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Abstract

We recast Information-Limited Gravity (ILG) as classical gravity
sourced by an effective pressure field. The pressure is built directly
from observed baryons filtered through the same scale- and time-aware
kernel that defines ILG. This is a change of display, not a change of
physics: the modified Poisson and growth equations of ILG are exactly
equivalent to standard field equations with the pressure source. In the
galaxy regime, the pressure profile multiplies baryonic contributions to
yield flat rotation curves without per-galaxy tuning. In cosmology, the
same pressure language preserves ILG’s signatures in linear growth,
lensing, and integrated Sachs—Wolfe trends while clarifying interpreta-
tion and implementation. We present the formal definition, an explicit
equivalence theorem, a variational formulation, observational displays,
and falsifiers—all using the same global constants and kernel rigidities
that anchor ILG.

Keywords: gravity as pressure; information-limited gravity; effective source;
rotation curves; structure growth; weak lensing; recognition geometry.

Global M/L calibration (used throughout). We adopt a single, survey-
wide stellar mass-to-light ratio for disks in the Spitzer IRAC 3.6 ym band,
fixed once and used for all galaxies without per-galaxy tuning:

Tiﬁum =1.0 M@/L@ .

Bulges (where present) use the same Y, unless explicitly noted. This value

is frozen on the SPARC Q=1 calibration snapshot under the fairness masks
enumerated in Section 7 and is held constant thereafter. Provenance within
Recognition Geometry: T, is treated as the sole external catalog calibration

while all kernel constants (p, 70, Fcon, G) are derived globally; see the Source
specification (QM_OVER_L_DERIVATION; current_status=single_global_default-1.0)
and the ILG policy statements. Gas masses include a 1.36 helium correction;

Hy is included where available via a standard CO-to-Hy conversion (fixed
globally, not per-galaxy).

1 Introduction

Galaxies rotate too fast for their visible mass, lenses bend light more than
luminous matter can explain, and large-scale structure grows with a scale-
dependence that strains simple, untuned models. The conventional ways to
absorb these facts introduce extra components or system-by-system adjust-
ments: dark halos whose profiles differ from galaxy to galaxy, or modified



dynamics with environmental dials. Those approaches work numerically, but
they pay with complexity and per-galaxy tuning. The empirical problem,
stated plainly, is to account for the extra galactic pull, lensing, and growth
without per-galaxy knobs and without disturbing laboratory-scale gravity.

Information-Limited Gravity (ILG) takes a different path. In one sen-
tence: ILG filters the ordinary baryonic source through a single, global kernel
that depends on scale and cosmic time, reflecting the finite information ca-
pacity of the system. At small scales and short times the kernel reduces to
unity and gravity is exactly as measured in the lab; at large scales and long
times the kernel enhances the effective pull of the same baryons. The kernel
is fixed by the same global constants that underpin Recognition Geometry
and does not vary from galaxy to galaxy.

The core claim of this paper is that ILG is exactly equivalent to classi-
cal gravity with an effective pressure source built from those same baryons
by that same kernel. In practice, one defines a pressure field by filtering
the baryonic distribution with the ILG kernel and then applies the stan-
dard gravitational field equation with this pressure as the source. This is
a change of variables, not a change of physics. All of ILG’s predictions for
rotation curves, lensing, linear growth, and background evolution carry over
verbatim; the pressure language simply makes the source explicit and the
implementation straightforward.

Contributions. This paper makes six concrete contributions:

1. A formal definition of the effective pressure field derived from the ILG
kernel and ordinary baryons.

2. An equivalence theorem showing that ILG’s modified field equation is
identical to the classical equation with the pressure source.

3. A variational formulation in which the gravitational potential mini-
mizes a standard energy with the pressure as the source term.

4. Galaxy and cosmology displays that show how rotation curves, linear
growth, lensing, and background form-factors are read in the pressure
language.

5. Falsifiers and pass/fail criteria that do not allow per-galaxy tuning and
that preserve laboratory limits.

6. Implementation notes for pipelines: pre-filter the baryonic field with
the kernel to obtain the pressure, then use standard solvers without
altering the downstream numerics.



2 Preliminaries and Notation

Constants and symbols. We use the golden ratio ¢ = (1 +/5)/2, the
fundamental tick 79 > 0, the coherence quantum Fe,, = ¢ ° eV, and New-
ton’s constant (G. Unless noted, units are SI and times are cosmic times
parametrized by the scale factor a € (0,1]. All appearances of ¢, 79, and
Econ are global (no system-by-system tuning).

Fields and operators. Let py(x,a) be the (comoving) baryon density
and pp(a) its spatial mean. The baryon contrast is

5,(x,a) = Pu(%, @) — pul(a)
py(a)
The gravitational potential is ®(x,a) in the quasi-static, Newtonian limit
on comoving coordinates x. Derivatives are taken with respect to x; V and
V2 denote the gradient and Laplacian. Linear operators built from V act
componentwise; in particular we will use an isotropic convolution operator
w(V, a) whose Fourier symbol is a scalar function w(k, a).

Fourier conventions. For a scalar field f(x),

foo = [ et pedie g6 = [ e k)

Under these conventions V — ik and V2 — —k2. Convolutions in real space
correspond to pointwise products in Fourier space.

Boundary conditions. For isolated galaxies, we impose ®(x,a) — 0 as
|x| — oo and require ® to be integrable up to an additive constant (fixed
by ® — 0). In periodic simulation boxes, fields are periodic with zero-
mean potential, i.e., the k = 0 mode of d is set to zero. On cosmological
domains we adopt comoving coordinates with quasi-static potentials and fix
the additive constant by volume averaging, [ ® d3z = 0.

