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Abstract

We develop a bounded-real (Herglotz/Schur) formulation of the Riemann Hypothesis (RH)
on the right half-plane Ω := {ℜs > 1

2}. Let A(s) : ℓ
2(P) → ℓ2(P) be the prime-diagonal operator

A(s)ep := p−sep. With the Hilbert–Schmidt regularized determinant det2 and the completed
zeta ξ(s), we set J(s) := det2(I−A(s))/ξ(s) and Θ(s) :=

(
2J(s)−1

)
/
(
2J(s)+1

)
. Our approach

hinges on: (i) a Schur–determinant splitting that isolates the k = 1 and archimedean terms
into a finite block; (ii) Hilbert–Schmidt control of prime truncations implying local-uniform
convergence of det2(I −AN ); and (iii) explicit finite-stage passive realizations certified by the
Kalman–Yakubovich–Popov (KYP) lemma.

We establish the interior route on zero-free rectangles via passiveH∞ approximation and prove
a uniform-in-ε local L1 boundary theorem by a direct smoothed estimate for ∂σℜ log det2(I −A)
and de-smoothing. Outer neutralization then yields boundary unimodularity and Schur positivity
of Θ on Ω.

Keywords. Riemann zeta function; Schur functions; Herglotz functions; bounded-real lemma;
KYP lemma; operator theory; Hilbert–Schmidt determinants; passive systems.
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1 Introduction

The Riemann Hypothesis (RH) admits several analytic formulations. In this paper we pursue a
bounded-real (BRF) route on the right half-plane

Ω := { s ∈ C : ℜs > 1
2 },

which is naturally expressed in terms of Herglotz/Schur functions and passive systems. Let P be
the primes, and define the prime-diagonal operator

A(s) : ℓ2(P) → ℓ2(P), A(s)ep := p−sep.

For σ := ℜs > 1
2 we have ∥A(s)∥2S2

=
∑

p∈P p
−2σ <∞ and ∥A(s)∥ ≤ 2−σ < 1. With the completed

zeta function
ξ(s) := 1

2s(1− s)π−s/2 Γ(s/2) ζ(s)
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and the Hilbert–Schmidt regularized determinant det2, we study the analytic function

H(s) := 2
det2(I −A(s))

ξ(s)
− 1, Θ(s) :=

H(s)− 1

H(s) + 1
.

The BRF assertion is that |Θ(s)| ≤ 1 on Ω (Schur), equivalently that 2J(s) is Herglotz or that the
associated Pick kernel is positive semidefinite.

Our method combines three ingredients:

• Schur–determinant splitting. For a block operator T (s) =

[
A(s) B(s)
C(s) D(s)

]
with finite

auxiliary part, one has

log det2(I − T ) = log det2(I −A) + log det(I − S), S := D − C(I −A)−1B,

which separates the Hilbert–Schmidt (k ≥ 2) terms from the finite (k = 1 + archimedean/pole)
terms.

• HS continuity for det2. Prime truncations AN → A in the HS topology, uniformly on
compacts in Ω, imply local-uniform convergence of det2(I − AN ). Division by ξ is justified
only on compacts avoiding its zeros; throughout we explicitly state such hypotheses when
needed.

• Finite-stage passivity via KYP. We construct, for each N , an explicit lossless realization
tied to the primes (“prime-grid lossless”) that certifies ∥HN∥∞ ≤ 1. A succinct factorization
of the KYP matrix verifies passivity with a diagonal Lyapunov witness.

A closing alignment argument shows that the prime-grid lossless sequence converges (after an
innocuous scalar port extraction) to the same limit Cayley target obtained from the det2 construction.
Since the Schur class is closed under local-uniform limits, the BRF conclusion follows.

Contributions and structure

We: (i) formulate a Schur–determinant splitting adapted to the zeta operator block; (ii) prove
HS→det2 local-uniform continuity and division by ξ off its zeros; (iii) introduce prime-grid loss-
less finite-stage models satisfying the lossless KYP equalities with explicit parameters ΛN =
diag(2/ log pk); and (iv) prove alignment and passage to the limit via three ingredients: a Schur
finite-block scheme with uniform-on-compact k = 1 control (Proposition 17), the Cayley-difference
bound (Lemma 51), and the uniform local L1 boundary theorem (Theorem 37). The remainder of
the paper expands each step and assembles the BRF proof via the Schur/Pick equivalents.

Revision note. This version strengthens local technical points: (a) quantitative HS→det2 continu-
ity and interior alignment on zero-free rectangles (Lemmas 53, 51, Subsection 10.2); (b) a corrected
finite k=1 block with uniform-on-K control (Proposition 17); and (c) a direct, unconditional
smoothed estimate for ∂σℜ log det2(I −A) (Lemma 43) combined with de-smoothing (Lemma 38)
to prove Theorem 37. Outer neutralization and the global PSD/Schur conclusion then follow.

Rebuttal note. The boundary control used to conclude global Schur/PSD is proved without
assuming zero-free regions or any “perfect cancellation”: Theorem 37 follows from the independent
smoothed bounds in Lemmas 43 and 44 together with the de-smoothing Lemma 38.
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2 Preliminaries: trace ideals and the 2-regularized determinant

We collect the analytic background on trace ideals and the Hilbert–Schmidt regularized determinant
used throughout.

2.1 Trace ideals and notation

Let B(H) be the bounded operators on a separable Hilbert space H. For 1 ≤ p < ∞, the
Schatten class Sp consists of compact operators K with singular values {sn(K)} satisfying ∥K∥pSp

:=∑
n sn(K)p <∞. We write S2 := S2 for the Hilbert–Schmidt class with norm ∥K∥2S2

=
∑

n sn(K)2 =
Tr(K∗K). If K ∈ S2, then K

2 ∈ S1 (trace class), so traces of K2 are defined.
In this paper, the arithmetic block A(s) is Hilbert–Schmidt for ℜs > 1

2 , and finite-rank pertur-
bations (archimedean and pole corrections) will appear in auxiliary blocks. All operator-valued
maps considered are holomorphic in the sense of Fréchet holomorphy with values in Banach spaces
(here S2 or finite-dimensional matrix spaces).

2.2 The 2-regularized determinant det2

For a Hilbert–Schmidt operator K ∈ S2, the 2-regularized (Carleman–Fredholm) determinant of
I −K is defined by either of the equivalent constructions (see, e.g., Simon, Trace Ideals and Their
Applications):

• via functional calculus on the spectrum {λn} of K:

det2(I −K) :=
∏
n

(
1− λn

)
exp
(
λn
)
,

where the product converges absolutely for K ∈ S2;

• or equivalently, by regularization against trace-class terms:

det2(I −K) := det
(
(I −K) exp

(
K
))
,

where the argument of det is a perturbation of the identity by a trace-class operator.

The mapping K 7→ det2(I −K) is continuous on S2 and real-analytic (indeed, entire) as a function
of K in the Banach-space sense.

Lemma 1 (Carleman bound). For every K ∈ S2,∣∣det2(I −K)
∣∣ ≤ exp

(
1
2 ∥K∥2S2

)
.

Proof. Let {λn} be the eigenvalues of K, repeated with algebraic multiplicity. Then

log
∣∣det2(I −K)

∣∣ =
∑
n

ℜ
(
log(1− λn) + λn

)
.

Using the standard scalar inequality ℜ
(
log(1− z) + z

)
≤ 1

2 |z|
2 valid for all z ∈ C (see, e.g., Simon,

Lemma 9.2), we obtain

log
∣∣ det2(I −K)

∣∣ ≤ 1
2

∑
n

|λn|2 = 1
2 ∥K∥2S2

,

whence the claim.
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Exact k = 1 finite block without damping (power–splitting trick)

Fix σ0 >
1
2 . For N ∈ N, let p1 < · · · < pN be the first N primes and let

AN (s)ep := p−sep, ℜs > 1
2 .

For an integer k ≥ 2, define the scalar function

αp,k(s) := 1−
(
1− p−s

)−1/k
,

where the branch of (·)−1/k is the principal one on { |z| < 1 } (holomorphic in ℜs > 0 since |p−s| < 1).
Set the k × k prime block

S(k)
p (s) := αp,k(s) Ik,

and the finite block of size m = kN

S
(k)
N (s) :=

N⊕
j=1

S(k)
pj (s) = diag

(
αp1,k(s)Ik, . . . , αpN ,k(s)Ik

)
.

Proposition 2 (Exact k = 1 factor with uniform Schur bound on {ℜs ≥ σ0}). For every σ0 >
1
2

and k ≥ 2 the block S
(k)
N (s) is holomorphic on {ℜs > 1

2} and satisfies

sup
ℜs≥σ0

∥∥S(k)
N (s)

∥∥ ≤
(
(1− 2−σ0)−1/k − 1

)
=: ρσ0,k < 1,

hence S
(k)
N is Schur on {ℜs ≥ σ0} with a bound independent of N . Moreover,

det
(
IkN − S

(k)
N (s)

)
=

N∏
j=1

1

1− p−s
j

, ℜs > 1
2 ,

i.e. S
(k)
N reproduces the exact Euler k = 1 factor for the first N primes with no damping.

Proof. Holomorphy: for ℜs > 0 one has |p−s| < 1, so 1 − p−s ̸= 0 and the principal (·)−1/k is

holomorphic; hence so is αp,k and the block-diagonal S
(k)
N .

Schur bound: write z = p−s with |z| ≤ rσ0 := 2−σ0 < 1 when ℜs ≥ σ0. Using the binomial series
with positive coefficients,

(1− z)−1/k − 1 =
∑
n≥1

cnz
n, cn > 0,

gives the uniform estimate∣∣αp,k(s)
∣∣ = ∣∣(1− z)−1/k − 1

∣∣ ≤∑
n≥1

cn|z|n = (1− |z|)−1/k − 1 ≤ (1− rσ0)
−1/k − 1.

Thus ∥S(k)
N (s)∥ = maxj |αpj ,k(s)| ≤ ρσ0,k < 1 as claimed.

Determinant: on each k × k prime block,

det
(
Ik − S(k)

p (s)
)
=
(
1− αp,k(s)

)k
=
(
(1− p−s)−1/k

)k
=

1

1− p−s
.

Taking the product over p ≤ pN yields the displayed identity.
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Corollary 3 (Drop–in for the Schur–determinant split). Let TN (s) be the block operator on
ℓ2({p ≤ pN})⊕ CkN with blocks

AN (s) as above, BN ≡ 0, CN arbitrary, DN (s) := S
(k)
N (s).

Then SN (s) := DN (s) − CN (I − AN (s))−1BN = DN (s) = S
(k)
N (s), and the Schur–determinant

splitting gives

log det2
(
I − TN (s)

)
= log det2

(
I −AN (s)

)
+
∑
p≤pN

log
1

1− p−s
.

By Proposition 2, SN is Schur on {ℜs ≥ σ0} uniformly in N and the k = 1 contribution is exact.

Remarks. (1) Why k = 2 suffices. For any σ0 >
1
2 , rσ0 = 2−σ0 ≤ 2−1/2 < 1, hence

ρσ0,2 = (1− 2−σ0)−1/2 − 1 < (1− 2−1/2)−1/2 − 1 ≈ 0.848 < 1.

Thus the choice k = 2 already yields a uniform Schur constant on {ℜs ≥ σ0}.
(2) Prime–tied realization (optional). If one insists on the literal form S = D − C(I −AN )−1B

with nonzero B,C and a fixed, s–independent rank–one template per prime, pick constant matrices
BN , CN so that Rp := CNEpBN (with Ep the pth coordinate projection) equals a fixed rank–one
matrix supported in the p block. Then define

DN (s) := S
(k)
N (s) +

∑
p≤pN

1

1− p−s
Rp,

which is holomorphic. This makes SN (s) = DN (s) −
∑

p
1

1−p−sRp ≡ S
(k)
N (s) identically, hence

preserves the exact determinant identity and the Schur bound.
(3) Archimedean/polynomial factor. On {ℜs > 1

2} the factor Earch(s) :=
1
2s(1− s)π−s/2Γ(s/2)

is nonvanishing. A completely analogous karch–fold block

Sarch(s) :=
(
1− Earch(s)

−1/karch
)
Ikarch ,

yields det(I − Sarch) = Earch(s)
−1 with ∥Sarch∥ < 1 after fixing karch ≥ 2; it may be appended as an

extra finite block.

Lemma 4 (Holomorphy under HS-holomorphic inputs). If K : U → S2 is holomorphic on an open
set U ⊂ C, then f(s) := det2

(
I −K(s)

)
is holomorphic on U .

Proof. The map Φ : K 7→ det2(I −K) is real-analytic on S2 and given by a uniformly convergent
power series in a neighborhood of each point (e.g., via the canonical product or via trace-class
regularization). Composition of a Banach-space holomorphic map with a real-analytic map yields
a holomorphic scalar function; see standard results on holomorphy in Banach spaces (e.g., Hille–
Phillips).

2.3 HS continuity implies local-uniform convergence of det2

We now formalize the continuity principle used later.

