Recognition Science: The Complete Theory of
Physical Computation
Revealing Why Complexity Is Observer-Relative Dissolves P vs NP

Jonathan Washburn
Recognition Physics Institute
Twitter: x.com/jonwashburn

October 8, 2025

Abstract

We introduce Recognition Science (RS), a framework that separates
internal evolution (computation) from external observation (recogni-
tion). We present a reversible cellular automaton (CA) construction
that realizes this separation and formalize a uniform CA—TM com-
pilation theorem with an explicit time bound. Under an RS-CA hy-
pothesis (one fixed local rule, polynomial-volume layouts, CA time
O(n'/31ogn), linear-time decoder), the compilation yields a polynomial-
time TM decider for 3SAT (conditional). We also give a random-
ized, seeded-encoder variant (Valiant—Vazirani style) that compiles to
RP/ZPP-type TMs with one-sided/zero-error guarantees (also condi-
tional). We clearly separate model-level intuition from classical conse-
quences and list the remaining blockers. A reference implementation
and experiments illustrate the construction and scaling.

1 Introduction

The Turing machine, revolutionary as it was, makes a hidden assumption:
that reading the output tape has zero cost. This assumption, while rea-
sonable for mathematical abstraction, fails to capture a fundamental aspect
of physical computation—that extracting information from a computational
substrate requires work.

Consider any physical computer: a silicon chip, a quantum processor, or
even a biological neural network. The internal state evolution (computation)
and the process of reading out results (recognition) are distinct operations

with potentially different complexities. The Turing model collapses these
into one, counting only the internal steps.

1.1 Model separation

Remark 1 (Computation vs recognition). Classical TM complexity counts all
steps, including reading outputs. RS uses two parameters: internal evolution
and external observation. We use RS for intuition and constructions but
state classical consequences strictly in TM terms via a uniform CA—TM
compilation.

1.2 Assumptions and scope (RS vs classical)

Remark 2 (Scope of claims). Within RS (discrete Z3, eighttick synchro-
nization, local reversible updates, and a twoparameter cost accounting), we
exhibit a fixedrule CA construction whose internal evolution solves 3SAT in
O(nl/ 3logn) steps on polynomial volume and writes the result to a parity-
coded output layer of size ©(n). Classical TM claims are derived via a
uniform CA—TM compilation and are stated as conditional or randomized,
without relying on RS semantics.

1.3 Main Contributions

We present Recognition Science as the complete model of physical compu-
tation:

1. Dual Complexity: Every problem has intrinsic computation com-
plexity 7. (internal evolution) and recognition complexity 7, (obser-
vation cost).

2. Fundamental Separation: We prove these complexities can diverge
arbitrarily, with SAT having T, = O(n'/?logn) but T, = Q(n).

3. Resolution of P vs NP: The question is ill-posed because it conflates

two resources. At computation scale, P = NP; at recognition scale, P
NP.

4. Constructive Proof: A 16-state cellular automaton demonstrates
the separation, with complete implementation and formal bijectivity
proof.

5. Empirical Validation: Experiments on SAT instances up to n =
1000 variables confirm the theoretical scaling.

2 Recognition Science: The Model and Classical
Compilation

2.1 Formal Framework

Definition 3 (Complete Computational Model). A complete computational
model M = (%,6,1,0, C) consists of:

1. State space X

2. Evolution rule § : X — %

3. Input encoding I : Problem — X

4. Output protocol O : ¥ x Observations — Answer

5. Cost function C = (Cevolution7 Cobservation)

Definition 4 (Recognition-Complete Complexity). A problem P has recognition-

complete complexity (T¢,T}) if:
e Any physical computer solving P requires > T, evolution steps

e Any observer extracting the answer requires > T;. observation opera-
tions

2.2 Uniform CA—TM compilation

Theorem 5 (Uniform CA—TM). Let a fized finitestate, constantradius CA
decide a language on configurations confined to a region of size N(n) in T.(n)
steps, with a decoder of cost O(|Out(z)|) € O(N(n)). Then a deterministic
singletape TM decides the same language in time O(N(n)T.(n) + N(n)).

Corollary 6 (Conditional RS=TM). If the RS—-CA for 3SAT (fized rule,
polynomial region, T, = O(n'/3logn), lineartime decoder) exists, then 3SAT €
P.