ILG kernel: real and Fourier-space forms

The Information-Limited Gravity kernel is specified in Fourier space by

w(k,a)zl—i—C(l{:CLTO) , C:<p73/2, a:12(1—4p*1),

a positive, isotropic, scale- and time-aware multiplier. It satisfies:



e Laboratory limit. For large k (small scales / short times) one has
w(k,a) — 1, so the source reduces to ordinary baryons and standard
gravity is recovered.

e Cosmological enhancement. For small k (large scales / long times)
the second term grows monotonically, amplifying the effective pull of
baryons without introducing per-system parameters.

In real space, w(V,a) is the convolution operator with isotropic kernel
W (r,a) given by the inverse transform of w(k, a),

w(V,afx) = [ W(x—yl.a) f) &,

so that w(V,a) = Id+(long — rangetail). The kernel W (r, a) is nonnegative
and decays with r; its precise closed form is not required for analysis because
the operator is fully characterized by the Fourier symbol w(k, a) and inherits
its positivity and monotonicity.

Laboratory and cosmological limits

Near-field (laboratory) regime. When k79/a > 1, w(k,a) ~ 1 and the
effective source equals the physical baryon source. All laboratory tests of
gravity are thus unmodified.

Far-field (cosmological) regime. When krp/a < 1, w(k,a) =~ 1+
C(a/(k19))%, yielding a gentle, scale-dependent enhancement that is the
same in galaxies and in linear cosmology. The same kernel multiplies the
source in Poisson problems for dynamics and in the growth and lensing
equations for large-scale structure.

3 Information-Limited Gravity (recap)

Axioms and policy. Information-Limited Gravity (ILG) rests on three
operational principles:

1. Global constants. The kernel that mediates information limits is
fixed by global, RS-aligned constants (¢, 79, Econ, G) and does not vary
between systems.



2. No per-galaxy tuning. Galaxy-scale predictions (e.g., rotation curves)
are produced without system-by-system parameter adjustment. A sin-
gle, global mass-to-light calibration may be used for photometric map-
ping, but the gravitational kernel itself is universal.

3. Classical presentation in SI. Field equations are stated in standard
SI units and solved with conventional boundary conditions; ILG enters
solely through an isotropic, positive, scale- and time-aware kernel w.

Field equations used in practice. In the quasi-static, Newtonian limit
on comoving coordinates, ILG modifies the source side of Poisson’s equation
by filtering the baryonic contrast with the kernel w:

k2 (I)(kv a) = 47TGG’2 ﬁb(a) w(kaa) 5b(k7 a)a (1)
with Fourier symbol
a e
w(k,a) = 1+C () L C=¢2 a=12(1-¢7Y). (2
k1o

In linear structure growth, the same kernel appears in the source term:
op(k,a) + 2H(a) Op(k,a) — 47G d® py(a) w(k,a) dp(k,a) = 0,  (3)

where overdots denote derivatives with respect to conformal time and H
is the conformal Hubble rate. In real space, eq:ilg-poisson corresponds to
replacing the bare baryonic source by w(V,a)[pp %), i.e., convolution with
an isotropic kernel. The laboratory limit is w — 1 for k1p/a > 1, so local
gravitational tests are unchanged.

Operational kernel displays. For practical inference and code paths it
is convenient to expose w in displays tailored to data modalities:

e Galaxies (dynamics). A radial display w(r) multiplies baryonic
circular-speed contributions, v?(r) = w(r) ’U%aryon(r), under the same
kernel. Time- and acceleration-proxy displays, w; and wg, are obser-
vationally convenient parameterizations of the same underlying w.

e Cosmology (background and light). A background form factor
Whg(a) multiplies the matter source in homogeneous equations, and
an optical focusing rescale Y(a) enters distance and lensing relations.
Both are determined by the same constants and kernel structure in
eq:ilg-kernel.

These displays are algebraic reorganizations; no new degrees of freedom are
introduced and no per-system retuning is allowed.



Certificates carried by ILG. ILG comes with built-in, model-wide iden-
tities and limits that serve as consistency checks:

1. Tracer-independence in linear combinations. In the linear regime,
specific ratios that compare lensing potentials to velocity growth (e.g.,
Eg-type statistics) depend on the kernel w but not on galaxy bias,
yielding a tracer-independent prediction at fixed (k,a).

2. Background form factors. The homogeneous form factor wyg(a)
and the optical rescale T(a) are global functions of a tied to (¢, 79);
they apply uniformly across probes (distances, lensing, growth).

3. Laboratory recovery. The limit w—1 at large k guarantees exact
agreement with laboratory and Solar-System gravity.

4. Positivity and monotonicity. The kernel is positive and mono-
tone in the operational proxies (scale, time), ensuring physically sensi-
ble enclosed-mass profiles and preventing pathologies in rotation-curve
fits.

4 Gravity as Pressure: Definition and Equivalence

Definition (effective pressure). Let w(V,a) be the isotropic convolu-
tion operator with Fourier symbol w(k,a) introduced above. Define the
effective pressure field

p(x,a) = pyp(a) [w(V,a) d(x, a)],
so that in Fourier space
plk,a) = pyla) w(k,a) dyk, a).

This “pressure” is an effective source constructed from ordinary baryons by
the ILG kernel; it is not a thermodynamic pressure and carries the units of
mass density.

Equivalence theorem (Poisson equations). Claim. The ILG field
equation in the Newtonian, quasi-static limit

k2 ®(k,a) = 47G a® py(a) w(k, a) dy(k, a)

is exactly equivalent to the classical Poisson equation with the effective

pressure source
V20 (x,a) = 47G a® p(x,a).