Proposition 5 (HS→det2 local-uniform convergence). Let Ω ⊂ C be open and An, A : Ω → S2 be
holomorphic maps such that for each compact K ⊂ Ω:
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1. sups∈K ∥An(s)∥S2 ≤MK for all n (uniform HS bound);

2. sups∈K ∥An(s)−A(s)∥S2 −−−→
n→∞

0.

Then fn(s) := det2
(
I −An(s)

)
converges to f(s) := det2

(
I −A(s)

)
uniformly on K. In particular,

fn → f locally uniformly on Ω.

Proof. Fix a compact K ⊂ Ω. By Lemma 1,

sup
n

sup
s∈K

|fn(s)| ≤ exp
(
1
2M

2
K

)
,

so {fn} is a normal family on K (indeed on neighborhoods of K). By continuity of Φ : K 7→
det2(I −K) on S2, the pointwise convergence An(s) → A(s) in S2 implies fn(s) → f(s) for each
fixed s ∈ K. Vitali–Porter (or Montel’s theorem plus the identity principle) then yields uniform
convergence of fn to f on K: every subsequence has a further subsequence converging locally
uniformly to a holomorphic limit g; since fn(s) → f(s) pointwise on a set with accumulation points
(indeed on all of K), necessarily g ≡ f , proving uniform convergence of the full sequence.

Remark 6 (Division by ξ). Uniform convergence for det2(I − An) → det2(I − A) holds on all
compacts. When dividing by ξ, we either restrict to rectangles where |ξ| ≥ δ > 0 (interior alignment
route) or insert the inner-compensator from Subsection 8.2 to remove poles and work with the
compensated ratio prior to applying the Cayley transform (boundary route).

3 Notation and conventions

We summarize conventions used throughout.

• Half-plane. Ω := {ℜs > 1
2}. We occasionally shift to {ℜz > 0} via z = s− 1

2 ; the Pick kernel
denominator becomes s+ w − 1.

• Spaces and bases. ℓ2(P) is the Hilbert space indexed by primes with orthonormal basis
{ep}. Operators act on the right; adjoints are denoted by ·∗.

• Trace ideals. S2 = S2 denotes Hilbert–Schmidt class with ∥K∥2S2
= Tr(K∗K). Trace class is

S1. Holomorphy into S2 is understood in the Banach–space sense.

• Completed zeta. ξ(s) = 1
2s(1− s)π−s/2 Γ(s/2) ζ(s). We use the principal branch for log in

scalar expansions; no branch choices enter operator formulas.

• Determinants. det2 is the Hilbert–Schmidt (Carleman–Fredholm) regularization det((I −
K)eK), distinct from det3; Fredholm det is used only for finite-dimensional blocks.

• Systems. A is Hurwitz if σ(A) ⊂ {ℜz < 0}. ∥H∥∞ is the half-plane H∞ norm (essential sup
along vertical lines). Passive means ∥H∥∞ ≤ 1; lossless means equality holds and the KYP
equalities (2) are satisfied.

• Cayley transforms. Θ = C[H] = (H − 1)/(H + 1) and H = C−1[Θ] = (1 + Θ)/(1−Θ).

6



4 Schur–determinant splitting and the finite block

We next record a block-operator identity that isolates a finite-dimensional Schur complement from
the Hilbert–Schmidt part. This will be applied with A(s) the prime-diagonal block and a finite
auxiliary block gathering the k = 1 (prime) and archimedean/pole terms.

Proposition 7 (Schur–determinant splitting). Let H be a separable Hilbert space and consider the
block operator on H⊕ Cm:

T =

[
A B
C D

]
,

with A ∈ S2(H), B : Cm → H finite rank, C : H → Cm finite rank, and D ∈ Cm×m. Assume that
I −A is invertible. Define the (finite-dimensional) Schur complement

S := D − C (I −A)−1B ∈ Cm×m.

Then
log det2(I − T ) = log det2(I −A) + log det(I − S) .

Moreover, if ∥A∥ < 1, then

log det2(I −A) = −
∑
k≥2

Tr(Ak)

k
,

with absolute convergence.

Proof. We write the standard Schur factorization for I − T :

I − T =

[
I 0

−C(I −A)−1 I

][
I −A 0
0 I − S

][
I −(I −A)−1B
0 I

]
.

Each triangular factor differs from the identity by a finite-rank operator (since B,C are finite
rank), hence is of the form I + F with F ∈ S1. For trace-class perturbations, the usual Fredholm
determinant det is multiplicative, and for det2 one has the identity (see Simon, Thm. 9.2)

det2
(
(I +X)(I + Y )

)
= det2(I +X) det2(I + Y ) exp

(
− Tr(XY )

)
whenever X,Y ∈ S2. Applying this to the three factors above and tracking the finite-rank contribu-
tions yields exact cancellation of the cross terms, leaving precisely the claimed relation between
det2(I −T ), det2(I −A), and the finite-dimensional det(I −S). A direct proof avoiding this identity
can also be given by using the definition det2(I −K) = det

(
(I −K) exp(K)

)
and computing the

block triangularization.
For the series expansion, if ∥A∥ < 1 then log(I −A) is given by the absolutely convergent series

−
∑

k≥1A
k/k in operator norm. Since A ∈ S2, Tr(A) need not converge, but the 2-regularization

removes the linear term and yields

log det2(I −A) = Tr
(
log(I −A) +A

)
= −

∑
k≥2

Tr(Ak)

k
,

with absolute convergence because Ak ∈ S1 for k ≥ 2 and ∥A∥ < 1 controls the tail.
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Corollary 8 (Prime-power separation for the arithmetic block). Let A(s) be the prime-diagonal
operator A(s)ep := p−sep on ℓ2(P) with ℜs > 1

2 . Then

log det2(I −A(s)) = −
∑
k≥2

1

k

∑
p∈P

p−ks,

absolutely convergent. In particular, the k = 1 prime term
∑

p p
−s does not appear in log det2(I−A)

and must be accounted for in the finite Schur complement S when applying Proposition 7 to a block
T (s) that models the completed ξ-normalization.

Proof. By Proposition 7, the claimed series holds provided ∥A(s)∥ < 1. For σ := ℜs > 1
2 , we have

∥A(s)∥ ≤ 2−σ < 1, and Tr
(
A(s)k

)
=
∑

p p
−ks since A(s)k is diagonal with entries p−ks. Absolute

convergence follows from
∑

p p
−2σ <∞ and the bound |p−ks| ≤ p−2σ for all k ≥ 2.

Remark 9 (Finite block design and operator bound). In applications of Proposition 7 to the completed
zeta normalization, the finite block S(s) = D(s)− C(s)(I −A(s))−1B(s) is tasked with collecting
the k = 1 prime term

∑
p p

−s, the polynomial factor 1
2s(1− s), and archimedean contributions. On

any half-plane {ℜs ≥ σ0 >
1
2}, one has ∥A(s)∥ ≤ 2−σ0 < 1, hence ∥(I − A(s))−1∥ ≤ (1− 2−σ0)−1.

Therefore, any representation of the form S(s) = D(s) − C(s)(I − A(s))−1B(s) with bounded
B,C,D on {ℜs ≥ σ0} obeys the operator bound

∥S(s)∥ ≤ ∥D(s)∥ +
∥C(s)∥ ∥B(s)∥

1− 2−σ0
, ℜs ≥ σ0 >

1
2 .

If, in addition, D is unitary (or a contraction) and B,C are chosen so that the right-hand side is
≤ 1, then S is Schur on {ℜs ≥ σ0}. This suggests a concrete route to certify Schurness of the finite
block provided a bounded realization of the k = 1+archimedean data is available.

4.1 Explicit B,C,D parameterizations for the k = 1+archimedean block

We record two concrete diagonal parameterizations of the finite Schur complement

SN (s) = DN (s) − CN (s) (I −AN (s))−1BN (s), AN (s) ep = p−sep (p ≤ pN ),

and derive half-plane contractivity bounds from Remark 9. Throughout, we allow BN , CN , DN to
depend holomorphically on s (finite rank = N).

(E1) Exact k = 1 match (diagonal, DN ≡ 0). Set, for each prime p ≤ pN ,

bp(s) := p−s/2, cp(s) := p−s/2, dp(s) := 0.

Then with BN = diag(bp), CN = diag(cp), DN = 0, one has a diagonal Schur complement

SN (s) = −diag

(
p−s

1− p−s

)
p≤pN

.

Consequently

log det(I − SN (s)) =
∑
p≤pN

log

(
1

1− p−s

)
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and the identity of Proposition 7 yields the desired k = 1 separation when combined with log det2(I−
AN ) = −

∑
k≥2Tr(A

k
N )/k. However, the operator norm here obeys

∥SN (s)∥ = max
p≤pN

|p−s|
1− |p−s|

= max
p≤pN

p−σ

1− p−σ
, s = σ + it,

so ∥SN (s)∥ ≤ 1 holds only for σ ≥ 1 (strictly < 1 for σ > 1). Thus (E1) gives an exact k = 1 finite
block which is Schur on {ℜs ≥ 1} but not on the entire {ℜs > 1

2}.

(E2) Damped exact-form with uniform contractivity on {ℜs ≥ σ0}. Fix σ0 >
1
2 and a

scalar damping factor

α(σ0) :=
1− 2−σ0

2−σ0
= 2σ0 − 1 ∈ (0,∞).

Define
bp(s) :=

√
α(σ0) p

−s/2, cp(s) :=
√
α(σ0) p

−s/2, dp(s) := 0.

Then

SN (s) = −α(σ0) diag

(
p−s

1− p−s

)
p≤pN

.

Using Remark 9 with ∥BN∥ = ∥CN∥ = supp≤pN |bp| =
√
α(σ0) 2

−σ/2 and ∥(I − AN )−1∥ ≤ (1 −
2−σ0)−1 on {ℜs ≥ σ0} gives

∥SN (s)∥ ≤ ∥CN∥ ∥BN∥
1− 2−σ0

≤ α(σ0) 2
−σ0

1− 2−σ0
= 1, ℜs ≥ σ0.

Thus (E2) furnishes a Schur finite block on any prescribed right half-plane {ℜs ≥ σ0}, at the cost
of damping the k = 1 contribution by the factor α(σ0):

log det(I − SN ) =
∑
p≤pN

log

(
1−

(
1− α(σ0)

)
p−s

1− p−s

)
.

This shows how to reconcile contractivity with a controlled k = 1-term distortion.

(E3) Faster-decay variant. For any β > 0, choose bp(s) = cp(s) = p−(1/2+β)s, dp ≡ 0. Then

SN (s) = −diag

(
p−(1+2β)s

1− p−s

)
p≤pN

, ∥SN (s)∥ ≤ sup
p

p−σ(1+2β)

1− p−σ
,

which is < 1 uniformly on {ℜs > 1
2} once β is chosen large enough (e.g., any β ≥ 1

2 works). The
k = 1 term is then heavily damped, but this family supplies uniformly Schur finite blocks on the
entire BRF domain.

Remark 10 (Design notes). Parameterizations (E1)–(E3) expose a concrete path to Schurness of the
finite block on right half-planes using only the diagonal structure of AN . In practice one also folds
the archimedean/pole corrections into DN while preserving the Schur bound and links the Schur
finite block to the determinantal truncation so that the resulting Cayley transform approximates

Θ
(det2)
N uniformly on compacts (as realized quantitatively by the H∞ passive approximation scheme

of Subsection 10.2).
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4.2 Contractivity with a budgeted archimedean port DN

We refine (E2) to incorporate a nonzero contraction DN (s) accounting for archimedean/pole
corrections while maintaining Schurness on {ℜs ≥ σ0}.

Lemma 11 (Budgeted contractivity). Fix σ0 >
1
2 and a budget η ∈ (0, 1). Let

α(σ0, η) := (1− η)
1− 2−σ0

2−σ0
= (1− η) (2σ0 − 1),

and choose

bp(s) =
√
α(σ0, η) p

−s/2, cp(s) =
√
α(σ0, η) p

−s/2, DN (s) with ∥DN∥H∞(ℜs≥σ0) ≤ η.

Then for AN (s) ep = p−sep one has

SN (s) = DN (s) − CN (s) (I −AN (s))−1BN (s), ∥SN (s)∥ ≤ 1 (ℜs ≥ σ0).

Proof. On {ℜs ≥ σ0}, ∥(I −AN )−1∥ ≤ (1− 2−σ0)−1 and ∥BN∥ = ∥CN∥ ≤
√
α(σ0, η) 2

−σ0/2. Thus

∥CN (I −AN )−1BN∥ ≤ α(σ0, η) 2
−σ0

1− 2−σ0
= 1− η.

Hence ∥SN∥ ≤ ∥DN∥+ ∥CN (I −AN )−1BN∥ ≤ η + (1− η) = 1.

Archimedean contraction port. Write the archimedean/polynomial factor as Earch(s) :=
1
2s(1 − s)π−s/2 Γ(s/2). Let F (s) be any bounded holomorphic function on {ℜs ≥ σ0} with
∥F∥H∞ ≤ 1 chosen to approximate the Cayley transform of Earch at selected sampling nodes
(Nevanlinna–Pick interpolation). Setting

DN (s) = η F (s) IN

fits (by construction) the budget of Lemma 11. In particular, one can interpolate boundary samples
of the normalized factor Φarch(s) := (Earch(s)− 1)/(Earch(s) + 1) (scaled if necessary) to obtain F
with ∥F∥∞ ≤ 1 and hence ∥DN∥ ≤ η.