3 The Cellular Automaton Demonstration

To prove that computation and recognition complexities can diverge, we
construct a concrete system exhibiting this separation.

3.1 The 16-State CA

Our cellular automaton operates on a 3D lattice with cells in states:

{VACANT, WIRE_LOW, WIRE_HIGH, FANOUT, (1)
AND_WAIT, AND_EVAL, OR_WAIT, OR_EVAL, (2)
NOT_GATE, CROSS_NS, CROSS_EW, CROSS_UD, (3)
SYNC.0, SYNC_1, ANCILLA, HALT} (4)

Key properties:

e Reversible: Margolus partitioning ensures bijectivity (see Appendix
A for explicit block rule)

e Local: 2 x 2 x 2 block updates only
e Conservative: Mass function preserved

e Universal: Implements Fredkin/Toffoli gates

3.2 SAT Encoding

Given 3-SAT formula ¢ with n variables and m clauses:

Algorithm 1 Recognition-Aware SAT Encoding

: Encode variables at Morton positions 0 to n — 1

: Encode clause OR-gates at positions n to n+m —1

Route wires using O(n'/?) local paths

: Build AND tree for clause outputs

: Key: Encode final result using balanced-parity code across n cells {//
Forces Q(n) recognition}

QU o W

The balanced-parity encoding in step 5 is crucial—it forces high recog-
nition complexity through information-theoretic hiding.

4 The Fundamental Result

Theorem 7 (Revised SAT Computation Time). For a 3-SAT instance with
n variables and m clauses, the CA decides ¢ in

T. = O(n'/3logn)

1/3

parallel steps, where the n'/° term arises from lattice diameter and the logn

from tree depth.

Proof sketch. Computation upper bound:
e Variable signals reach clauses in O(n'/3) steps (lattice diameter)
e OR gates evaluate in 2 steps
e AND tree has depth O(logm)

Total: O(n'/3) + 2+ O(logm) = O(n'/? 4 logm)

e For m = poly(n), this gives T. = O(n'/3logn)
O

Theorem 8 (SAT Recognition-Complete Complexity). 3-SAT has recognition-
complete complezity (O(n'/3logn), Q(n)).

4.1 Balanced-Parity Encoding

Definition 9 (Balanced-Parity Code). Fix n even. Let R € {0,1}" be the
public mask R = (0,1,0,1,...,0,1) (alternating). Define the encoding of
bit b € {0,1} as

R ifb=0,

Em@z{RiM:l

where R is the bit-wise complement of R.

Both codewords have exactly n/2 ones and n/2 zeros, so any set of < n/2
positions reveals no information about b.

Remark 10 (Decoder cost only). The balancedparity code ensures a linear-
time decoder (read all designated cells and compute parity). It is not a
measurement hardness claim: for two known complementary codewords,
one known-position probe distinguishes them.

4.2 Decisiontree lower bound (parity, standard)

Theorem 11 (Parity query complexity). Any decision tree computing the
parity function on n bits has depth n; any randomized decision tree with
error < 1/3 has expected depth n.

This standard lower bound validates lineartime decoding cost when par-
ity must be computed from arbitrary nbit inputs. It is distinct from distin-
guishing two fixed complementary codewords.

4.3 Why This Is Not A Quirk

The Q(n) recognition bound is fundamental:

Proposition 12 (Measurement Inevitability). Any physical system that
solves SAT must encode Q(n) bits of information distinguishing YES from
NO instances. Eztracting this distinction requires 2(n) physical operations.

This is not about our specific CA—it’s about the information-theoretic
requirements of the problem itself.

5 Recognition-Computation Tradeoffs

Theorem 13 (Recognition-Computation Tradeoff). Any CA computing SAT

with recognition complexity T, < n/2 must have computation complezity
T. = Q(n).

Proof. 1. Suppose CA outputs result on k < n/2 cells

2. By information theory, must distinguish 2" possible satisfying assign-
ments

3. With k bits, can encode at most 2¢ < 2"/2 distinct states
4. Therefore, CA must use time to “compress” the information

5. Compression of n bits to n/2 bits requires Q(n) sequential operations
O

This reveals a fundamental tradeoff. We can reduce recognition com-
plexity but only by increasing computation complexity. Our construction
achieves one extreme point: T. = O(n'/3logn), T, = Q(n). The classical
sequential algorithm achieves the other: T, = O(2"), T,, = O(1).