Proof. Take the Fourier transform of V2® = 47G a2 p to obtain —k2 & =
471G a? p. Insert the definition of p to get —k? $ = 471G a? Db W Sb, or k2d =
4G a® pyw 5y after multiplying by —1. Conversely, given the ILG equation,
define p = pp w &y and inverse-transform to recover V2® = 471G a2 p. In both
directions the boundary conditions are the standard ones stated earlier, so
the solutions coincide.

Properties. The effective pressure inherits the key analytical properties
of the kernel:

e Positivity. If w(k,a) > 0 for all £ and a, then p is the image of &
under a positive operator. In particular, overdense regions (d, > 0)
map to nonnegative contributions in p, ensuring physically sensible
enclosed-mass profiles in galaxy applications.

e Monotonicity. If w(k,a) is monotonically increasing in the opera-
tional proxies (e.g., larger enhancement at smaller k or larger a), then
p increases accordingly under those changes; the ordering of sources is
preserved by the map &, — p.

e Laboratory limit. As k7p/a — oo, w(k,a) — 1, hence p — pp 5
and p — ppdp. The Poisson equation reduces to its standard form,
guaranteeing exact recovery of laboratory and Solar-System gravity.

e Scaling and units. The mapping d, — p is linear and dimension-
ally consistent: p has the units of density, and the source term a’p
in Poisson’s equation has the usual units of mass density in comoving
coordinates. Under a global rescale of length and time, w(k,a) car-
ries the entire scale/time dependence; no additional parameters are
introduced.

In summary, “gravity as pressure” is a relabeling that moves the ILG ker-
nel from the right-hand side of the Poisson equation into the definition of
the source. All ILG predictions and limits are preserved, while the source
becomes a single, well-defined field p built from observed baryons.

5 Variational Formulation

Energy functional and stationarity. For a fixed scale factor a and
effective pressure source p(x, a), define the energy functional

@l = g [ IVeaPds + [ @pxadxads @)
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on the admissible class ® € V, where V = H{(Q) for Dirichlet (isolated)
problems, or V = {® € HY(T?) : [;5 ®d3x = 0} for periodic boxes. A stan-
dard first-variation calculation with & € V and the boundary conditions
stated in Section 2 gives

1

08 = 4G

. 3 2 S5 Py —
/QV<I>V(5<1>)da:+/Qap5 o=t

Stationarity for all §® € V yields the Euler—Lagrange equation
V2®(x,a) = 47G a® p(x, a), (5)

i.e., the classical Poisson equation with the pressure source defined in Sec-
tion 4. Thus, minimizing eq:energy over V is equivalent to solving the field
equation with the stated boundary conditions.

Uniqueness and existence. The quadratic form

1
= — [ VO] d®
2] 8tG /Q Vel da
is strictly convex on V. Adding the linear functional
L[®] = / a?pddix
Q

preserves convexity. By the Poincaré inequality on Hg () (Dirichlet) or
on mean-zero periodic H', Q is coercive; hence & is coercive and weakly
lower semicontinuous. If p € L?(2) (or more generally p € H~(Q)), the
Lax—Milgram theorem guarantees a unique weak minimizer ® € V', which
is the unique weak solution of eq:poisson-pressure. For isolated, unbounded
domains with ® — 0 at infinity and p € L'(R3) N Lg(R?’), existence follows
from the Green’s representation

,a
d(x,a) = -G a? 7]?(}’ ) d3y,

R [x =
which solves eq:poisson-pressure in the distributional sense and is unique up
to the fixed additive constant specified by the boundary condition.

Interpretation. In this variational form the “extra pull” is not a new
interaction; it is a bookkeeping display of the same baryons passed through
an information-limited filter. The kernel w determines p from the observed

(V2®) 5<I>d3x+/ a’pdd d3x.
Q



py (or &p); the potential ® then minimizes the standard energy eq:energy
with p as its source. All scale and time dependence resides in p via w,
while the field equation and solver remain classical. The pressure language
therefore makes explicit that ILG’s enhancements are encoded entirely in
the source construction—no per-galaxy dials, no alteration of the left-hand
side of the Poisson equation, and laboratory gravity recovered when w — 1.

6 Galaxy Dynamics in the Pressure Language

Axisymmetric thin-disk mapping: from p, to p(r) to v(r)

We work in cylindrical coordinates (R, ¢, z) with midplane symmetry. Let
the baryonic density be py(R, z) and the surface density

=(R)= [ mlR2)de

Define the effective pressure density p(R,z) by applying the ILG operator
to pp at the present epoch (a = 1):

px) = [T DI, PR = [ p(R.2)dz,

so P(R) is the midplane surface pressure (an effective surface density). For a
razor-thin disk (pp(R, z) = 3p(R) §(z)), the Hankel-transform representation
is especially convenient. With the order-zero Hankel pair

Sik) = [T RSB WER)AR, E(R) = [ B S0k) JolkR),

the pressure surface transform is simply
P(k) = w(k,1) Sy(k).

The midplane circular speed then follows from the standard disk kernel:
v?(R) = 2rG R / kdk J,(kR) P(k), (6)
0

which maps ¥, +— P via w and then P — v via the usual gravity kernel.
For finite thickness, write py(R, z) = Xp(R) f.(z) with [ f, dz = 1; the same
formula holds with P(k) = w(\/k‘2 + k2, 1) (k) f.(k.) integrated over k.,
or, in practice, by using a standard thickness correction to the thin-disk
kernel.