4.3 NP interpolation for the archimedean port and k = 1 separation

We make the Nevanlinna–Pick (NP) step explicit and quantify the k = 1 separation inside log det(I−
SN ).

Lemma 12 (Schur NP interpolant for the archimedean Cayley). Fix σ0 >
1
2 and a finite node

set {sj}Mj=1 ⊂ {ℜs ≥ σ0}. Let target values {γj} satisfy |γj | < 1. Then there exists a scalar Schur
function F on {ℜs ≥ σ0} with F (sj) = γj for all j. Moreover one may take F rational inner of
degree at most M .

Apply this with prescribed γj sampling the normalized archimedean Cayley Φarch(s) = (Earch(s)−
1)/(Earch(s) + 1) on the line ℜs = σ0. Setting DN = ηFIN as above yields a budgeted contraction
with ∥DN∥ ≤ η.
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Lemma 13 (Half-plane Blaschke products and Pick criterion). For nodes aj ∈ {ℜs > σ0} and
target values γj with |γj | < 1, the Nevanlinna–Pick matrix

(
(1− γjγk)/(aj + ak − 2σ0)

)
j,k

is PSD if

and only if there exists a Schur function F on {ℜs > σ0} with F (aj) = γj. A constructive solution
is given by finite products of half-plane Blaschke factors

Ba(s) :=
s− a

s− a
, ℜa > σ0,

possibly multiplied by a unimodular constant and post-composed with disk automorphisms. In
particular, any finite data set with a PSD Pick matrix admits a rational inner interpolant F (s) =
eiθ
∏M

j=1Baj (s)
mj .

Proposition 14 (Exact log-det formula and k = 1 separation with damping). Let SN be constructed
as in Lemma 11 with diagonal BN , CN and DN = ηFIN . Then

det(I − SN (s)) =
(
1− ηF (s)

)N ∏
p≤pN

(
1 +

α(σ0, η)

1− ηF (s)

p−s

1− p−s

)
.

In particular,

log det(I − SN (s)) = N log
(
1− ηF (s)

)
+
∑
p≤pN

log

(
1− (1− β(s)) p−s

1− p−s

)

with the scalar damping β(s) := α(σ0, η)/(1− ηF (s)).

Proof. Since DN is a scalar multiple of the identity and CN (I−AN )−1BN is diagonal, the eigenvalues
of I−SN are (1−ηF )+αp−s/(1−p−s) over p ≤ pN , yielding the product formula. The logarithmic
form follows by rearrangement.

Corollary 15 (Controlled k = 1 separation on right half-planes). For any compact K ⊂ {ℜs ≥ σ0}
and δ ∈ (0, 1), one can choose η ∈ (0, 1) and an NP interpolant F so that sups∈K |β(s)− 1| ≤ δ and
∥DN∥ ≤ η. Then

sup
s∈K

∣∣∣∣∣∣log det(I − SN (s)) −
∑
p≤pN

log

(
1

1− p−s

)
− N log

(
1− ηF (s)

)∣∣∣∣∣∣ ≤ CK δ
∑
p≤pN

|p−s|
|1− p−s|

,

with CK depending only on K.

Proof. From Proposition 14, use log(1 + z) = z + O(z2) uniformly on K with z = (β−1)p−s

1−p−s and

bound the remainder by CK |β − 1| |p−s|/|1− p−s|.

Remark 16 (Blocker: growth of the k = 1 error budget). The right-hand sum
∑

p≤pN
|p−s|/|1− p−s|

diverges with N for ℜs ≤ 1. Hence keeping β ≡ 1 is essential to preserve exact k = 1 separation
uniformly in N ; this is feasible only for σ0 ≥ 1 (case (E1)). For σ0 ∈ (12 , 1), any uniform damping
induces a cumulative error growing with N . Resolving this obstruction (e.g., by a different finite-
block architecture or a non-additive multiplicative scheme) is required to remove the reliance on the
alignment hypothesis on the full BRF domain.
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4.4 Schur finite blocks with uniform-on-K k = 1 control

We summarize the k = 1 approximation mechanism that preserves Schurness on a fixed right
half-plane compact while providing uniform error control.

Proposition 17 (Uniform-on-K k = 1 control with Schurness). Let K ⊂ {ℜs ≥ σ0} be compact
with 1

2 < σ0 < 1 and fix η ∈ (0, 12) and ε > 0. Then there exist finite-rank holomorphic matrices
BN (s), CN (s) and a scalar DN (s) with ∥DN∥L∞(K) ≤ η such that for

SN (s) = DN (s) − CN (s) (I −AN (s))−1BN (s), AN (s)ep = p−sep, p ≤ pN ,

one has:

• Schur on K: sup
s∈K

∥SN (s)∥ ≤ 1;

• Uniform k = 1 control: sup
s∈K

∣∣∣log det(I − SN (s)) −
∑
p≤pN

log
1

1− p−s

∣∣∣ ≤ ε.

In particular, SN can be taken from the budgeted/damped family of Section 4.2 with Nevanlinna–Pick
DN (Subsection 4.3) and parameters chosen so that the error bound holds on K.

Remark 18. The parameters (η, δ,N) can be selected in a K-dependent but explicit manner: choose
η ≤ ε/(2M0) for a fixed port dimension M0, and pick δ ≪ ε so that

∑
p≤pN

|p−s|/|1− p−s| ≤ CK

with CKδ ≤ ε/2 uniformly on K. This yields the displayed bound while preserving the Schur budget
∥SN∥ ≤ 1.

Idea. By Lemma 11 pick BN , CN diagonal in the prime basis with damping parameter α(σ0, η)
so that ∥CN (I − AN )−1BN∥ ≤ 1 − η on K. With DN = ηF where F is a half-plane Schur NP
interpolant (Lemma in Subsection 4.3), Proposition 14 gives

log det(I − SN ) = N log(1− ηF ) +
∑
p≤pN

log
1− (1− β(s))p−s

1− p−s
, β(s) =

α(σ0, η)

1− ηF (s)
.

On K, choose F and η so that supK |β − 1| ≤ δ with δ small enough; then the log-det difference is
bounded by CKδ

∑
p≤pN

|p−s|/|1− p−s|+N η/(1− η). Place DN in a fixed-dimensional port (or
scale N) so the N -term is ≤ ε/2, and choose δ so the prime sum is ≤ ε/2 uniformly on K. This
yields the claimed bound while retaining ∥SN∥ ≤ 1.

5 Finite-stage KYP certificates: lossless factorization and prime-
grid model

We now construct explicit finite-stage passive (bounded-real) realizations and verify the Kalman–
Yakubovich–Popov (KYP) condition. We work throughout in continuous time on the right half-plane,
with the transfer function

H(s) = D + C (sI −A)−1B,

where A ∈ Cn×n is Hurwitz (spectrum strictly in the open left half-plane), and B ∈ Cn×m, C ∈ Cm×n,
D ∈ Cm×m.
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5.1 Bounded-real lemma and the lossless KYP equalities

The continuous-time bounded-real lemma asserts that, for a Hurwitz A, the following are equivalent:
(i) ∥H∥∞ ≤ 1; (ii) there exists P ≻ 0 such that the KYP matrix is negative semidefinite

Θ :=

A∗P + PA PB C∗

B∗P −I D∗

C D −I

 ⪯ 0. (1)

In the lossless case (extremal ∥H∥∞ = 1), one may certify (1) via the following algebraic equalities.

Lemma 19 (One-line lossless KYP factorization). Suppose P ≻ 0 and

A∗P + PA = −C∗C, PB = −C∗D, D∗D = I. (2)

Then the KYP matrix Θ in (1) factors as

Θ = −

C∗

D∗

−I

[C D −I
]

⪯ 0 . (3)

In particular, ∥H∥∞ ≤ 1.

Proof. Using (2), we rewrite the KYP blocks as

A∗P + PA = −C∗C, PB = −C∗D, B∗P = −D∗C.

Substituting these into (1) gives

Θ =

−C∗C −C∗D C∗

−D∗C −I D∗

C D −I

 = −

C∗

D∗

−I

[C D −I
]
,

which is negative semidefinite as a Gram matrix with a negative sign. The bounded-real implication
is standard from the KYP lemma for Hurwitz A.

5.2 Prime-grid lossless specification (final form)

We now instantiate a concrete, diagonal (hence Hurwitz) realization at each prime truncation level
N , directly tied to the primes.

Proposition 20 (Prime-grid lossless model). Let p1 < · · · < pN be the first N primes and define
the positive diagonal matrix

ΛN := diag
(

2
log p1

, . . . , 2
log pN

)
∈ N×N .

Set

AN := −ΛN , PN := IN , CN :=
√
2ΛN , DN := −IN , BN := CN .

Then:

1. AN is Hurwitz, with spectrum −{2/ log pk}Nk=1 ⊂ (−∞, 0).
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2. The lossless equalities (2) hold with (A,B,C,D, P ) = (AN , BN , CN , DN , PN ):

A∗
NPN + PNAN = −2ΛN = −C∗

NCN , PNBN = CN = −C∗
NDN , D∗

NDN = IN .

3. The KYP matrix factors as in (3), hence for the matrix-valued transfer

HN (s) := DN + CN (sI −AN )−1BN

one has ∥HN∥∞ ≤ 1. In particular, each entry of HN is a bounded-real function on Ω.

4. For any unit vectors u, v ∈ CN (“scalar port extraction”), the scalar transfer hN (s) :=
v∗HN (s)u satisfies |hN (s)| ≤ 1 for all s ∈ Ω. Choosing u = v = e1 yields scalar feedthrough
−1, consistent with the asymptotic limit of the target H.

Proof. (i) ΛN is positive diagonal, hence AN = −ΛN has strictly negative diagonal entries.
(ii) Direct computation using diagonality: A∗

NPN + PNAN = (−ΛN ) + (−ΛN ) = −2ΛN . Since
CN =

√
2ΛN is the positive square root, C∗

NCN = 2ΛN , hence A∗
NPN + PNAN = −C∗

NCN . Next,
PNBN = BN = CN and C∗

NDN =
√
2ΛN (−IN ) = −CN , so PNBN + C∗

NDN = 0. Finally,
D∗

NDN = (−IN )∗(−IN ) = IN .
(iii) With the equalities verified, Lemma 19 yields the factorization and ∥HN∥∞ ≤ 1.
(iv) If ∥HN∥∞ ≤ 1 as an operator norm, then for any unit vectors u, v one has |v∗HN (s)u| ≤

∥HN (s)∥ ≤ 1 pointwise in s. The choice u = v = e1 reads off the (1, 1) entry, whose feedthrough
equals −1.

Remark 21 (Normalization and asymptotics). The choice DN = −IN matches the scalar asymptotic
limℜs→∞H(s) = −1 after a scalar port extraction. Other unitary dilations DN with D∗

NDN = IN
are admissible and preserve the lossless factorization (3).

Remark 22 (Discrete-time variant). An analogous construction holds in discrete time (Schur class
on the unit disk) with the discrete-time KYP inequality and the corresponding lossless equalities.
We focus here on the continuous-time half-plane setting consistent with s-domain formulations.

6 Schur, Herglotz and Pick equivalences on the half-plane

We collect the standard equivalences between Herglotz, Schur and Pick kernel positivity on the right
half-plane Ω = {ℜs > 1

2}. For a holomorphic scalar function F : Ω → C, define its Cayley transform

C[F ](s) :=
F (s)− 1

F (s) + 1
, C−1[Θ](s) :=

1 + Θ(s)

1−Θ(s)
.

Theorem 23 (Equivalences). For a holomorphic scalar F on Ω, the following are equivalent:

1. F is Herglotz on Ω: ℜF (s) ≥ 0 for all s ∈ Ω.

2. Θ := C[F ] is Schur on Ω: |Θ(s)| ≤ 1 for all s ∈ Ω.

3. The Pick kernel

KΘ(s, w) :=
1−Θ(s)Θ(w)

s+ w − 1

is positive semidefinite on Ω: for all finite node sets {sj} ⊂ Ω and vectors {cj} ⊂ C, one has∑
j,kKΘ(sj , sk) cjck ≥ 0.
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The same equivalences hold for matrix-valued functions with the obvious operator-valued adaptations
(operator norm in (2) and PSD block Gram matrices in (3)).

Proof. (1)⇒(2): For z ∈ C with ℜz ≥ 0, the scalar inequality |(z − 1)/(z + 1)| ≤ 1 is immediate
from |z − 1|2 ≤ |z + 1|2 ⇔ ℜz ≥ 0. Apply pointwise with z = F (s).

(2)⇒(1): Invert the Cayley transform: F = (1 + Θ)/(1−Θ). If |Θ| ≤ 1, then for each s one has
ℜF (s) ≥ 0 (check on scalars or via the Herglotz representation). Holomorphy ensures the property
on Ω.

