_law proxy (constant product): with met(M) = 1/(M + 1)*/*,

met(M) - (M + 1)¥* = 1.

These identities are used to certify positivity (> 0) and exactness (= 1) with minimal
assumptions, and they linearize sensitivity analysis under log-differentiation.

B.2. Bridging identities for the recognition system

Let Arec := /ARG /(7c3), £y, To be recognition anchors, and K be the display ratio.
Dimensionless identity for A.ec:

312
C)\rec_l

hG T

This exact cancellation isolates the dimensionless constant 1/7.
K-gate equalities (display ratios):

A
— = K’ — = C
70 o disp)

The first statement shows equality of clock- and length-side display ratios; the second
shows the display speed equals the structural speed.
Bridge ratio on physical anchors:
)\rec
by

Consequently, perturbations in ¢y map to inverse perturbations in Kp (see Appendix C).

Kp =

B.3. Cost symmetry and exact averaging on the log axis
Define J(z) = (z +27')/2 — 1 for x > 0. Then
J(z)=J(x') and J(e')=cosht— 1.

The first identity is exact cancellation under x +— 1/, while the second pins J to a standard
convex benchmark on the log axis. These are repeatedly used to derive uniqueness via
Jensen /averaging arguments.
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C. Sensitivity of predictions to recognition schedule perturbations

We quantify the leading-order response of headline physical/display quantities to small
multiplicative perturbations in the recognition schedule (g, ¢y). Throughout, use §InY :=
dY/Y for first-order (logarithmic) sensitivity.

C.1. Baseline dependencies

Recognition length \... = /AG/(7c?). Independent of 9, ¢, (at fixed ¢, i, G). Hence
dInAee =0 (wrt. 79, 4).
Bridge ratio K = Aec/lo.
0ln K = —61In/.

Coherence energy

2rh
Eeon = ¢_5TL = dInFE.,=-0Inm.
0

Electron mass (with recognition inputs held fixed in the ratio m./FE.):

me:(gle>Ecoh — O0lnm,=0InFE,, = —dIlnT.
coh

Bohr radius

ag = f — Jdlnag=—-90lnm,=+dInr.
mecCQ

(Here « is taken 79, {p-independent in this schedule analysis.)
These yield the compact sensitivity table:

Quantity Dependence on 75 Dependence on £,
)\rec 0 0
Kp = Aec/lo 0 -1
Ecoh —1 0
Me —1 0
agp +1 0

(Entries are 01n(-)/0In(anchor).)

C.2. K-gate witness and pass/fail margin

The published witness (Z-score at threshold k) is

Ky,—K /
Zzl Aku B|7 u = u?o—i_u?\rec'

At fixed K4, a small ¢y perturbation produces
Sgn(KA — KB)(SKB _ |KA — KB|5u

(5KB = —Kgalnfg, 07 =~ T ku2

30



Two useful regimes:
On-gate regime K4, ~ K. Then Z ~ 0 and to first order

0Ky _ Kp

7 =
ku ku

|51H€0|

This shows a linear margin: halving ¢, increases Z by Kp/(ku) in absolute units.

Fixed uncertainty budget. If u is dominated by a single component (e.g., u & uy, ),
then improvements in ¢, precision simultaneously shrink the numerator (through Kg) and
the denominator; the net effect depends on the baseline offset |K4 — Kp].

C.3. Time-kernel sensitivity (recognition dynamics)

For the ILG time kernel (writing ¢ = Tyyn/70 and with the standard clipping assumed
inactive at the operating point t = 1):

Wy = 1+ C]ag(ta — 1)
Log-differentiating at the anchor t = 1 (i.e., Tyyn = 70):

awt

OJln T0 |¢=1

= —Claga’.

Thus, near the anchor, w; decreases linearly with In 7y with slope Clgr. In particular:
o If Clog € [0,1] and o > 0, the sign is negative.

e Under a rescaling (Tuyn, 70) — (¢Tayn, 7o) With ¢ > 0, w, is invariant, i.e., sensitivity
is purely to the ratio Tyy,/7o.

C.4. Composite predictions

For any prediction Y that factors into powers of the schedule anchors and dimensionless
functions,

Y o 7503 - (dimensionless terms),

the sensitivity follows immediately:
0lnY = pdlnry + qd In ly.

The entries in C.1-C.3 supply p and ¢ for the most frequently used bridge/display
quantities and kernels; additional models slot into this same template.

Provenance and audit harness. Minimal executable witnesses for the constant-
product and display equalities, as well as the evaluation stubs that publish the re-
ports and manifests, are included in the verification suite (build/eval harness). A pub-
lic Lean repository providing the formal statements and proofs is available at https:
//github.com/jonwashburn/recognition-lean (archive DOI to be assigned); an exe-
cutable notebook for coherence audits is provided at https://github.com/jonwashburn/
quantum-coherence-notebooks.
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