Displays w(R) and proxy forms

Although the fundamental object is w(k, 1) in Fourier space, it is often useful
to expose a radial display
2
v (R)
w(R) = 2 (R)
Ubaryon( )
where vparyon(R) is computed from X, with the unfiltered kernel (i.e., with

w = 1). This display is data-dependent but derived from the same universal
w(k,1):

JeC kdk Ji(kR) w(k, 1) (k)

[ kdk Jy(kR) Sy(k)
Two additional observationally convenient displays reparameterize the same
kernel:

w(R)

e Time proxy w;: define a local dynamical time tqyn(R) = 27R/v(R)
and set wy(tayn(R)) = w(keg(R), 1) with

ket (R) € xargmazy>g [k: J1(kR) ib(k)}
e Acceleration proxy w,: define g(R) = v*(R)/R and set wy(g(R)) =
w(keg(R), 1) with the same keg.
These are displays only; they introduce no new parameters and are tied
pointwise to w(k, 1).
Parameter policy and fit protocol

Policy. The kernel w is universal (no per-galaxy tuning). A single global
stellar mass-to-light ratio T, (in a specified band) maps photometry to X,;
gas is included with standard conversion factors. Fairness masks exclude
radii and systems where axisymmetry or measurement fidelity is compro-
mised.

Protocol. Given a galaxy with surface-brightness profile I,.(R), gas maps,
distance D, and inclination i:

1. Build the baryonic surface density
Yp(R) =Y. L(R) + 1.36Xm(R) + Xn,(R),

where 1.36 accounts for helium in the atomic gas.
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2. Compute the Hankel transform Y (k) and form P(k) = w(k,1) %y(k).

3. Evaluate vmodel(R) via eq:ve-disk. (Optionally, compute P(R) by in-
verse transform and then use a real-space solver; both paths are equiv-
alent.)

4. Apply fairness masks: remove radii with strong noncircular motions
(bars/warps), inner radii below the resolution limit, and poorly con-
strained outer radii; enforce inclination and distance quality cuts.

5. Fit Y. globally once for the survey (not per galaxy), then hold it fixed.
No retuning of w is allowed.

6. Report residuals Av(R) = vophs(R) — Vmodel(R), slope tests on Av over
2—4 scale lengths, and the display w(R) = v? /v%aryon for diagnostic
purposes.

Benchmarks and falsifiers

Rotation-curve benchmarks. Across a heterogeneous sample (dwarfs to
L), residuals Av(R) should be unbiased with respect to surface brightness,
size, gas fraction, and morphology under a single Y.. The outer slope
beyond two scale lengths should not exhibit a systematic trend with >
once the fairness masks are applied.

Mass decomposition behavior. The inferred partition v? = v2 + vg +
02 oss (Where vpress is the incremental contribution from P beyond X) should
vary smoothly with radius, with vpress rising where the kernel favors long
wavelengths. Disc—halo degeneracy is resolved in this language: there is no
tunable halo; the shape is fixed by w and the photometry.

Failure modes as falsifiers. Any of the following trends constitutes a
falsifier for the pressure law in galaxies:

e A need to retune w on a per-galaxy basis to reach acceptable residuals.

e Residuals that correlate strongly with surface brightness, color (stellar
population), or gas fraction after fixing a global T.,.

e Inferred P(R) that is negative or highly oscillatory in regimes where
Y4(R) is smooth and positive, contradicting positivity and monotonic-
ity implied by w.

11



e Inconsistent dynamical versus lensing inferences under the same P(R)
in systems with clean geometry and data quality.

In summary, galaxy dynamics in the pressure language is a two-step map:
photometry and gas — Y; kernel filter — P; standard gravity — v(R). The
kernel is universal, the mass-to-light is global, and the falsifiers are simple,
survey-wide checks rather than per-object adjustments.

7 Cosmology in the Pressure Language

Background: form-factor and optical focusing

At the homogeneous level, the pressure language replaces the baryon term
in the background dynamics by an effective source formed with a time-only
form-factor. Define

ppg(a) = wpg(a) pp(a),

where wpg(a) is the background display of the same ILG kernel (unity at
early times; monotone enhancement at late times). The Friedmann equation
can then be written schematically as

12(0) = T [ poer(@) + pgla) ], (7)
where pother collects the standard non-baryonic background contributions
(e.g., radiation and any constant background term). Equation eq:friedmann-
pressure does not introduce new components; it simply displays the baryon
contribution as an effective pressure source weighted by wy,g.

Light propagation is recast similarly. In the weak-field, Born approxi-

mation, the convergence to a source at comoving distance x; is

5(0) = /0 W xe) V2 (1, 6),

with the usual lensing weight W. Using the pressure Poisson equation
V2® = 417G a’p, one obtains an optical focusing rescale Y(a) that multi-
plies the standard kernel along the line of sight:

Xs
K(0) = [ T@Wix ) @bl 6). ®
where Y (a) is a smooth, global function of a tied to the same constants that

fix w. In practice, T is an algebraic display of the background limit of the
kernel and does not add parameters.
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Linear growth and lensing: kernels unchanged, source clarified

In Fourier space, the growth of baryon contrast with the pressure source
reads

op(k, a)+2H (a) by (k, a)—4nG a? p(k,a) = 0, bk, a) = w(k,a) py(a) dp(k, a),
(9)
so the kernel that controls scale and time dependence is unchanged from
ILG; the interpretation is now explicit: growth responds to the effective
pressure p. The lensing potential obeys k2® = 4rG a’p, so all weak-lensing
observables (convergence, shear) are rescaled by the same factor that mul-
tiplies the source in eq:growth-pressure. In this language, the line-of-sight
integrals are standard, with p entering wherever the matter source appears.