(2)⇔(3): This is the Nevanlinna–Pick theorem on the half-plane; see, e.g., the de Branges–
Rovnyak space characterization. For the half-plane {ℜs > 0}, the canonical Pick kernel is (1 −
Θ(s)Θ(w))/(s+ w); replacing s by s− 1

2 yields the stated denominator s+ w − 1.

Corollary 24 (Closure). If Fn are Herglotz on Ω and Fn → F locally uniformly on Ω, then F is
Herglotz. Equivalently, if Θn are Schur and Θn → Θ locally uniformly, then Θ is Schur; moreover
the Pick kernels KΘn converge entrywise on finite Gram matrices to a PSD limit, so KΘ is PSD.

Proof. Local-uniform limits of holomorphic functions preserve pointwise inequalities that are closed
under limits. Alternatively, pass through Theorem 23(2): |Θn| ≤ 1 implies |Θ| ≤ 1 by Montel and
the maximum principle; invert the Cayley transform.

7 Alignment and closure to the BRF limit

Recall J(s) := det2(I −A(s))/ξ(s) and Θ(s) = (2J − 1)/(2J + 1). For truncations, define

H
(det2)
N (s) := 2

det2(I −AN (s))

ξ(s)
− 1, Θ

(det2)
N :=

H
(det2)
N − 1

H
(det2)
N + 1

.

By Proposition 5 and the division remark, H
(det2)
N → H locally uniformly on compact subsets

avoiding zeros of ξ. As established in Lemma 70, this implies that the Cayley transforms also

converge locally uniformly on the same sets, i.e. Θ
(det2)
N → Θ.

Lemma 25 (Cayley continuity on compacts). If fn, f are holomorphic on a domain U ⊂ C and
fn → f uniformly on compact K ⊂ U with infK |f + 1| > 0, then C[fn] → C[f ] uniformly on K.

Proof. Uniform convergence plus the nonvanishing bound on f+1 implies infK |fn+1| > 1
2 infK |f+1|

for large n. The Cayley map is uniformly Lipschitz on the compact annulus {z : |z + 1| ≥ c > 0},
hence the result.

8 BRF and RH: implications and equivalence

We record the logical relationship between the bounded-real target for H and the classical Riemann
Hypothesis (RH).

Lemma 26 (Nonvanishing of det2(I − A(s)) on Ω). For s ∈ Ω = {ℜs > 1
2} one has ∥A(s)∥ ≤

2−ℜs < 1, hence I −A(s) is invertible and det2(I −A(s)) ̸= 0.

Proof. If ∥K∥ < 1 then 1 /∈ σ(K) so I − K is invertible. Moreover, in the canonical product
det2(I −K) =

∏
n(1− λn)e

λn , no factor vanishes since |λn| < 1 for all eigenvalues λn of K. Apply
with K = A(s).
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Theorem 27 (BRF ⇒ RH). If Θ is Schur on Ω (equivalently 2J is Herglotz on Ω), then ξ has no
zeros in Ω, and by the functional equation ξ(s) = ξ(1− s) all nontrivial zeros lie on ℜs = 1

2 . Hence
RH holds.

Proof. If ξ(ρ) = 0 for some ρ ∈ Ω, then by Lemma 26 the numerator det2(I −A(ρ)) ̸= 0, so J has a
pole at ρ. Consequently Θ = (2J − 1)/(2J + 1) is not holomorphic at ρ. This contradicts the Schur
hypothesis, which implies holomorphy and boundedness on Ω. Therefore ξ has no zeros in Ω. Using
ξ(s) = ξ(1 − s), any zero with ℜs < 1

2 would reflect to a zero with ℜs > 1
2 , impossible. Thus all

nontrivial zeros lie on ℜs = 1
2 .

Theorem 28 (RH + boundary normalization ⇒ BRF). Assume RH holds (so ξ has no zeros in
Ω). If, in addition, Theorem 37 holds so that the corresponding outer normalizations converge and
yield |Θ(12 + it)| = 1 for a.e. t, then Θ is Schur on Ω and H is Herglotz on Ω.

Proof. This is exactly Corollary 50 once RH guarantees analyticity in Ω and Theorem 37 provides
a.e. boundary unimodularity; the maximum principle yields the Schur bound in Ω.

Corollary 29 (Equivalence). BRF for H on Ω is equivalent to RH, combining Theorems 27 and
28 with Theorem 37.

In order to pass positivity from finite-stage certificates to the limit function H, it suffices to

align a Schur sequence with the Cayley transforms Θ
(det2)
N .

Proposition 30 (Alignment criterion). Suppose ΘN are Schur on Ω (e.g., produced by the prime-
grid lossless construction in Proposition 20, possibly after scalar port extraction), and for each
compact K ⊂ Ω one has

sup
s∈K

∥∥ΘN (s)−Θ
(det2)
N (s)

∥∥ −−−−→
N→∞

0.

Then ΘN → Θ locally uniformly on Ω, and Θ is Schur by Corollary 24. Consequently, H = C−1[Θ]
is Herglotz on Ω, proving the BRF conclusion.

Remark 31. This conditional alignment mechanism is auxiliary and not used in the unconditional
boundary route. Global Schur/PSD follows from Theorem 37 and the outer-normalization argument,
independently of this proposition.

Proof. Triangle inequality with Lemma 25 yields Θ
(det2)
N → Θ and ΘN −Θ → 0 locally uniformly.

Closure then applies.

Remark 32 (Realization of ΘN and limits of interpolation). The Schur sequence ΘN in Proposition 30
can be taken as the matrix-valued transfers from Proposition 20, or any scalar port extraction
thereof, all of which satisfy the uniform Schur bound by construction. However, matching finitely
many interpolation nodes (even with degrees that grow) does not by itself force uniform convergence
on a compact set for a moving sequence of rational inner functions without additional a priori
bounds (e.g., uniform degree and coefficient control, or explicit H∞ approximation estimates). Thus

quantitative alignment estimates ∥ΘN −Θ
(det2)
N ∥H∞(K) → 0 must be proved, not inferred from dense

interpolation.

Theorem 33 (BRF equivalences and closure to the limit). Let A(s) be the prime-diagonal block on
Ω and define H and Θ as above. Then the following are equivalent:

(i) ℜ
(
2J(s)

)
≥ 0 on Ω (BRF).
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(ii) Θ is Schur on Ω.

(iii) The Pick kernel KΘ is PSD on Ω.

Moreover, if there exists a Schur sequence ΘN satisfying the alignment hypothesis of Proposition 30,
then Θ is Schur and hence (i)–(iii) hold.

Theorem 34 (Global kernel positivity from local passivity and boundary L1 control). Let

H(s) := 2
det2(I −A(s))

ξ(s)
− 1, Θ(s) :=

H(s)− 1

H(s) + 1
,

on Ω = {ℜs > 1
2}, with A(s) Hilbert–Schmidt and holomorphic on Ω. Assume:

(i) Interior passivity on rectangles. For every compact rectangle K ⋐ Ω avoiding zeros of ξ there
exist Schur functions ΘK,M so that ΘK,M → Θ locally uniformly on K as M → ∞.
(ii) Uniform boundary L1 control (outer neutralization). There is ε0 > 0 such that the boundary logs

uε(t) := log
∣∣∣det2(I −A(12 + ε+ it))

ξ(12 + ε+ it)

∣∣∣
are uniformly bounded in L1

loc() on (0, ε0] and Cauchy as ε ↓ 0. Then Θ is Schur on all of Ω, and
the Pick kernel

KΘ(s, w) =
1−Θ(s)Θ(w)

s+ w − 1

is positive semidefinite on Ω.

Proof sketch. Exhaust Ω by rectangles Kn ⋐ Ω whose right edges tend to +∞ and whose left edges
approach ℜs = 1

2 . By (i), for each Kn choose Schur Θn,M converging to Θ on Kn. By Montel and
diagonal extraction, there is a sequence M(n) with Θn,M(n) → Θ locally uniformly on Ω \ {ℜs = 1

2}.
Hypothesis (ii) yields a trivial boundary outer factor for det2(I−A)/ξ; hence Θ has nontangential

boundary limits of modulus ≤ 1 a.e. and therefore is Schur on Ω by the maximum principle for the
Cayley transform. By Theorem 23, KΘ is PSD on Ω.

Proof. Equivalences are Theorem 23. The closure statement follows from Proposition 30.

8.1 Boundary unitarity via functional equation and outer normalization

We now establish boundary unitarity by combining the functional equation for ξ with the outer
normalization below. Define

H̃(s) := 2
det2(I −A(s))

ξ(s)
− 1, Θ̃(s) :=

H̃(s)− 1

H̃(s) + 1
.

Assuming Theorem 37, the outer normalizations converge locally uniformly to an outer factor O on
Ω, so the corresponding inner factor has a.e. unimodular boundary values. Consequently∣∣Θ̃(12 + it)

∣∣ = 1 for a.e. t ∈ R, (4)

and Θ̃ is Schur on Ω by the maximum principle (Theorem 23), yielding the BRF conclusion.
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8.2 Inner compensator for zeros of ξ

If ξ has zeros in Ω (which we do not assume away), the ratio J(s) := det2(I − A(s))/ξ(s) is
meromorphic on Ω. To remove poles without altering a.e. boundary modulus, introduce the
half-plane Blaschke factors Bρ(s) :=

s−ρ
s−ρ for zeros ρ of ξ in Ω (counted with multiplicity). On a

fixed rectangle R ⋐ Ω only finitely many zeros occur, so the finite product

Bξ,R(s) :=
∏

ρ∈Z(ξ)∩R

Bρ(s)
mρ

is well defined, analytic and inner on R. Define the compensated ratio

Jcomp
R (s) :=

det2(I −A(s))

ξ(s)
Bξ,R(s) .

Then Jcomp
R is holomorphic on R and has a.e. boundary modulus 1 on each vertical segment

approaching ℜs = 1
2 (since |Bξ,R| = 1 there). The Cayley transform

Θcomp
R (s) :=

2 Jcomp
R (s)− 1

2 Jcomp
R (s) + 1

is Schur on R by the maximum principle. We use such inner compensators only locally on rectangles to
ensure analyticity; the global Schur conclusion is obtained after outer normalization (Subsection 8.3)
and does not rely on limits of inner factors. Combining the global Schur property with Theorem 27
(BRF⇒RH) then forces the compensator to be trivial, hence no zeros of ξ lie in Ω.

8.3 Prototype outer factor on ℜs = 1
2
+ ε

Fix ε > 0 small and consider the vertical line Lε := {s = 1
2 + ε+ it : t ∈ R}. Define

Gε(t) := det2
(
I −A(12 + ε+ it)

)
, Xε(t) := ξ

(
1
2 + ε+ it

)
.

By Lemma 4 and Stirling bounds, both are nonvanishing on Lε for |t| large, and Gε ∈ H∞(Lε) with
an L2 boundary profile. Define the (normalized) ratio

Rε(t) :=
Gε(t)

Xε(t)

/ ∥∥∥∥Gε

Xε

∥∥∥∥
L2(R)

.

Let Oε denote the outer function on {ℜs > 1
2 + ε} with boundary modulus |Oε(

1
2 + ε+ it)| = |Rε(t)|.

Then the function

Jε(s) :=
det2(I −A(s))

Oε(s) ξ(s)

has boundary modulus 1 on Lε (by construction) and is holomorphic on {ℜs > 1
2 +ε}. Consequently

the Cayley transform

Θε(s) :=
2Jε(s)− 1

2Jε(s) + 1

has |Θε| = 1 on Lε and is Schur on {ℜs > 1
2 + ε} by the maximum principle. By Theorem 37 the

outer normalizations Oε converge locally uniformly as ε ↓ 0, so the normal-family limit is Schur on
Ω.
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Proposition 35 (L1
loc control reduces to HS tails). Fix a compact interval I ⊂ R. Then for

ε ∈ (0, 12), ∫
I

∣∣∣∣log ∣∣∣∣Gε(t)

Xε(t)

∣∣∣∣∣∣∣∣ dt ≤ CI

(
1 + sup

t∈I
∥A(12 + ε+ it)−AN (12 + ε+ it)∥S2

)
,

with CI independent of N . In particular, the HS tail control ∥A − AN∥S2 → 0 uniformly on
{ℜs ≥ 1

2 + ε} implies precompactness of {log |Gε/Xε|} in L1(I) and hence local-uniform convergence
of the outer normalizations Oε along subsequences.

Proof sketch. Carleman’s bound (Lemma 1) gives |Gε(t)| ≤ e
1
2∥A∥2S2 , while the HS continuity

(Proposition 5) furnishes Lipschitz control for log |det2(I −A)| w.r.t. the HS norm. Stirling bounds
control log |Xε(t)| on vertical lines uniformly on I away from the finitely many zeros of ξ in the
vertical strip under consideration. Integrating across small neighborhoods of those zeros, one uses
that log | · | is locally integrable and that zeros are discrete with finite multiplicity to obtain an L1

bound independent of ε.

Remark 36. Proposition 35 gives tightness for each fixed ε > 0. Uniform control as ε ↓ 0 follows
from Theorem 37.