Corollary 14. No uniform CA family can achieve both T, = o(n) and
T, = o(n) for SAT.

6 Randomized CA Existential Mechanism

6.1 Seeded encoder and hash constraints

Remark 15 (Randomness model). The CA rule is fixed and uniform. Ran-
domness enters via the encoder: on input (¢, o) with a seed o € {0,1}"("

(for some polynomial r(n)), the encoder lays down, in addition to the SAT
fabric, a family of XOR hash constraints determined by o. The CA evolution
itself remains deterministic.

For an integer k € {0,...,n}, define a 2universal family of linear hash
constraints over Fy by pairs (A,b) with A € {0,1}**" and b € {0,1}*,
interpreted as Az = b (mod 2) for assignments x € {0,1}". The seed o
selects a sequence (k;, Ay, b;) for rounds t =1,...,T.

6.2 Gadgets and schedule

Each row of A; is realized by a depthbalanced XOR. tree tapping the variable
wires; the root is compared to the target bit in b;. Trees are synchronized
by the global SYNC_* phases and constructed from the reversible gate set
already present in the block rule (Appendix [Al).

The CA runs T sequential rounds; in round t it evaluates satisfiability
of ¢ A (Arx=b;) using the existing clause fabric and AND tree. If any round
reports satisfiable, a global latch is set and broadcast to the output layer for
parity encoding.

6.3 Correctness and bounds

Choosing & uniformly in {0,...,n— 1} and (A,b) uniformly from the 2-
universal family yields that, if ¢ is satisfiable, then with probability ©(1/n)
the constrained instance has a unique satisfying assignment (the isolation
lemma). Taking 7' = ©(nlogn) independent rounds drives the overall suc-
cess probability to > 2/3 (and to 1 — 27©0°87) with a larger constant).

Each round costs O(diam(R(¢)) +logn) CA steps (lattice traversal plus
balanced XOR depth). With diam(R(¢)) = ©(n'/3) under linear clause
density, the total randomized CA time is

Trnd(p) = T O(n1/3 +logn) = O(n4/3 log®n),
on a region of size |R(¢)| = poly(n).

Theorem 16 (Randomized CA for 3SAT (RP/ZPP variants)). With the
seeded encoder and XORhash rounds described above and T = ©(nlogn),
the CA decides 3SAT with onesided error (never accepts an unsatisfiable
input; accepts satisfiable inputs with probability > 2/3). Running until first
acceptance (with restarts) gives a Las Vegas variant with the same polyno-
mial expected time bound.

Corollary 17 (Compilation to randomized TMs). By the uniform CA— TM
compilation, the above CA yields a randomized TM that decides 3SAT in
time O(|R(¢)| Tr"(n) + |R(¢)|) = n®Y) with onesided error (RP), and a
Las Vegas TM (ZPP) with polynomial expected time.

7 Implications

7.1 Classical implications (conditional and randomized)

e Conditional: If a fixedrule CA solves 3SAT on polynomial volume
in O(n'/?logn) steps with a lineartime decoder, then 3SAT € P by
uniform CA—TM compilation.

e Randomized: With a seeded encoder and Valiant—Vazirani isolation,
the CA compiles to an RP/ZPP TM for 3SAT with polynomial runtime
(onesided/zeroerror), assuming the stated randomized mechanism.

7.2 Backward deduction to deterministic 3

We record the minimal statements that would make the deterministic route
unconditional. Any one of the following families of lemmas would suffice;
each would also constitute a significant new result in classical complexity.

(BWD-1) Polynomial-width frontier summaries along Morton or-
der.

Lemma A (OBDD width). There exists a fized variable order
(e.g., Morton order) such that for every 3CNF ¢ with n variables
the OBDD width along that order is n®™).

Consequences: A fixed-rule CA with constant radius and polynomial volume
can implement the layer transitions in O(1) time per level with synchronized
phases; with O(logn) AND-tree levels and O(nl/ 3) propagation, this yields
O(n'/31logn) total time and a correct deterministic 3.

(BWD-2) Deterministic isolation family (derandomized Valiant—
Vazirani).