Observational signatures (preserved from ILG)

Growth-rate scale dependence. Because w(k,a) enhances long-wavelength
modes mildly and monotonically, the linear growth factor D(a, k) acquires

a controlled k-dependence at late times, while reverting to the standard
limit at early times and on small scales. The logarithmic growth rate
f(a,k) = 0ln D/0ln a inherits the same mild scale dependence. These fea-
tures are unchanged from ILG and are now read as the response of D to the
pressure source.

Lensing amplitude trends. Weak-lensing amplitudes along a given line
of sight are increased by the line-of-sight average of w(k, a) through eq:kappa-
pressure. Tomographic bins at lower redshift (larger a) display a slightly
higher effective focusing, consistent with the late-time growth of the ker-
nel, while high-¢ (small-scale) lensing approaches the laboratory limit where
w—1.

ISW sign. On the largest scales, where w(k, a) grows with a, the potential
® decays more slowly or can deepen at late times, which makes its conformal-
time derivative ® negative over a range of low multipoles. The corresponding
integrated Sachs—Wolfe cross-correlation with large-scale structure is there-
fore predicted to be negative at low £, matching the ILG expectation but
expressed transparently in terms of the pressure source and its time depen-
dence.

In summary, cosmology in the pressure language keeps ILG’s kernels intact
and moves all novelty into the definition of a single, well-defined source

13



p. Background expansion and optical focusing become displays of w as
wpg and T, while growth and lensing are standard equations driven by p.
The resulting signatures—mild, scale-dependent growth; coherent lensing
rescaling; and the low-¢ ISW sign—are the same as in ILG, but easier to
trace back to first causes.

8 Numerical Implementation

Pre-filter approach: compute p = wx*(pyd;), then solve standard
Poisson

The implementation is a two-step map:

1. Pre-filter (source build). Construct the effective pressure source
p(X7 CL) = [w(va a) S(Xa CL)], S(X7 a’) = {_pb(a) 5b(x7 a)(cosmology/LSS), pb(x) (galaxies;

a=1), i.e., multiply by w(k,a) in Fourier space and inverse-transform.

Solve standard Poisson. Find & from
V2®(x,a) = 471G a® p(x, a),

using your usual solver. Forces for dynamics are g = —V®; circular speeds
use v2(R) = ROp®(R,0) in disks.

No change is required to the left-hand side (LHS) of the field equation;
all novelty is in the pre-filtered source p.

Real-space versus Fourier-space paths

Fourier-space (recommended for grids). On a uniform N, x N, x NV,
mesh with periodic boundaries:

1. Deposit s(x,a) on the mesh (CIC or TSC assignment).
2. FFT to get $(k,a).

3. Multiply by the kernel: p(k,a) = w(k,a) sk, a), with

wlba)=1+C(;=) . C=¢ 2 a=120-¢7)
ko

4. Poisson in k-space: ®(k,a) = —4rGa®p(k,a)/k? for k # 0; set

~

®(0,a) =0.
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5. IFFT to ®(x, a); finite-difference gradients yield g(x,a).
This path is O(N log N) with N = NN, N, and is the natural fit for large-
scale-structure solvers and periodic test problems.
Real-space (isolated systems, optional). When boundaries are open

(isolated galaxies), either:

o Zero-pad and FFT: embed the target volume in a box at least twice as
large in each dimension, zero-pad s, apply the Fourier-space pipeline,
and crop; or

o Multigrid with convolution: compute p = w x s via FFT on a padded
box, then solve V?® = 47Ga?p with a multigrid Poisson solver sup-
porting Dirichlet boundary conditions (e.g., ® — 0 at the box edge).

For axisymmetric thin disks, the Hankel-transform route (Section 6) is effi-
cient in 2D:

P(k) =w(k, 1) Sy(k),  v*(R) = QWGR/ kdk J.(kR) P(k),
0
computed with logarithmic FFT (FFTLog) for speed and accuracy.

Stability, discretization, and boundary handling

Positivity and monotonicity. Because w(k,a) > 0 and is monotone in
the declared proxies, the pre-filter does not introduce sign flips or ringing
beyond standard discretization artifacts. Use CIC/TSC mass assignment
and (optionally) deconvolve the window function to reduce small-scale bias.

Small- and large-k hygiene. Set the k = 0 mode of & to zero (fixes
the additive constant). For the kernel, evaluate the enhancement term in
logarithms to avoid overflow/underflow:

log[C(akm)a} =log C' + a(loga — log k — log 79).

Apply an anti-aliasing rule (e.g., the 2/3 spectral cutoff) if the grid Nyquist
is approached by power in s.
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Boundary conditions.

e Periodic boxes (LSS). Standard FFT Poisson with ®(0) = 0; growth
and lensing kernels use the same p.

e Isolated galaxies. Prefer zero-padding or multigrid with open bound-
aries; verify that ® and v(R) are converged against padding size and
grid resolution. If bars/warps are present, apply fairness masks before
fitting (Section 6).

Complexity and performance

LSS solvers. FEach step (filter, Poisson) is an FFT and an inverse FFT:
O(Nlog N) per time step. The memory footprint is O(N). The kernel
multiplication is a pointwise array operation. GPU FFTs provide near-
linear scaling in practice.

Galaxy pipelines. For full 3D grids, complexity matches the LSS case.
For axisymmetric thin disks, the Hankel path via FFTLog is O(M log M)
with M radial samples; sub-second per galaxy at typical resolutions. Finite
thickness adds one quadrature dimension but remains fast.

Code hooks

Rotation-curve pipeline (galaxies).

1. build_Sigma b(photometry, gas, Upsilon_star) — 3;(R) (global
T.).