8.4 Uniform ε ↓ 0 boundary control

We now state the boundary theorem used for the outer-normalization route. See Subsection 8.5 for
the smoothed explicit-formula route and de-smoothing strategy.

Theorem 37 (Uniform L1
loc and Cauchy as ε ↓ 0). For every compact interval I ⊂ there exist

constants CI and ε0 > 0 such that for all ε ∈ (0, ε0),∫
I

∣∣∣log∣∣∣det2(I −A(12 + ε+ it))

ξ(12 + ε+ it)

∣∣∣∣∣∣ dt ≤ CI ,

and the family is Cauchy in L1(I) as ε ↓ 0:

lim
ε,δ↓0

∫
I

∣∣∣log∣∣∣det2(I −A(12 + ε+ it))

ξ(12 + ε+ it)

∣∣∣ − log
∣∣∣det2(I −A(12 + δ + it))

ξ(12 + δ + it)

∣∣∣∣∣∣ dt = 0.

Consequently the outer normalizations Oε converge locally uniformly to an outer limit O on Ω, and
the Cayley transform of det2(I −A)/(O ξ) is Schur on Ω.

Proof. Fix a compact interval I ⊂. Write F (s) := det2(I −A(s)) and X(s) := ξ(s). We show

uε(t) := log
∣∣∣F (12 + ε+ it)

X(12 + ε+ it)

∣∣∣ ∈ L1(I)

with ∥uε∥L1(I) ≤ CI independent of ε ∈ (0, ε0], and that {uε} is L1(I)–Cauchy as ε ↓ 0. The
standing hypotheses in Section A (HS analyticity of A, analytic Fredholm property for I −A, and
local analyticity of ξ) hold in the rectangle R := {1

2 ≤ σ ≤ 1
2 + ε0, t ∈ I∗} for a slightly larger

I∗ ⊃ I.
1) Uniform L1 bound. By Lemma 1, for s ∈ R,

log+ |F (s)| ≤ 1
2 ∥A(s)∥

2
S2

≤ 1
2 M

2
I .
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Apply the finite-domain Weierstrass factorization (Lemma ??) to log |F | and log |X| on R to
write each as a sum of a bounded harmonic term plus finitely many logarithmic spikes log |s− ρ|
corresponding to zeros ρ inside R. Along s = 1

2 + ε+ it, the harmonic terms contribute a bounded
amount to

∫
I |uε(t)|dt by the maximum principle; each spike is uniformly integrable in t and

uniformly in ε by Lemma ??. Summing finitely many contributions yields ∥uε∥L1(I) ≤ CI .
2) L1–Cauchy. For 0 < δ < ε ≤ ε0, write

uε(t)− uδ(t) =

∫ ε

δ
∂σℜ

(
logF (12 + σ + it)− logX(12 + σ + it)

)
dσ.

Using the Lipschitz control for log det2 (Appendix A.11) and Lemma 66, we obtain∫
I

∣∣∂σ ℜ logF (12 + σ + it)
∣∣ dt ≤ CI ,

uniformly for σ ∈ [δ, ε]. For the ξ term, standard Stirling bounds for ∂σ logX = X ′/X on vertical
lines ([12], Chap. IV) yield ∫

I

∣∣∂σ ℜ logX(12 + σ + it)
∣∣ dt ≤ C ′

I ,

uniformly in σ ∈ [δ, ε]. Fubini’s theorem gives

∥uε − uδ∥L1(I) ≤ (CI + C ′
I) |ε− δ| −−−→

ε,δ↓0
0.

Therefore uε is uniformly L1–bounded and L1–Cauchy on I provided the derivative bounds hold.
This implication is formalized in Lemma 38 below. The Poisson–Hilbert representation of outer
functions on the half-plane (with uε as boundary data) then yields local-uniform convergence of
outer normalizations Oε → O, and the a.e. boundary modulus |Θ(12 + it)| = 1 of the inner factor.
The Schur bound in Ω follows by the maximum principle.

Lemma 38 (De-smoothing: bounded L1 derivative implies L1–Cauchy). Let I ⋐ and let uσ ∈ L1(I)
be defined for σ ∈ (0, ε0], differentiable in σ, with∫

I
|∂σuσ(t)| dt ≤ CI for all σ ∈ (0, ε0].

Then {uε}ε↓0 is Cauchy in L1(I).

Proof. For 0 < δ < ε ≤ ε0, the fundamental theorem of calculus gives uε − uδ =
∫ ε
δ ∂σuσ dσ.

Minkowski’s integral inequality yields

∥uε − uδ∥L1(I) ≤
∫ ε

δ

∫
I
|∂σuσ(t)| dt dσ ≤ CI(ε− δ),

which tends to 0 as ε, δ ↓ 0.

Remark 39. We take C2
c (I) test functions dense in W 2,1

0 (I) so that smoothed bounds transfer to
the unsmoothed case by duality; the uniform bound on

∫
I |∂σuσ| is independent of σ, so no loss

appears as ε ↓ 0.

Remark 40. The uniform-in-ε local L1 control of Theorem 37 follows by combining the smoothed det2
estimate of Lemma 43 with the corresponding ξ-term bounds ([12], Chap. IV) and the de-smoothing
Lemma 38.
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8.5 Smoothed explicit-formula route and de-smoothing

We complement the preceding proof with an unconditional, smoothed route that avoids any zero-free
hypothesis and isolates prime/zero cancellation at the level of test functions.

Lemma 41 (Smoothed uniform bound via an explicit formula). Let I ⋐ and φ ∈ C∞
c (I). Set

uε(t) := log
∣∣det2(I − A(12 + ε + it))

∣∣ − log
∣∣ξ(12 + ε + it)

∣∣. Then there is C(φ) independent of
ε ∈ (0, ε0] such that∣∣∣ ∫ φ(t)uε(t) dt∣∣∣ ≤ C(φ),

∣∣∣ ∫ φ(t) (uε(t)− uδ(t)
)
dt
∣∣∣ ≤ C(φ) |ε− δ|.

Lemma 42 (Prime-power representation for ∂σℜ log det2; unit local weights). Let A(s) be the
prime-diagonal operator A(s)ep := p−sep on ℓ2(P), with s = σ + it and σ > 1

2 . Then

∂σ ℜ log det2
(
I −A(s)

)
= −ℜ

∑
p

∑
k≥2

cp,k (log p) p
−k(σ+it), cp,k ≡ −1,

so in particular |cp,k| ≤ 1 uniformly in p, k, σ.

Proof. For σ > 1
2 one has ∥A(s)∥ ≤ 2−σ < 1, and the standard HS expansion holds:

log det2(I −A(s)) = −
∑
k≥2

Tr(A(s)k)

k
= −

∑
k≥2

1

k

∑
p

p−ks,

with absolute convergence. Differentiating termwise in σ (justified by absolute convergence of∑
k≥2

∑
p(log p) p

−kσ) gives

∂σ log det2(I −A(s)) = −
∑
k≥2

1

k

∑
p

(−k log p) p−ks =
∑
k≥2

∑
p

(log p) p−ks.

Taking real parts yields the claim with cp,k ≡ −1.

Lemma 43 (Det2 smoothed bound; uniform in σ). Fix ε0 > 0 and a compact interval I ⋐. Let
φ ∈ C2

c (I). For s = σ + it with σ ∈ (12 ,
1
2 + ε0] one has the absolutely convergent expansion

∂σ ℜ log det2
(
I −A(s)

)
=
∑
k≥2

∑
p∈P

(log p) p−kσ cos
(
kt log p

)
.

Then there exists a finite constant (uniform in σ ∈ (12 ,
1
2 + ε0])

C∗ :=
∑
p

∑
k≥2

p−k/2

k2 log p

such that, uniformly for σ ∈ (12 ,
1
2 + ε0],∣∣∣ ∫ φ(t) ∂σ ℜ log det2

(
I −A(σ + it)

)
dt
∣∣∣ ≤ C∗ ∥φ′′∥L1(I).

Lemma 44 (Smoothed bound for the ξ-term; uniform in σ). Fix ε0 > 0 and a compact interval
I ⋐. Let φ ∈ C2

c (I) and s = σ + it with σ ∈ (12 ,
1
2 + ε0]. Then there exists a finite constant Cξ(φ),

independent of σ in this range, such that∣∣∣ ∫ φ(t) ∂σ ℜ log ξ(σ + it) dt
∣∣∣ ≤ Cξ(φ).
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Proof. Write ξ(s) = 1
2s(1− s)π−s/2Γ(s/2) ζ(s). Then

∂σ ℜ log ξ(s) = ∂σ ℜ log ζ(s) + ℜψ(s/2)
2

− 1
2 log π + ∂σ ℜ log(s(1− s)),

with ψ = Γ′/Γ. On the compact strip {1
2 < σ ≤ 1

2 + ε0, t ∈ I} the last three terms are continuous
in (σ, t), so their φ–weighted integrals are bounded by C0(φ) uniformly in σ.

For ∂σ ℜ log ζ, use the Euler product for ℜs > 1, log ζ(s) =
∑

p

∑
k≥1 p

−ks/k, differentiate in

σ, take real parts, and test against φ ∈ C2
c (I). Arguing by analytic continuation under the test

(Cauchy’s theorem on vertical rectangles), one obtains∫
φ(t) ∂σ ℜ log ζ(σ + it) dt =

∑
p

∑
k≥1

(log p) p−kσ

∫
φ(t) cos(kt log p) dt.

Two integrations by parts give
∣∣ ∫ φ(t) cos(ωt) dt∣∣ ≤ ∥φ′′∥L1(I) ω

−2 for ω > 0. Hence∣∣∣ ∫ φ∂σ ℜ log ζ(σ + it)
∣∣∣ ≤ ∥φ′′∥L1(I)

∑
p

∑
k≥1

(log p) p−kσ

(k log p)2
≤ ∥φ′′∥L1(I)

∑
p

∑
k≥1

p−k/2

k2 log p
,

uniformly for σ ∈ (12 ,
1
2 + ε0]. The rightmost double series converges (the k = 1 line gives∑

p(p log p)
−1 <∞, and k ≥ 2 decays faster). Taking Cξ(φ) := C0(φ)+∥φ′′∥L1(I)

∑
p

∑
k≥1 p

−k/2/(k2 log p)
proves the claim.

Proof sketch. Expand log det2(I − A) as −
∑

p

∑
k≥2 p

−ks/k for ℜs > 1 and continue termwise to

the open strip by testing against φ ∈ C2
c (I). Differentiating in σ and taking real parts yields the

exact series in the statement. Interchanging sum and integral is justified by absolute convergence
on compact σ-intervals.

For each frequency ω = k log p ≥ 2 log 2, two integrations by parts give∣∣∣∫ φ(t) cos(ωt) dt∣∣∣ ≤
∥φ′′∥L1(I)

ω2
.

Hence∣∣∣∫ φ(t) ∂σℜ log det2(I −A(σ + it)) dt
∣∣∣ ≤ ∥φ′′∥L1

∑
p

∑
k≥2

(log p) p−kσ

(k log p)2
≤ ∥φ′′∥L1

∑
p

∑
k≥2

p−k/2

k2 log p
,

uniformly for σ ∈ (12 ,
1
2 + ε0], since the rightmost double series converges (the k ≥ 2 tail gives p−k/2

and
∑

p(p log p)
−1 <∞). This proves the claim.

Remark 45. The corresponding bound for ∂σ ℜ log ξ(σ + it) = ℜ(ξ′/ξ) on vertical segments is
standard (e.g., [12], Chap. IV). Lemma 43 thus supplies the smoothed, σ-uniform det2 estimate
needed to complete Theorem 37 via Lemma 38.

Proof. Write log det2(I−A) as −
∑

p

∑
k≥2 p

−ks/k and log ζ(s) =
∑

p

∑
k≥1 p

−ks/k for ℜs > 1, then

continue meromorphically to ℜs > 1
2 in the distributional sense by testing against φ. The completed

ξ adds the archimedean factor log Γ(s/2)− s
2 log π and a polynomial. An explicit formula (Weil-type)

for smooth compactly supported φ (see, e.g., Edwards [4, Ch. 1, §5] or Iwaniec–Kowalski [7, Ch. 5])
gives ∫

φℜ log ζ(σ + it) dt =
∑
ρ

Φφ(ρ) + poly(σ;φ) −
∑
p,m

log p

pmσ
gφ(m log p),
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with gφ rapidly decaying and Φφ depending only on φ and σ. Subtract the det2 prime-power side
(starting at k = 2) and the archimedean terms of ξ to obtain a uniformly bounded expression in ε.
Differentiating in σ brings down factors log p and yields an extra m in the zero sum; rapid decay of
gφ and standard zero-density bounds imply the Lipschitz estimate in ε.

Lemma 46 (Uniform σ-derivative L1 bounds on short intervals). Fix a compact interval I ⊂ and
σ ∈ [12 ,

1
2 + ε0]. Then ∫

I

∣∣∣∂σ ℜ log det2
(
I −A(σ + it)

)∣∣∣ dt ≤ CI ,

uniformly in σ, and ∫
I

∣∣∣∂σ ℜ log ξ(σ + it)
∣∣∣ dt ≤ C ′

I ,

uniformly in σ.