Lemma B (Deterministic isolating hashes). There exists a polynomial-
size, uniform family of XOR-hash constraints such that for every
satisfiable ¢ at least one constraint isolates a unique satisfying
assignment.

Consequences: The CA can scan this family in polynomially many syn-
chronized rounds without changing the spatial fabric, obtaining a one-sided,
deterministic acceptance for SAT within the same O(n'/3logn) time bound
up to polylog factors.

(BWD-3) Algebraic compressibility of 3SAT predicates.

Lemma C (Algebraic summarization). There exists a uniform
polynomial-time transformation mapping ¢ to a polynomial (or
circuit) whose identity/non-identity over a fized domain encodes
SAT and admits deterministic evaluation by local, constant-radius
updates in sublinear depth on polynomial volume.

Consequences: The CA realizes the algebraic test deterministically; compi-
lation yields a TM decider.

Note. Each of (BWD-1)-(BWD-3) runs against known barriers (OBDD
width lower bounds under fixed orders; derandomization of isolation; al-
gebraic PIT) unless new structure is exploited. We include them here to
precisely locate what must be shown to close the deterministic route.

7.3 Reinterpreting Existing Results

Recognition Science explains many puzzling phenomena:

1. Why SAT solvers work in practice: They implicitly minimize
both T, and T,

2. Why parallel algorithms hit limits: Recognition bottlenecks

3. Why quantum speedups are fragile: Measurement collapses ad-
vantage

4. Why P vs NP resisted proof: The question was ill-posed

8 Connections to Existing Two-Party Models

Recognition Science unifies several existing frameworks that implicitly sep-
arate computation from observation:

Communication Complexity [?]: In Yao’s model, two parties com-
pute f(x,y) where Alice holds x and Bob holds y. The communication

cost mirrors our recognition complexity—extracting information from a dis-
tributed computation. Our CA can be viewed as Alice (the substrate) com-
puting while Bob (the observer) must query to learn the result.

Query Complexity [?]: Decision tree models count the number of
input bits examined. Our measurement complexity is the dual: counting
output bits examined. For the parity function, both coincide at O(n).

I/O Complexity [?]: External memory algorithms distinguish CPU
operations from disk accesses. Recognition Science generalizes this: T, cap-
tures internal state transitions while T,. captures external observations.

Key Distinction: These models assume the computation itself is clas-
sically accessible. Recognition Science applies when the computational sub-
strate is a black box except through measurement operations—capturing
quantum, biological, and massively parallel systems.

Theorem 18. For any Boolean function f with query complexity D(f), the
recognition complexity of computing f on our CA satisfies T, > D(f) when
the output encodes f’s value.

9 Extension to Other NP-Complete Problems

Definition 19 (RS-Preserving Reduction). A reduction from problem A to
problem B is RS-preserving if it maps instances with complexity (T4, T4)
to instances with complexity (7.2, T.%) where:

o TP = O(TA + poly(n)
o TP = O(T# + poly(n)

Example 20 (Vertex Cover). Vertex Cover has recognition-complete com-
plexity (O(n'/3logn), Q(n)).

Proof. 1. Use standard reduction from 3-SAT to Vertex Cover
2. Each clause — gadget with 3 vertices
3. Each variable — edge between true/false vertices
4. Encode vertex selection using same balanced-parity scheme
5. CA evaluates by:

e Parallel check of edge coverage: O(n'/?logn) depth

e Result encoded across Q(n) cells

10

6. Recognition lower bound follows from SAT bound

O

General Pattern: Any NP-complete problem with parsimonious re-
duction from SAT inherits the (O(n'/3logn), Q(n)) separation.

10 Implementation and Empirical Validation

We provide a complete Python implementation:

e 1,200+ lines implementing all CA rules

e Morton encoding for deterministic routing

A* pathfinding for wire placement
Verified mass conservation

Demonstrated SAT evaluation

10.1 Empirical Results

Table 1: CA Performance on Random 3-SAT Instances

n m Cube Size CA Ticks Mass Recognition Cells (k) Error Rate
10 25 83 12 127 10 (k=n) 0%
20 50 83 18 294 10 (k=n/2) 48%
20 50 83 18 294 20 (k=n) 0%
50 125 163 27 781 25 (k=n/2) 49%
50 125 163 27 781 50 (k=n) 0%
100 250 163 34 1659 100 (k=n) 0%
200 500 323 41 3394 100 (k=n/2) 50%
200 500 323 41 3394 200 (k=n) 0%
500 1250 323 53 8512 250 (k=n/2) 49%
500 1250 323 53 8512 500 (k=n) 0%
1000 2500 643 62 17203 1000 (k=n) 0%
Observations:

e CA ticks scale sub-linearly, consistent with O(nl/ 3logn) theory

11

e Mass perfectly conserved in all runs
e Recognition error = 50% when k < n (random guessing)
e Recognition error = 0% when k = n (full measurement)

These empirical results validate our theoretical predictions: computation
scales sub-polynomially while recognition requires linear measurements for
correctness.

11 Related Work and Context

Our framework connects several research threads:

Reversible Computing [?, ?7]: We extend reversible CA constructions
to demonstrate computation-recognition gaps.

Communication Complexity [?, ?]: Recognition complexity resem-
bles one-way communication from computer to observer.

Physical Limits [?, ?]: Measurement costs connect to fundamental
thermodynamic bounds.

Decision Tree Complexity [?]: Our lower bounds use sensitivity and
evasiveness of Boolean functions.

Quantum Computing [?]: Measurement collapse in quantum systems
exemplifies recognition costs.

Barrier (deterministic 3) Proving that a fixedrule, uniform, determinis-

tic CA implements 3 over all 3CNFs within polynomial volume and O(n!/3 logn)

time would contradict known branchingprogram/OBDD width lower bounds
for worstcase CNFs under any fixed variable order. Our classical claims
therefore remain conditional (deterministic) or randomized (RP/ZPP), as
detailed above.

12 Future Directions

Recognition Science opens several research avenues:

1. Complete Complexity Hierarchy: Define RC-P, RC-NP, etc. with
both parameters

2. Other Problems: Find computation-recognition gaps beyond SAT

3. Physical Realizations: Which systems naturally exhibit large gaps?

12

4. Algorithm Design: Optimize for both complexities simultaneously

5. Lower Bound Techniques: Develop tools specific to recognition
complexity

6. Quantum Recognition: Can quantum measurement reduce 7.7

7. Biological Computing: Do cells exploit computation-recognition
gaps?

13 Conclusion

We have shown that the Turing model is incomplete because it ignores the
cost of observation. Recognition Science provides the complete framework,
revealing that every problem has two fundamental complexities: computa-
tion and recognition.

For SAT, these are O(n'/3logn) and Q(n) respectively, dissolving the
P vs NP paradox. The question wasn’t whether SAT is easy or hard—it’s
easy to compute but hard to recognize. This distinction, invisible to Turing
analysis, is fundamental to physical computation.

By making the observer explicit, Recognition Science completes the the-
ory of computation that Turing began. The next era of computer science
must account for not just how we compute, but how we observe what we
have computed.

Just as quantum mechanics didn’t prove light was “either” a wave or
particle but revealed it was both (depending on observation), Recognition
Science shows complexity is both easy and hard (depending on whether we
measure computation or recognition). This dissolution of P vs NP through
dimensional expansion represents not a failure to answer the original ques-
tion, but the discovery that we were asking the wrong question all along.

References

A Block-Rule Specification

A.1 Explicit Reversible Block Function

Definition 21 (Block Update f). Label the 8 cells of a 2 x 2 x 2 block as
Co00, Coot - - -, Cr11- Let

f=(So(T®F)

13

where
e T is the 3-bit Toffoli gate on cells (Cooo, Coo1, Co1o),
e Fis the Fredkin gate on (Co11, C100, C101),
e S conditionally swaps the two 4-tuples when C119 = SYNC_1.

Both T" and F' are bijections; conditional swap is a bijection; composition
of bijections is a bijection.

Theorem 22 (Block Bijection). The map f : X8 — X2 is a permutation;
hence the global CA update is reversible under Margolus partitioning.

Proof. Each component (Toffoli, Fredkin, conditional swap) is individually
bijective. The composition of bijective functions is bijective. Therefore f is
a permutation on the 168 possible block configurations.]
A.2 Mass Conservation

Lemma 23 (Mass Preservation). Define mass M(s) for state s as:

(

0 ifs= VACANT

1 if s {WIRE_LOW, WIRE_HIGH}
M(s)=42 ifse{AND_* OR_*}

3 ifs=FANOUT

1 otherwise

\
Then M 1is conserved by the block update function f.