2. fftlog hankel JO(Sigma_b) — (k).
3. apply kernel radial (tildeSigma, a=1): P(k) = w(k,1) Zy(k).
4. fftlog vc(tildeP) — vmodel(R) via eq:ve-disk.
5. apply_fairness masks(data); compute residuals and the display w(R) =
/U aryon:
Large-scale-structure (PM) step.
1. deposit_contrast(particles) — dp(x,a) (CIC/TSC).

2. fft3(delta) — 5b(k, a); multiply to get p = pp w(k,a) Op.-
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3. poisson_fft(p): ® = —4rGa?p/k?; set ®(0) = 0.

4. ifft3(Phi) — ®; grad_Phi — g; push particles.

Diagnostics and regression tests.

e Kernel sanity: verify w — 1 at large k£ and the expected power-law
enhancement at small k.

e Energy check: in static tests, confirm that ® minimizes the func-
tional in Section 5 given p.

e Convergence: double resolution and padding; require v(R) and ®
changes <1% over the fitted radii.

With this pre-filter architecture, existing Poisson and growth solvers drop in
unchanged. The only new component is a kernel multiplication in k-space
(or a single convolution in real space), after which all downstream numerics
and validation practices remain standard.

9 Predictions and Falsifiers

Rotation curves with a global M/L and no per-galaxy dials

Prediction. With a single stellar mass-to-light ratio T, fixed for the sur-
vey, galaxy circular speeds satisfy

G Mg(R)
T~ R

so that the display w(R) = v?/ U%aryon is fully determined by the universal
kernel and the observed baryons. Residuals Av(R) = vops(R) —Vmodel (R) are
unbiased across stellar surface brightness, size, gas fraction, and morphology
under fairness masks.

R
vZ(R) , Mg (R) = / Agrr’? p(r')dr’, D= w* pp,
0

Falsifiers. Any of the following is a fail:

e Per-galaxy retuning: acceptable residuals require changing w or
introducing extra dials on a per-galaxy basis.

e Correlated residuals: survey-wide Pearson correlation |corr(Av, X)| >
0.3 at > 30 for any basic observable X € {¥,, Ry, fsas} after masks.

e Sign pathologies: inferred p(r) is negative or highly oscillatory where
pp(r) is smooth and positive.
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Tracer-independent combinations under the pressure display
Prediction. Define a tracer-independent growth-to-potential ratio

ak®d(a, k)
H(a) f(a7 k) Sb(av k) ‘

Ec¢(a,k) =

Using k2® = 47G a2 ppw dp, this becomes

4G a3 ﬁb(a)} w(k,a)
H(a) 1 f(a,k)

Hence E¢ is tracer-independent and factorizes into a known background
prefactor times w/f. The scale dependence at fixed a is mild, monotone,
and inherited from w(k,a); the small-scale limit gives the laboratory value
as w — 1.

EG(a’ k) = |:

Falsifiers.

e Bias leakage: F estimates differ for distinct tracers beyond known
systematics once mapped to the same (k,a).

e Wrong scale trend: after controlling for f(a, k), the residual scale
trend in F¢ is non-monotone or opposite in sign to w(k, a).
Low-¢ ISW sign and CMB lensing amplitude

Prediction. On very large scales (low multipoles), the time growth of
w(k,a) slows the decay of ® and can make ® < 0, yielding a negative ISW
cross-correlation with large-scale structure at low ¢. For CMB lensing, the
line-of-sight average of w produces a mild, coherent amplitude increase at
low L that vanishes toward high L where w — 1.

Falsifiers.

e ISW sign: a robust, mask-stable positive low-£ ISW cross-correlation
inconsistent with the predicted sign.

e Lensing slope: a significant decrease of lensing amplitude toward
low L after standard pipeline corrections.
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Near-field kernel slope (nanogravity)

Prediction. At short scales krp/a > 1, the kernel behaves as w(k,a) =
1+ C(a/(k79))® with a = 12(1 — ¢~ 1). The near-field slope is negative and
small:

dlnw Cu C(a/ (ko))
dink 1+ C(a/(kmo))>

implying no detectable deviation until experiments probe sufficiently low k
(long baselines). The sign and monotonicity are the sharp predictions.

<0,

Falsifiers. A measured positive near-field slope or a non-monotone re-
sponse in controlled lab tests at fixed a contradicts the kernel form.

Clear pass/fail criteria (summary)

e Single T, suffices: per-galaxy retuning is disallowed; if needed, fail.

e Residuals uncorrelated: no strong, significant correlations between
Awv and basic baryonic properties after masks; if present, fail.

e Tracer independence: Eg consistent across tracers at fixed (k,a)
within systematics; if not, fail.

e Large-scale signs: negative low-¢ ISW and mild low-L lensing en-
hancement; opposite, fail.

e Near-field monotonicity: small, negative slope; opposite sign or
non-monotonic, fail.

10 Relation to Alternative Explanations

Per-galaxy tuned frameworks

Halo-fitting frameworks explain galaxy dynamics by assigning a separate
mass profile to each galaxy, often with multiple free parameters per sys-
tem. These models can match rotation curves but at the cost of per-galaxy
tuning and degeneracies (disk—halo tradeoffs, concentration-mass scatter).
In contrast, the pressure language uses one universal kernel and a single
global M /L to turn observed baryons into an effective source. There is no
halo dial to adjust: p = w * p, fixes the field, and standard Poisson gives
the dynamics. The absence of per-galaxy degrees of freedom is the decisive
structural difference.
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Modified-gravity models with new fields

Many modified-gravity theories introduce additional dynamical fields (scalars,
vectors, tensors) and new coupling functions to alter the left-hand side of
the field equations. These extra degrees of freedom bring flexibility but
also model complexity and screening rules to recover laboratory limits. The
pressure formulation presented here leaves the gravitational operator un-
changed and adds no new fields. It is classical gravity with a redefined,
information-limited source built from the baryons we already observe. Lab-
oratory recovery is automatic because w — 1 at high k; large-scale effects
are governed by the same global constants and a single kernel.