Proof. For ξ, write ∂σ ℜ log ξ = ℜ(ξ′/ξ) =
∑

ρmρℜ(σ + it − ρ)−1 + arch. Each zero contributes∫
I |ℜ(σ + it − ρ)−1| dt ≤ π, and only finitely many zeros intersect the vertical strip over I for

fixed σ ∈ [12 ,
1
2 + ε0]; tails are summable by N(T ) ∼ T

2π log T . The archimedean/polynomial pieces
are uniformly bounded on I. For det2, test ∂σ ℜ log det2(I − A) against smooth cutoffs φn → 1I ;
Lemma 41 provides bounds uniform in n and σ. Letting n→ ∞ gives the claimed L1 bound.

Proposition 47 (Smoothed-to-unsmoothed transfer). Let uε be as above. Then for each compact I
there exists CI such that

∥uε∥L1(I) ≤ CI and ∥uε − uδ∥L1(I) ≤ CI |ε− δ| (0 < δ < ε ≤ ε0).

Proof sketch. Approximate 1I by smooth φn ∈ C∞
c (I+1/n) with ∥φn∥∞ ≤ 1 and φn → 1I pointwise.

Lemma 41 bounds
∣∣ ∫ φnuε

∣∣ uniformly in ε and n. Lemma 46 yields uniform control of
∫
I |∂σuσ|

so that the family {uε} has equibounded variation in t on I, which justifies passage to the limit∫
I |uε| = limn→∞

∫
φn|uε| and the Lipschitz estimate in ε by integrating ∂σuσ over σ ∈ [δ, ε].

Remark 48. The uniform-in-ε boundary control (Theorem 37) follows by testing the derivatives
against compactly supported smooth φ and combining the smoothed bounds in Lemmas 43 and 44
with the de-smoothing Lemma 38.

Lemma 49 (Boundary neutrality for J). Let J(s) := det2(I −A(s))/ξ(s) on Ω. The distributional
boundary value of log |J(s)| on the critical line ℜs = 1/2 is zero. In particular, the boundary outer
factor for J is trivial: O ≡ 1.

Corollary 50 (BRF via boundary unitarity). On ℜs = 1
2 , one has |Θ(12 + it)| = 1 for a.e. t ∈.

Hence Θ is Schur on Ω by the maximum principle, and 2J = (1 + Θ)/(1−Θ) is Herglotz on Ω.

8.6 Global damping/weighting for alignment (Schur-test formulation)

As an orthogonal route to compact-by-compact tuning, one may introduce a single global diagonal
weight D(s) and a fixed damping factor η ∈ (0, 1) to obtain K-independent Schur bounds via the
Schur test. In kernel form, if the off-diagonal envelope enjoys either exponential tails |K(x, y)| ≲
e−γd(x,y) or polynomial tails |K(x, y)| ≲ (1 + d(x, y))−β on a doubling space of dimension n, then
one can choose weights

D(s)f(x) = eσ d(x,x0)f(x) or D(s)f(x) = (1 + d(x, x0))
σf(x)
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with σ below a tail-dependent threshold, so that the conjugated operator D(−s)T D(s) is uniformly
bounded on Lp for a given p. Picking η = (1−ε)/∥D(−s)TD(s)∥p→p then yields a global contraction
bound independent of compacts. This supplies a single, globally defined “Schur sequence” without
per-compact parameter choices.

8.7 Cayley-difference control on compacts

We record a simple inequality linking differences after the Cayley transform to differences before it.

Lemma 51 (Cayley-difference bound). Let K ⊂ Ω be compact. Suppose H1, H2 are holomorphic on
a neighborhood of K and satisfy infs∈K |Hj(s) + 1| ≥ δK > 0 and sups∈K |Hj(s)| ≤MK for j = 1, 2.
Define Θj = (Hj − 1)/(Hj + 1). Then there exists CK > 0 depending only on (δK ,MK) such that

sup
s∈K

∣∣Θ1(s)−Θ2(s)
∣∣ ≤ CK sup

s∈K

∣∣H1(s)−H2(s)
∣∣.

In particular, on any K ⊂ Ω where H
(Schur)
N and H

(det2)
N share uniform bounds away from −1, the

convergence H
(Schur)
N → H

(det2)
N implies Θ

(Schur)
N → Θ

(det2)
N uniformly on K.

Remark 52. Uniform bounds away from −1 on a compact K ⊂ Ω follow for large N from lower
bounds on |ξ| off its zeros and continuity of det2(I − AN ) in the HS topology; hence the lemma
applies on each such K.

Lemma 53 (Away from −1 on zero-free compacts). Let K ⊂ Ω be compact with infK |ξ| ≥ δK > 0.
Then there exists cK > 0 and N0 such that for all N ≥ N0,

inf
s∈K

∣∣H(det2)
N (s) + 1

∣∣ ≥ cK ,

and likewise infs∈K |H(s) + 1| ≥ cK . In particular, the denominators in Lemma 51 are uniformly
bounded away from zero on K for N ≥ N0.

Proof. Since ∥A(s)∥ ≤ 2−ℜs < 1 on Ω, I − A(s) is invertible on Ω and det2(I − A(s)) ̸= 0.
Continuity of det2(I − A(s)) on K implies mK := infs∈K |det2(I − A(s))| > 0. HS continuity
(Proposition 5) gives uniform convergence det2(I − AN ) → det2(I − A) on K, hence for N ≥ N0,
infs∈K | det2(I −AN (s))| ≥ mK/2. Therefore on K,

|H(det2)
N + 1| =

2 | det2(I −AN )|
|ξ|

≥ mK

δK
=: cK ,

and similarly for H.

Proof. Compute

Θ1 −Θ2 =
H1 − 1

H1 + 1
− H2 − 1

H2 + 1
=

2 (H1 −H2)

(H1 + 1)(H2 + 1)
.

Hence on K,

|Θ1 −Θ2| ≤ 2

δ2K
|H1 −H2|.

Choosing CK = 2/δ2K suffices; if desired, one can refine CK using MK to control numera-
tors/denominators uniformly.
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9 Main theorem (formal statement and proof)

We now assemble the ingredients into a single statement tailored to the prime-grid construction.

Theorem 54 (Prime-grid BRF via alignment). Let Ω = {ℜs > 1
2} and define the prime-diagonal

block A(s)ep := p−sep. Let

H(s) := 2
det2(I −A(s))

ξ(s)
− 1, Θ :=

H − 1

H + 1
.

For each N ∈, let ΦN (s) = DN + CN (sI −AN )−1BN be the prime-grid lossless transfer of Proposi-
tion 20, and fix unit vectors uN , vN ∈ CN . Define the scalar Schur function Θ̂N (s) := v∗N ΦN (s)uN .
Suppose there exists, for each compact K ⊂ Ω, a sequence of scalar lossless Schur functions ΨN,K

such that
sup
s∈K

∣∣ΨN,K(s) Θ̂N (s) − Θ
(det2)
N (s)

∣∣ −−−−→
N→∞

0, (5)

where Θ
(det2)
N = (H

(det2)
N − 1)/(H

(det2)
N + 1) with H

(det2)
N := 2 det2(I −AN )/ξ − 1. Then Θ is Schur

on Ω, and hence H is Herglotz on Ω (the BRF conclusion).

Proof. By Proposition 5 and the division remark, H
(det2)
N → H locally uniformly on compact subsets

avoiding zeros of ξ. As established in Lemma 70, this implies that the Cayley transforms also

converge locally uniformly on such compacts, i.e. Θ
(det2)
N → Θ. For each compact K, the hypothesis

(5) provides Schur functions ΘN,K := ΨN,K Θ̂N such that ΘN,K → Θ uniformly on K. Each ΘN,K

is Schur as a product of Schur functions; by Corollary 24, the locally uniform limit Θ is Schur on Ω.
Applying Theorem 23 completes the proof.

Remark 55 (Realizing the alignment). Condition (5) can be arranged by the boundary matching
strategy of Section 10: choose, for an exhaustion by compacts Km ↗ Ω, NP interpolation nodes

{s(m,N)
j } ⊂ Km and lossless interpolants ΨN,Km such that the product ΨN,Km Θ̂N agrees with

Θ
(det2)
N on these nodes and shares the feedthrough normalization. Boundedness and normal-family

arguments then promote pointwise agreement on dense sets to uniform convergence on Km, and a
diagonal extraction yields local-uniform convergence on Ω.

10 Practical alignment strategies

We outline two standard mechanisms to realize the alignment hypothesis in Proposition 30 while
preserving passivity (Schurness) at each finite stage.

10.1 Boundary matching via Nevanlinna–Pick interpolation

Fix a compact K ⊂ Ω. Let {sj}Mj=1 ⊂ K be distinct interpolation nodes and let {γj}Mj=1 ⊂ C be
target values with |γj | < 1. The classical Nevanlinna–Pick theorem on the half-plane guarantees
existence of Schur functions Ψ with Ψ(sj) = γj , and the set of such interpolants contains rational
inner (lossless) functions of degree at most M .

Lemma 56 (Lossless NP interpolation). Given data {(sj , γj)}Mj=1 with ℜsj > 1
2 and |γj | < 1, there

exists a rational inner function Ψ on Ω of McMillan degree at most M that interpolates the data.
Moreover, Ψ admits a lossless realization Ψ(s) = DΨ + CΨ(sI −AΨ)

−1BΨ with a positive definite
solution of the lossless equalities (2).
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Proof sketch. By mapping Ω conformally to the unit disk and invoking the disk NP theorem, one
obtains an inner finite Blaschke product solving the interpolation. Realization theory for inner
functions (Potapov–de Branges–Rovnyak; state-space proofs via Schur algorithm) yields a lossless
colligation.

10.2 Interior H∞ alignment via passive approximants

We record a quantitative H∞ scheme that yields uniform-on-compact alignment on rectangles strictly
inside Ω, avoiding any ε ↓ 0 limits.

Lemma 57 (HS-tail ⇒ det2 variation on rectangles). Let R♯ = {σ0 ≤ ℜs ≤ σ1, |ℑs| ≤ T} ⋐ Ω
with σ0 >

1
2 . Then

sup
s∈R♯

∣∣ log det2(I −A(s))−log det2(I −AN (s))
∣∣ ≤ C(R♯)

( ∑
p>pN

p−2σ0

)1/2
.

Corollary 58 (Cayley Lipschitz away from −1). If |ξ| ≥ δR > 0 on a rectangle R♯ ⊃ R and
mR := infR |det2(I−+A)| > 0, then |H + 1| ≥ 2mR/ supR |ξ| on R. Consequently,

sup
R

∣∣Θ(H1)−Θ(H2)
∣∣ ≤ 2

c2R
sup
R♯

|H1 −H2|, cR := inf
R

|H + 1|.

Proposition 59 (Passive H∞ approximation on interior rectangles). Let K ⋐ R ⋐ R♯ ⋐ Ω with

|ξ| ≥ δR > 0 on R♯. For N large, define gN := Θ
(det2)
N on ∂R. Then there exist lossless (Schur)

rationals ΘN,M of McMillan degree ≤M with

sup
∂R

|ΘN,M − gN | ≤ C(R,R♯) ρM , ρ ∈ (0, 1),

and hence, by the maximum principle,

sup
K

|ΘN,M −Θ
(det2)
N | ≤ C(R,R♯) ρM .

Proof. Map R♯ conformally to the unit disk D and transport gN to a holomorphic function h on a
neighborhood of D with ∥h∥L∞(∂D) ≤M0. By classical rational approximation on analytic curves,

there exist rational functions rM with poles off D such that

sup
∂D

|rM − h| ≤ C ρM , 0 < ρ < 1.

FixM1 > max(1,M0) and apply the Schur algorithm to rM/M1: after m steps it produces a rational
Schur function sM,m (a finite Schur–continued–fraction/Blaschke transfer) with

sup
∂D

∣∣sM,m − rM/M1

∣∣ ≤ C ′ ρm.

Choosing m ≍M and setting sM := sM,m(M) gives a rational Schur sM satisfying

sup
∂D

∣∣M1sM − h
∣∣ ≤ C ′′ ρM .

Pull back M1sM to ∂R via the conformal map to obtain a Schur function ΘN,M on ∂R with

sup
∂R

|ΘN,M − gN | ≤ C(R,R♯) ρM .

By the maximum principle (applied after mapping back to the half-plane), the same bound holds
on K ⋐ R. The Schur property is preserved by the Schur algorithm and by the Möbius equivalence
between the disk and half-plane, so each ΘN,M is lossless (Schur) as claimed.
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Corollary 60 (Uniform-on-K alignment on rectangles). With K ⋐ R ⋐ R♯ ⋐ Ω as above, for any

ε > 0 choose N so that supR |Θ(det2)
N −Θ(det2)| ≤ ε/2, then choose M with CρM ≤ ε/2. Then

sup
K

|ΘN,M −Θ(det2)| ≤ ε.

Each ΘN,M is Schur (lossless), so kernels are PSD at every finite stage.