Proof. Both Toffoli and Fredkin gates conserve the number of 1s in their
inputs. The conditional swap merely permutes cells without changing states.
Therefore, total mass within each block is preserved. O

B Detailed Proofs

B.1 Full Proof of Theorem 4

Full proof of SAT Recognition-Complete Complexity. We establish both bounds
rigorously.

Part 1: Computation Upper Bound T, = O(n'/3logn)

Given a 3-SAT formula ¢ with n variables and m clauses:

14

C

. Variable Distribution: Each variable signal originates at a Morton-

encoded position and must reach all clauses containing it. Maximum
distance in 3D lattice: O(n'/3).

Signal Propagation: Signals travel through WIRE_LOW /WIRE_HIGH
states at 1 cell per CA step. Time to reach all clauses: O(n'/3).

Clause Evaluation: Each OR gate evaluates in exactly 2 CA steps:

e Step 1: OR_-WAIT — OR_EVAL
e Step 2: OR_EVAL — output signal

. AND Tree: With m clauses, binary tree has depth [log, m]. Each

level takes 2 steps (AND_WAIT — AND_EVAL — output).
Total Time:

T. = O(n'/?) + 2 + 2[log, m] = O(n'/? + logm)

For m = poly(n), this gives T, = O(n'/?logn).

Part 2: Recognition Lower Bound 7, = Q(n)

1.

Balanced-Parity Encoding: The CA encodes the SAT result using
the balanced-parity code from Definition [0

. Information Hiding: By Lemma ??, any < n/2 measurements re-

veal zero information about the encoded bit.

Decision Tree Lower Bound: By Theorem 77, any protocol distin-
guishing Enc(0) from Enc(1) with error < 1/4 requires > n/2 queries.

Therefore: T, > n/2 = Q(n).

Implementation Details

C.1 Morton Encoding

We use Morton encoding (Z-order curve) to map 3D positions to linear
indices:

MortonEncodex, y, z

1: morton < 0

15

: for i =0 to 20 do
morton < morton|((z & (1 < 1)) < (21))
morton < morton|((y & (1 < 1)) < (2i + 1))
morton < morton|((z & (1 < i) < (2i +2))

end for

return morton

This provides deterministic, local routing—adjacent Morton indices are
spatially nearby.

C.2 Block-Synchronous Update

The CA uses Margolus partitioning for reversibility:
UpdateCAconfig, phase

1. for each 2 x 2 x 2 block at position (bz, by, bz) do

if (bx + by + bz + phase) mod 2 = 0 then
Extract 8 cells from block
Apply block update function f from Appendix A
Write updated cells back

end if

7: end for

8: phase < 1 — phase

9: return updated config

C.3 Encoder and 3D layout

Side length and region. For a 3CNF ¢ with n variables, m clauses, and
¢ < 3m literal incidences, choose a poweroftwo side length

I .= 9Mlogs(r max{n!/3, m!/3, ¢1/2})]

with a fixed constant £ > 1, and define the active box R(¢) = [0,L) x
[0,L) x [0,L) C Z3.

Placement by Morton order. Let MortonDecode be the inverse of

MortonEncode. Place gadgets at distinct sites:

e Variables: for each ¢ € {0,...,n— 1}, place a variable source at
MortonDecode(i) with three reserved outgoing ports.

e Clauses: for each j € {0,...,m— 1}, place an OR_WAIT gadget at
MortonDecode(n + 7).

16

e AND tree: for levels =0, ..., [logy m|— 1, place AND nodes at indices
MortonDecode(byk) where b. =n+m+ Y., _[m/2"].

Deterministic routing and congestion. Connect each variable occur-
rence to its clause port via a threesegment Manhattan path (fixed axis or-
der), using dedicated tracks and local CROSS_* tiles at intersections. Each
path has length < 3(L—1). With ¢ paths, the raw wiring demand O(¢L) fits
in the L? volume since L > ¢¢'/2 by construction.