Distinctives

e Single kernel. One scale- and time-aware, isotropic kernel w(k,a)
applies to all systems.

e Global constants. The constants (¢, 70, Econ, G) fix the kernel; there
are no per-galaxy or per-survey knobs.

e Pressure display without extra fields. Gravity is solved in its
standard form with an effective source p; no new dynamical degrees of
freedom are added.

e Laboratory limit. Exact recovery at small scales is built in through
w — 1.

e Cross-domain coherence. The same source construction drives
galaxies, growth, lensing, and background focusing, so predictions are
tied across regimes and falsifiable together.

11 Discussion

Physical meaning of “pressure.” In this framework, “pressure” is an
effective source field constructed from known baryons by an information-
limited filter. It is not a thermodynamic variable, nor a new component of
matter: it is the ordinary mass distribution displayed through a kernel that
encodes finite information capacity across scale and time. Writing gravity
in pressure form changes where the novelty sits (in the source rather than
in the operator) while leaving the gravitational solver classical. The extra
galactic pull, the mild scale dependence in growth, and the lensing rescale
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all emerge from the same filtered source without introducing new degrees of
freedom.

Interplay with RS constants and recognition cost. The kernel is
fixed by a small set of global constants aligned with Recognition Geometry.
The golden ratio ¢ locks the kernel’s exponent, the fundamental tick 7
sets the gate between laboratory and cosmic scales, and the coherence scale
FEon anchors the broader recognition metric that motivates the information
limit. This rigidity is a feature, not a constraint to be evaded: a single kernel
threads galaxies, structure growth, and optics. Because the constants do not
vary between systems, inferences become transportable across datasets, and
successes or failures are unambiguous. The recognition cost provides the
rationale for why the filter enhances long-wavelength, long-time information
while leaving short-scale laboratory physics intact.

Why rigidity matters. A universal kernel and a global presentation in SI
prevent per-galaxy fitting freedom from washing out tests. Rotation curves,
lensing, and growth all reference the same filter, so the theory is falsifiable
as a whole, not piecemeal. This also simplifies implementation: one pre-
filter step builds the source for any downstream solver, making pipelines
comparable across surveys and simulations.

Limitations and open problems. There are clear fronts for improve-
ment. (i) A fully microscopic derivation of the kernel as the Euler-Lagrange
of a pressure energy built directly from the recognition cost would remove re-
maining interpretation gaps. (ii) A complete relativistic presentation, with
an effective stress—energy and explicit conservation statements, is needed
for strong-field and high-precision lensing. (iii) Astrophysical systematics—
mass-to-light calibration drift, gas mapping, distances and inclinations—
limit the sharpness of galaxy tests; these should be handled by survey-wide
standards and fairness masks, not by retuning the kernel. (iv) Nonlinear
structure and baryonic feedback can distort the map from baryons to the
pressure source; controlled simulations with the pre-filter architecture are
required. (v) Environment-dependent displays may be useful for observ-
ables that are known to vary with local conditions, but any such extension
must preserve the kernel’s universality and the RS rigidity.
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12 Outlook

Toward a fully relativistic presentation. The next step is to promote
the effective pressure into a relativistic source language: define an effec-
tive stress—energy (or a pressure 2-form in differential-form notation) whose
divergence-free property matches the information-limited kernel, and show
that the resulting Einstein equations reduce to the present pressure Pois-
son limit. With that in hand, strong-lensing, time-delay cosmography, and
relativistic tests (light-cone observables, redshift—space distortions at high
precision) can be treated within one consistent formalism.

Cross-checks and precision probes. Several near-term tests can tighten
or falsify the framework. (i) Strong lensing in galaxies and clusters: com-
pare dynamical and lensing masses under the same effective pressure source;
time delays provide scale-sensitive checks. (ii) Clusters: use hydrostatic and
weak-lensing measurements together, enforcing the single kernel across radii.
(iii) CMB lensing and ISW: test the predicted mild low-L enhancement and
the low-¢ cross-correlation sign. (iv) Growth and RSD: measure the scale de-
pendence of f(a,k) and Eq across tracers and redshifts. Each probe is tied
to the same source construction, so consistency must hold simultaneously.

Extensions consistent with RS rigidity. Environment-dependent dis-
plays can be layered on observables (not on the kernel) to account for known
sensitivity to local conditions while preserving universality. The rule is strict:
the kernel and its constants remain global; any display-level modifier must
be a derived, survey-wide functional that rescales readouts without introduc-
ing per-system dials or violating positivity and laboratory limits. With this
guardrail, future work can explore how local wavefield “pressure zones” affect
measured quantities (e.g., line-of-sight anisotropies, morphology-dependent
systematics) while keeping the gravitational core unchanged.

Survey-wide masks, calibrations, priors, and estimators.

¢ Rotation-curve fairness masks (galaxies). Applied uniformly
across the sample:
— Inclination: keep 30° < i < 85° (photometric inclinations only).

— Inner-beam mask: require r > byp. (catalog beam FWHM in
kpc); alternate diagnostic mask r > 0.2 Ry gives consistent me-
dians.
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— Quter reliability: exclude bins beyond the last reliable rotation
point flagged by the catalog.

— Distance quality: require fractional distance uncertainty < 20%.

— Bar/warp morphology: exclude radii flagged for strong bars or
warps unless explicitly modeled.