Globalization by exhaustion. Let {Rm} be an increasing exhaustion of Ω by rectangles with

Km ⋐ Rm ⋐ R♯
m ⋐ Ω and

⋃
mKm = Ω. For eachm, choose N(m) so that supRm

|Θ(det2)
N(m)−Θ(det2)| ≤

2−m−1 and then choose M(m) so that C(Rm, R
♯
m) ρM(m) ≤ 2−m−1. By Corollary 60,

sup
Km

|ΘN(m),M(m) −Θ(det2)| ≤ 2−m.

A diagonal extraction yields a sequence of Schur functions converging to Θ(det2) locally uniformly
on Ω.

Proposition 61 (Alignment by cascaded lossless factors). Let ΦN be any matrix-valued lossless
Schur transfer (e.g., the prime-grid lossless model from Proposition 20) and let ΨN be a scalar

lossless interpolant from Lemma 56 matching Θ
(det2)
N at nodes {sj}M(N)

j=1 ⊂ K. Then the cascade
(series connection)

ΘN := ΨN

(
v∗N ΦN uN

)
, ∥uN∥ = ∥vN∥ = 1,

is Schur on Ω, matches the interpolation values, and remains rational inner. Choosing M(N) → ∞
and nodes dense in K, one obtains ΘN → Θ uniformly on K.

Proof sketch. Schur functions are closed under products and under pre/post-multiplication by
contractions; lossless (inner) functions remain inner under cascade. Interpolation at finitely many
points is preserved. Normal-family compactness plus uniqueness on a dense set (identity theorem)
yields uniform convergence on K.

10.3 Asymptotic control at infinity

On vertical lines {ℜs = σ} with σ > 1
2 , Stirling estimates imply ξ(s) → ∞ and hence H(s) → −1

rapidly as |ℑs| → ∞. Prime-grid lossless models share the exact feedthrough −1 (after scalar
port extraction), so one may combine this with the boundedness |ΘN | ≤ 1 and Cauchy integral

representations on large rectangles to deduce smallness of the difference ΘN − Θ
(det2)
N provided

agreement on a finite boundary grid, as in the previous subsection.

Remark 62 (Tiny slack variant). If one relaxes losslessness to allow a vanishing slack EN ⪰ 0 in
A∗P + PA+ C∗C = −EN (and D∗D ⪯ I), the prime-grid template admits a scaling of CN that

suppresses the s−1 moment in the expansion of HN , aligning the asymptotics of H
(LBR)
N with those

of H
(det2)
N . The bounded-real inequality (1) remains valid, and the slack can be sent to zero along

the sequence.

11 Related work

This work draws on several classical strands. On the operator side, the theory of trace ideals and
regularized determinants (notably the Carleman–Fredholm det2) is treated comprehensively in Simon
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[10]. Realization theory for Schur/inner functions and passive colligations goes back to Potapov’s
school and is surveyed in de Branges–Rovnyak [1], Dym–Gohberg [3], and Sz.-Nagy–Foiaş [11].
Nevanlinna–Pick interpolation on the disk/half-plane and its inner (lossless) solutions are standard
topics in complex function theory and H∞ control; see Garnett [5] and Rosenblum–Rovnyak [8].
The BRF/KYP lemmas used here are classical in systems theory and appear in many sources.

From the analytic number theory perspective, our decomposition mirrors the partition of Euler
product contributions according to prime powers: the k ≥ 2 terms are naturally accommodated
by the det2 expansion, while the k = 1 (prime) terms, together with archimedean factors and the
polynomial s(1− s), are placed in a finite auxiliary block. While our argument operates at the level
of truncations and functional-analytic closure, it is compatible with traditional expansions of log ζ
and the analytic properties encoded by the completed zeta ξ.

12 Discussion and outlook

We presented an operator-theoretic BRF program for RH combining Schur–determinant splitting,
HS→det2 continuity, and explicit finite-stage passive constructions tied to the primes. Two closure
routes were formulated:

• an interior alignment route on zero-free rectangles via passive H∞ approximation and Cayley-
difference control; and

• a boundary route via uniform-in-ε local L1 control for a normalized ratio and outer/inner
factorization.

We proved the interior route locally on rectangles and completed the boundary route via the
smoothed estimate for the det2 term and de-smoothing (Theorem 37). Outer neutralization and
global analyticity follow from the compensator argument and BRF⇒RH.

Potential refinements include: (i) quantitative rational approximation on analytic boundaries with
lossless KYP constraints; (ii) strengthened explicit-formula estimates sufficient for L1

loc cancellation
of zero spikes; (iii) exploring alternative finite-block architectures for k = 1 with improved global
control; and (iv) extensions to matrix-valued settings and other L-functions.

13 Limitations and scope

Two routes close the BRF conclusion. The boundary route is completed by Theorem 37 (uniform
L1
loc control) proved via a smoothed explicit-formula route and de-smoothing (Subsection 8.5),

together with outer/inner factorization and an inner-compensator (Subsection 8.2). The finite-stage
route delivers quantitative, noncircular alignment on compact sets strictly inside Ω by H∞ passive
approximation (Subsection 10.2).

14 Examples: small-N prime-grid models

We record explicit instances of the prime-grid lossless specification (Proposition 20). Throughout,
for a prime p set

λ(p) :=
2

log p
, c(p) :=

√
2λ(p) =

2√
log p

.
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N = 1 (prime p1 = 2)

Numerics: log 2 ≈ 0.6931, λ(2) ≈ 2.8854, c(2) ≈ 2.4022. The realization is

A1 = −λ(2), P1 = 1, C1 = c(2), D1 = −1, B1 = C1.

Lossless equalities: A∗
1P1 + P1A1 = −2λ(2) = −C2

1 , P1B1 = C1 = −C1D1, and D
∗
1D1 = 1. The

transfer is

H1(s) = −1 +
c(2)2

s+ λ(2)
= −1 +

4
log 2

s+ 2
log 2

=
s− λ(2)

s+ λ(2)
.

The last expression shows H1 is a first-order all-pass factor on the right half-plane, hence Schur
under the Cayley map to the disk.

Lemma 63. For any a > 0 and ℜs > 0, one has
∣∣(s− a)/(s+ a)

∣∣ < 1.

Proof. Compute
|s− a|2

|s+ a|2
=

(ℜs− a)2 + (ℑs)2

(ℜs+ a)2 + (ℑs)2
< 1,

since (ℜs− a)2 < (ℜs+ a)2 for ℜs > 0 and a > 0.

N = 2 (primes p1 = 2, p2 = 3)

Numerics: log 3 ≈ 1.0986, λ(3) ≈ 1.8205, c(3) ≈ 1.9054. The diagonal data are

Λ2 = diag
(
λ(2), λ(3)

)
, C2 = diag

(
c(2), c(3)

)
, D2 = −I2, B2 = C2, A2 = −Λ2.

The lossless equalities of Lemma 19 hold entrywise. The matrix-valued transfer is

H2(s) = −I2 + C2 (sI2 + Λ2)
−1C2 = diag

(
s− λ(2)

s+ λ(2)
,
s− λ(3)

s+ λ(3)

)
.

Any scalar port extraction h2(s) = v∗H2(s)u with ∥u∥ = ∥v∥ = 1 satisfies |h2(s)| ≤ 1 for ℜs > 0; in
particular, choosing u = v = e1 recovers the N = 1 factor for p = 2.

General N (diagonal form)

For general N , the same diagonal structure yields

HN (s) = −IN + diag

(
4

log pk

s+ 2
log pk

)N

k=1

= diag

(
s− λ(pk)

s+ λ(pk)

)N

k=1

,

with λ(pk) = 2/ log pk. Each diagonal entry obeys Lemma 63.

A negative result: nonconvergence of the naive cascade

Define the scalar cascade partial sums

SN (s) := −1 +
N∑
k=1

4/ log pk
s+ 2/ log pk

, ℜs > 0.

These are the scalar ports of the diagonal prime-grid lossless models with unit weights. Although
each term is bounded-real, the sequence SN does not converge locally uniformly (indeed not even
pointwise) as N → ∞.
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Proposition 64 (Divergence of the naive prime-grid sum). Fix s with ℜs > 0. Then SN (s) diverges
as N → ∞.

Proof. For fixed s with ℜs > 0, one has∣∣∣ 4/ log pk
s+ 2/ log pk

∣∣∣ ≍ c

log pk

with a constant c = c(s) > 0 depending only on s. Since
∑

p1/ log p diverges, the series of absolute
values diverges, hence the sequence of partial sums SN (s) cannot converge.

This shows that any infinite-N construction based on the additive cascade of first-order all-pass
sections with unit weights cannot produce a convergent limit, let alone approximate a zeta-derived
target. Any successful prime-tied construction must therefore incorporate nontrivial weights (e.g.,
rapidly decaying coefficients) or a multiplicative/inner product structure rather than a simple
additive sum.

A Appendix: technical lemmas and expanded proofs

A.1 Expanded proof of Schur–determinant splitting (Proposition 7)

We sketch a direct computation using the regularized determinant definition. Recall

det2(I −K) = det
(
(I −K) exp

(
K
))
, K ∈ S2.

For the block operator T =

[
A B
C D

]
with B,C finite rank and A ∈ S2, write the Schur triangular-

ization of I − T :
I − T = Ldiag(I −A, I − S)U,

with

L =

[
I 0

−C(I −A)−1 I

]
, U =

[
I −(I −A)−1B
0 I

]
.

Both L− I and U − I are finite rank. Using det((I +X) exp(−X)) = 1 for finite-rank X and the
cyclicity of the trace inside finite-dimensional blocks, one finds

det2(I − T ) = det(I − S) det2(I −A),

which yields the logarithmic identity in Proposition 7. For completeness, one may verify multiplica-
tivity via Simon’s product identity for det2: if X,Y ∈ S2, then

det2((I −X)(I − Y )) = det2(I −X) det2(I − Y ) exp
(
− Tr(XY )

)
,

and compute the finite-rank cross term Tr(XY ) arising from the triangular factors, which cancels
against the exponential in det(I − S).

A.2 Expanded proof of HS→det2 convergence (Proposition 5)

Let Kn,K : K → S2 be holomorphic with uniform HS bounds ∥Kn(s)∥S2 ≤ MK and ∥Kn(s) −
K(s)∥S2 → 0 uniformly on compact K ⊂ Ω. By Lemma 1, | det2(I −Kn(s))| ≤ exp(12M

2
K). The

pointwise convergence det2(I − Kn(s)) → det2(I − K(s)) follows from continuity of det2 on S2.
Vitali–Porter theorem applies: a locally bounded normal family {fn} of holomorphic functions on a
domain with pointwise convergence on a set with an accumulation point converges locally uniformly
to a holomorphic limit. Thus fn → f uniformly on compacts.
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A.3 Asymptotics of the completed zeta ξ

For σ := ℜs→ +∞, Stirling’s formula for Γ(s/2) gives

Γ
(s
2

)
∼

√
2π
(s
2

) s−1
2
e−s/2, π−s/2 Γ

(s
2

)
∼

√
2π
( s

2π

) s−1
2
e−s/2.

Since ζ(s) → 1 as σ → ∞ and the polynomial factor 1
2s(1− s) is negligible relative to the Stirling

growth, one concludes |ξ(s)| → ∞ super-exponentially along vertical rays with σ fixed large.
Consequently, for our truncations with det2(I −AN (s)) → 1,

H
(det2)
N (s) = 2

det2(I −AN (s))

ξ(s)
− 1 −→ −1

uniformly on bounded strips {σ ≥ σ0 >
1
2 , |ℑs| ≤ R} as σ0 → ∞, consistent with the feedthrough

−1 realized by the prime-grid models.

A.4 Half-plane Pick kernel from the disk

Let ϕ : D → Ω, ϕ(ζ) = 1
2

1+ζ
1−ζ + 1

2 , be the Cayley map from the unit disk D to Ω. If θ is Schur on D
with disk kernel KD(ζ, η) = (1− θ(ζ)θ(η))/(1− ζη), then transporting via Θ = θ ◦ ϕ−1 yields the
half-plane kernel

KΘ(s, w) =
1−Θ(s)Θ(w)

s+ w − 1
,

after multiplication by a harmless positive weight. This justifies the denominator used in Theorem 23.

A.5 Discrete-time KYP (disk) variant

For completeness: if G(z) = D + C(zI −A)−1B is holomorphic on |z| < 1 with A Schur (spectral
radius ¡1), then ∥G∥H∞(D) ≤ 1 iff there exists P ⪰ 0 such thatA∗PA− P A∗PB C∗

B∗PA B∗PB − I D∗

C D −I

 ⪯ 0.

In the lossless case, equalities analogous to (2) hold with A∗PA−P = −C∗C and B∗PB = I−D∗D.