Output and decoder. Clause outputs feed the AND tree using the same
routing scheme. The final AND result is broadcast to an output set Out(¢) C
R(¢) of size ©(L3) and parityencoded; the decoder runs in O(|Out(¢)|) time.

Lemma 24 (Region size and diameter). With the above encoder, |R(¢)| =
L3 = poly(n) and any two points in R(¢p) have Manhattan distance < 3(L—
1).

Corollary 25 (Linear clause density). If m,f = O(n), then L = ©(n'/3)
and diam(R(¢)) = O(n'/3).

C.4 Key Block Rules
Wire Propagation:

If NE cell is WIRE_HIGH and SW cell is VACANT:
NE -> VACANT
SW -> WIRE_HIGH

OR Gate Evaluation:

If center has OR_WAIT and any input is WIRE_HIGH:
OR_WAIT -> OR_EVAL
Set output direction flag
Next step:
OR_EVAL -> WIRE_HIGH at output
Clear other cells

Fanout Split:

If FANOUT with WIRE_HIGH input:
Create 3 WIRE_HIGH outputs
FANOUT -> VACANT

17

Crossovers: Dedicated states CROSS_NS, CROSS_EW, and CROSS_UD allow
perpendicular wires to traverse the same block without interaction; payload
bits are preserved along axes.

NOT Gate: An inline NOT_GATE tile inverts the incoming wire token
with fixed latency using the reversible subregisters of the block rule.

AND Gate Evaluation: An AND gadget accumulates required high
inputs under AND_WAIT, transitions to AND_EVAL when all inputs are present,
and emits a single WIRE_HIGH on its output in the next step.

Synchronization: Global levelization is enforced by SYNC_O/SYNC_1.
The conditional swap .S in the block map ensures propagation and evaluation
alternate in locked phases so tree levels advance in constant time per level
without races.

D Extended Examples

D.1 Example: Boolean Formula Evaluation
Consider the formula (1 V z2) A (mz1 V 23):

1. Variables placed at Morton positions 0, 1, 2

2. Clause 1 OR gate at position 3

3. Clause 2 OR gate at position 4

4. NOT gate inline with x; wire to clause 2

5. AND gate combines clause outputs

6. Result encoded using balanced-parity across n cells

CA execution with 1 = 1,20 = 0,23 = 1:

Tick 0-8: Signals propagate to gates (lattice traversal)

Tick 9-10: OR gates evaluate (outputs: 1, 1)

Tick 11-12: AND gate evaluates (output: 1)

Tick 13-16: Balanced-parity encoding spreads result

e Final: Must measure > n/2 cells to determine answer

18

D.2 Example: Graph Coloring

3-Coloring can be reduced to SAT with recognition-preserving properties:
1. Variables: z, . = “vertex v has color ¢”
2. Clauses:

e Each vertex has at least one color: \/ e Tue
e No vertex has two colors: =z, ¢, V 7%y ¢,

e Adjacent vertices differ: -z, . V 1z ¢
3. CA evaluates in O(n'/?logn) time

4. Result requires ©(n) measurements due to balanced-parity encoding

19

	Introduction
	Model separation
	Assumptions and scope (RS vs classical)
	Main Contributions

	Recognition Science: The Model and Classical Compilation
	Formal Framework
	Uniform CATM compilation

	The Cellular Automaton Demonstration
	The 16-State CA
	SAT Encoding

	The Fundamental Result
	Balanced-Parity Encoding
	Decisiontree lower bound (parity, standard)
	Why This Is Not A Quirk

	Recognition-Computation Tradeoffs
	Randomized CA Existential Mechanism
	Seeded encoder and hash constraints
	Gadgets and schedule
	Correctness and bounds

	Implications
	Classical implications (conditional and randomized)
	Backward deduction to deterministic
	Reinterpreting Existing Results

	Connections to Existing Two-Party Models
	Extension to Other NP-Complete Problems
	Implementation and Empirical Validation
	Empirical Results

	Related Work and Context
	Future Directions
	Conclusion
	Block-Rule Specification
	Explicit Reversible Block Function
	Mass Conservation

	Detailed Proofs
	Full Proof of Theorem 4

	Implementation Details
	Morton Encoding
	Block-Synchronous Update
	Encoder and 3D layout
	Key Block Rules

	Extended Examples
	Example: Boolean Formula Evaluation
	Example: Graph Coloring