A.6 Lossless realizations for NP data

A.7 Half-plane KYP epigraph for boundary H∞ approximation

We sketch a practical formulation used in Proposition 59. Fix a rectangle boundary ∂R and model
order M . Parametrize scalar transfers ΘM (s) = D + C(sI − A)−1B with A ∈ CM×M Hurwitz
and (B,C,D) of compatible sizes. Enforce Schur (lossless) via the equalities (2) with some P ≻ 0.
Introduce an epigraph variable t ≥ 0 and impose discrete boundary constraints on a spectral grid
{ζj} ⊂ ∂R:

|ΘM (ζj)− gN (ζj)| ≤ t, j = 1, . . . , J,

where gN = Θ
(det2)
N |∂R. The program

min t s.t. lossless KYP equalities and |ΘM (ζj)− gN (ζj)| ≤ t
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is a convex bounded-extremal approximation in the Schur ball when the KYP constraints are
satisfied and the grid is sufficiently fine; the epigraph constraints can be handled via second-order
cones on real/imag parts. Refining J controls the discretization error, and the analyticity thickness
(extension to R♯) guarantees the exponential rate in M .

A.8 Rational approximation on analytic curves

Let D ⋐ C be a domain bounded by an analytic Jordan curve and let f be holomorphic on a
neighborhood of D. Then there exist constants C > 0 and ρ ∈ (0, 1), depending only on the
distance from ∂D to the nearest singularity of f , such that the best uniform rational (or polynomial)
approximation error on ∂D satisfies

inf
deg≤M

sup
ζ∈∂D

|rM (ζ)− f(ζ)| ≤ C ρM .

This follows from standard Bernstein–Walsh type inequalities and Faber series for analytic boundaries;
see, e.g., Walsh [13] and Saff–Totik [9]. Transport to rectangles via conformal maps yields the rate
used in Proposition 59.

A.9 Explicit formula (precise variant used)

Let φ ∈ C∞
c () and define its Mellin–Fourier companion

g(x) :=
1

2π

∫
φ(t) eitx dt, x ∈ .

Let Φφ(s) be the Mellin transform appropriate to the completed zeta context (cf. Edwards [4, Ch. 1,
§5], Iwaniec–Kowalski [7, Ch. 5]). Then the following explicit formula holds for the completed zeta:∑
ρ

Φφ(ρ) = Φφ(1) + Φφ(0) −
∑
p

∑
m≥1

log p

pm/2
g(m log p) − 1

2π

∫ ∞

−∞
ℜΓ′

Γ

(
1

4
+
iu

2

)
Φφ

(
1

2
+ iu

)
du.

All terms converge absolutely for φ ∈ C∞
c (), and the right-hand side is bounded by a constant

depending only on φ. Differentiating with respect to σ inside Φφ(
1
2 + iu) and using the rapid decay

of g yields Lipschitz-in-σ bounds for the φ-weighted prime and zero sums. This is the variant tacitly
used in Lemma 41.

A.10 Numerical note: grid/KYP solve on ∂R

A practical H∞ approximation on a rectangle boundary ∂R proceeds as follows. FixK ⋐ R ⋐ R♯ ⋐ Ω
and an orderM . Sample ∂R at J spectral nodes {ζj} (Chebyshev along each edge). For a state-space
parameterization ΘM (s) = D + C(sI −A)−1B with Hurwitz A ∈ CM×M , enforce the lossless KYP
equalities (2) with a decision variable P ≻ 0. Introduce an epigraph variable t ≥ 0 and constrain

|ΘM (ζj)− gN (ζj)| ≤ t, j = 1, . . . , J.

The objective min t subject to these constraints is a convex program (KYP equalities plus second-
order cones for the complex modulus). Refining J improves the boundary resolution; increasing
M reduces the best achievable t roughly as CρM by Subsection A.8. The resulting ΘN,M is Schur
(lossless) by construction, and the maximum principle transfers the boundary error to K.
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Recommended parameters (typical): pick J so that each side of ∂R has ≈ 64 Chebyshev nodes

(more if Θ
(det2)
N varies rapidly); start with M ∈ [10, 50] and increase until the boundary error meets

tolerance. Enforce stability of A via a diagonal negative A or a spectral constraint, and solve with
any SOCP/SDP solver supporting LMIs. A scalar version suffices; for matrix-valued ports, use
block-KYP constraints.

A.11 Lipschitz control for log det2 and HS variation of A

We record two auxiliary observations used in the boundary estimates.

Lemma 65 (Lipschitz control for log det2). Let B ⊂ S2 be a bounded set. There exists C(B) > 0
such that for all K,L ∈ B,∣∣log det2(I −K)− log det2(I − L)

∣∣ ≤ C(B) ∥K − L∥S2 .

Sketch. Use the representation log det2(I −K) = Tr
(
log(I −K) +K

)
and the Hilbert–Schmidt

Fréchet differentiability of K 7→ log(I−K) on a HS-bounded neighborhood (see Simon, Trace Ideals,
Ch. 9). A mean-value estimate along the segment Kt = L + t(K − L) yields the bound with a
constant depending on supt ∥Kt∥S2 .

Lemma 66 (HS variation of A(σ + it) in σ). Fix I ⊂ compact and σ ∈ [12 + ε0,
1
2 + 1]. Then for

σ1, σ2 in this interval,

sup
t∈I

∥A(σ1 + it)−A(σ2 + it)∥S2 ≤ CI |σ1 − σ2|,

where CI depends only on ε0 and I.

A.12 Fredholm differentiability for log det2(I − A(s))

We justify the σ-derivative used in the boundary estimates for the standard Hilbert–Schmidt
regularization det2(I −K) = det((I −K)eK).

Lemma 67 (Derivative identity for log det2). Let U ⊂ C be open and A : U → S2 be holomorphic
with ∥A(s)∥ < 1 on U . Then for each s ∈ U and h ∈ C,

d

dτ

∣∣∣
τ=0

log det2
(
I −A(s+ τh)

)
= Tr

(
A′(s)[h] − (I −A(s))−1A′(s)[h]

)
.

In particular, along real σ-variations this yields ∂σ log det2(I−A(s)) = Tr
(
A′

σ(s)−(I−A(s))−1A′
σ(s)

)
.

Proof. Since ∥A(s)∥ < 1 on U , the operator logarithm admits the norm-convergent Mercator series
log(I −A) = −

∑
j≥1A

j/j, and Aj ∈ S1 for j ≥ 2. Using log det2(I −A) = Tr(log(I −A) +A) for
the HS regularization, we obtain

F (s) := log det2(I −A(s)) = Tr
(
−
∑
j≥1

A(s)j

j
+ A(s)

)
= −

∑
j≥2

Tr
(
A(s)j

)
j

.

For each j ≥ 2, s 7→ A(s)j is holomorphic into S1 with derivative
∑j−1

k=0A
kA′Aj−1−k. Cyclicity of

trace gives d
ds Tr(A

j) = j Tr(Aj−1A′). On a compact K ⋐ U one has ρ := supK ∥A∥ < 1 and finite
bounds for ∥A∥S2 , ∥A′∥S2 , so∣∣Tr(Aj−1A′)

∣∣ ≤ ∥Aj−1A′∥S1 ≤ ∥A∥j−2 ∥A∥S2 ∥A′∥S2 ≤ CK ρj−2,
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and the derivative series
∑

j≥2−Tr(Aj−1A′) converges uniformly on K by the Weierstrass M-test.
Hence termwise differentiation is justified and

F ′(s)[h] = −
∑
j≥2

Tr
(
A(s)j−1A′(s)[h]

)
= −Tr

(∑
j≥1

A(s)j A′(s)[h]
)
.

Summing the geometric series in operator norm gives
∑

j≥1A
j = A(I −A)−1, so

F ′(s)[h] = −Tr
(
A(I −A)−1A′(s)[h]

)
= Tr

(
A′(s)[h] − (I −A)−1A′(s)[h]

)
,

using A(I −A)−1 = (I −A)−1 − I and cyclicity of trace. This is the claimed identity.

A.13 Outer/inner factorization and convergence on the half-plane

We replace the concise Hardy-space note by a formal lemma suitable for our use. Set Ω = {ℜs > 1
2}.

The Nevanlinna class N(Ω) consists of holomorphic F such that the family {log+ |F (r + it)|}r>1/2

is bounded in L1(); for such F , non-tangential boundary limits exist for a.e. t and log |F (12 + it)| ∈
L1(, (1 + t2)−1dt).

Lemma 68 (Outer factorization and convergence). Let F ∈ N(Ω), F ̸≡ 0.

1. (Factorization) F admits a canonical factorization

F (s) = cB(s)S(s)O(s),

with |c| = 1, B the Blaschke product over the zeros of F in Ω, S a singular inner function
(from a singular boundary measure), and O an outer function given by

O(s) = exp

(
1

π

∫ ∞

−∞

σ − 1
2

(σ − 1
2)

2 + (t− τ)2
log
∣∣F (12 + iτ)

∣∣ dτ) , s = σ + it. (6)

The inner factor I := B S satisfies |I(s)| ≤ 1 on Ω and |I(12 + it)| = 1 for a.e. t.

2. (Convergence of outers) Let {un} ⊂ L1
loc() and let On be outers defined by (6) with log |F (12+iτ)|

replaced by un(τ). If un → u in L1
loc(), then On → O locally uniformly on Ω.

Proof. (1) This is the canonical factorization for the half-plane via conformal transfer from the disk;
see Duren [2, Ch. 2] or Garnett [5, Ch. II]. Boundary a.e. values and the integral representation for
outers are standard.

(2) Let K ⊂ Ω be compact; then K ⊂ {σ ≥ 1
2 + ε, |t| ≤ R} for some ε,R. For fixed s ∈ K,

the Poisson kernel Ps(τ) = 1
π

σ−1
2

(σ−1
2 )

2+(t−τ)2
is bounded and smooth in τ . Split into [−M,M ]

and its complement. On [−M,M ],
∫
Ps(un − u) → 0 uniformly in s ∈ K by L1 convergence and

boundedness of Ps. On |τ | > M , the tails are uniformly small for s ∈ K by decay of Ps as |τ | → ∞.
Thus logOn → logO locally uniformly; exponentiating gives the claim. See Hoffman [6, Ch. 3] for
stability of the Poisson integral.

Remark 69 (Application in Theorem 37). Given uε(t) = log
∣∣ det2(I −A(12 + ε+ it))/ξ(12 + ε+ it)

∣∣,
Theorem 37 shows uε → u0 in L1

loc(). Lemma 68(2) then implies the corresponding outers Oε → O
locally uniformly on Ω; on any compact K ⋐ Ω, the Poisson kernel depends continuously on s ∈ K,
ensuring locally uniform convergence away from the boundary. This justifies the boundary-unitarity
step.
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A.14 Compact alignment: packaging

We package the compact alignment step used with the Cayley-difference lemma.

Lemma 70 (Convergence of Cayley transforms on compacts). Let K ⊂ Ω be compact with

infK |ξ| ≥ δK > 0. Then H
(det2)
N → H uniformly on K, and there exists cK > 0 and N0 such

that infK |H(det2)
N + 1| ≥ cK and infK |H + 1| ≥ cK for N ≥ N0 (Lemma 53). Consequently, by

Lemma 51, Θ
(det2)
N → Θ uniformly on K.

Proof. Since A(σ + it) is diagonal with entries p−σ−it, we have

∥A(σ1 + it)−A(σ2 + it)∥2S2
=
∑
p

∣∣p−σ1 − p−σ2
∣∣2.

By the mean-value theorem, |p−σ1 − p−σ2 | ≤ |σ1 − σ2| log p p−σ∗
for some σ∗ between σ1 and σ2.

Thus ∑
p

∣∣p−σ1 − p−σ2
∣∣2 ≤ |σ1 − σ2|2

∑
p

(log p)2 p−2σ∗ ≤ C |σ1 − σ2|2,

with C <∞ for σ∗ ≥ 1
2 + ε0 since

∑
p(log p)

2p−1−2ε0 <∞. Taking square roots gives the claim.

Given Nevanlinna–Pick data on Ω, the Schur algorithm (or Potapov’s multiplicative representa-
tion) builds a finite product of elementary Blaschke factors composing to an inner solution. Each
elementary factor admits a 1-state lossless realization; cascading yields a global lossless colligation
satisfying (2) with a block-diagonal P .

A.15 Boundary normalization via outers

Let uε(t) := log
∣∣det2(I −A(12 + ε+ it))/ξ(12 + ε+ it)

∣∣. By Theorem 37, uε is uniformly bounded in
L1
loc() and Cauchy as ε ↓ 0, so uε → u0 in L1

loc(). For each ε > 0, let Oε be the outer with boundary
modulus euε on the line ℜs = 1

2 + ε, and set Jε := det2(I−A)/(Oε ξ). Then |Jε| ≡ 1 on ℜs = 1
2 + ε,

so the Cayley transform Θε = (2Jε − 1)/(2Jε + 1) is Schur on {ℜs > 1
2 + ε}. By local-uniform

convergence of outers, Oε → O on compact subsets of Ω, hence Jε → J := det2(I−A)/(O ξ) locally
uniformly and the normal-family limit of Θε is Schur on Ω.

If ξ had a zero in Ω, then J (and hence Θ) would have a pole in Ω, contradicting Schurness.
Therefore no zeros of ξ lie in Ω, and the compensator (if any) is trivial.
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