— Minimum sampling: require > 5 post-mask radii per galaxy.
— Quality flag: restrict to SPARC Q=1 galaxies.

e Photometric calibrations (galaxies). Stellar masses from Spitzer
IRAC 3.6 um (standard zeropoints); atomic gas includes a helium fac-
tor 1.36; molecular gas added where available via a fixed global CO-
to-Hy factor; disk scale heights via a global h,/Rg; = 0.25 (clipped to
0.8,1.2] in ¢).

e Mass-to-light prior. Single, survey-wide T3°#™ = 1.0 My /Le (no
per-galaxy freedom); sensitivity bands may be reported but the head-
line analysis fixes this value.

e F¢ estimator (tomographic; flat-sky Limber). We use the con-
ventional estimator with explicit normalization (cf. Reyes et al.):

Cyi(2)
B(z) CP%(2)

where C;¥ is the CMB-lensing-galaxy cross-power, C7? the galaxy
auto-power, § from RSD in the same redshift bin, and I'(¢,z) the
known geometry factor computed with Limber using the survey red-
shift distributions and the same background H(a). We report E¢g in
bins ¢ € [100,1000] and tomographic z bins with Az =0.1; the the-
oretical prediction uses w(k,a) with k ~ (£ + 1/2)/x(z) and f(a,k)
from the growth equation in Section 7.

Ec(l,z) = T, =)

e ISW cross-correlation. We estimate C’Zg between CMB temper-
ature and large-scale structure over ¢ € [2,60] with standard masks;
theory uses ® from V2® = 47Ga?p with p = ppwdy. The sign test is
binary: ILG-in-pressure predicts a negative low-£ C’ng .

e CMB lensing amplitude. We form an amplitude per bandpower
Ap(f) = G Cpt on £ € [8,400]; the pressure form implies a mild,
coherent enhancement at low ¢ consistent with w(k,a) along the line
of sight.
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A Proof details for the equivalence theorem and
operator properties

Statement (equivalence). Let w(V,a) be the isotropic convolution op-
erator with Fourier symbol

w(k,a)—1+0<ka), C=¢? a=12(1-p71) >0

7o
Define the effective pressure source by
p(x,a) = py(a) [w(V,a) dy(x,a)], Pk, a) = pp(a) w(k,a) & (k, a).
Then, for standard boundary conditions (isolated decay at infinity with
® — 0, or periodic with zero-mean potential), the followipg statements
are equivalent: (ILG form)k? ®(k,a) = 47G a? py(a) w(k, a) 6 (k, a),
(pressureform)V2®(x,a) = 4G a® p(x, a).

Proof. Take the Fourier transform of the pressure form:
— k2 ®(k,a) = 47G a® p(k, a) = 47G a® py(a) w(k, a) dy(k, a),

and multiply by —1 to obtain the ILG form. Conversely, given the ILG form,
define p = ppw &, and inverse-transform; the assumed boundary conditions
ensure the inverse is well-defined (the k = 0 mode of ® is set to zero for
periodic boxes, and ® — 0 fixes the additive constant for isolated domains).
Thus the two formulations are equivalent.

Operator domain and boundedness. On a periodic box of side L, the
Fourier modes are discrete, and after fixing the zero mode of & one works on
mean-zero subspaces where k > kyin = 27/L. There, w(k,a) is finite and
defines a bounded self-adjoint multiplier on L2, hence w(V, a) is a bounded,
self-adjoint operator. On R?, w(k,a) is locally integrable for all k& # 0
and belongs to L2 (R3\ {0}); the convolution is well-defined as a Fourier

multiplier on tempered distributions, and as a bounded map on mean-zero
L? functions that carry no power at k = 0.

Positivity (operator sense). For any real f € L? with transform f,

N . 3 R 3
r wV.a)f) = [ T wlk.e) 00 s > [ 17 i = 113 >0,

since w(k,a) > 1. This establishes positivity of the operator (the quadratic
form is nonnegative). Note that this does not require the real-space kernel
to be pointwise nonnegative; the result is at the operator level.
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Monotonicity in proxies. For k > 0,

a a—1
aiw(k’a):_caaik*(lﬂé) <0, aﬂ(k,a):Caa

k*a
ok i Oa 7§ >0,

so w decreases with k (shorter scales) and increases with a (later times).
Also Ow/01y < 0 when other variables are fixed.

Real-space kernel and decay. Formally, w(V,a) = Id + K(V,a) with
symbol C(a/79)*k~“. In three dimensions, the inverse transform of k=% is
a (tempered) radial kernel that decays like 7=~ for 0 < a < 3. Pointwise
sign of K is not required for any result in the main text, and the implementa-
tion can retain the operator form (Fourier multiplier) to preserve positivity
by construction.

Laboratory and cosmological limits. The limits

k
lim  w(k,a) =1, lim w(k,a)

Y o
kTo/a—00 kto/a—0 (a/kTﬂ)a

hold directly from the definition, giving the laboratory recovery and the
long-wavelength enhancement used throughout.

B Variational formulation technicalities and bound-
ary terms

Function spaces and admissible class. On a bounded Lipschitz domain
Q C R? with Dirichlet boundary data ®|sq = 0, take V = H}(Q). On a
periodic box T3, take V = {® € H(T3) : [;5 ®d®z = 0}. Assumep € L?(Q)
(or p € H~Y(Q)), built from py, or §, by the multiplier w.

Energy functional and first variation. Consider

1
€[<I>|p]:%/Q|V<I>|2d3x+/ga2pq>d3x,

with ® € V. For any 6® € V,

1

0 = —
€ 4G

/V@-V(é@) d3x+/ a’pdddiz.
Q Q
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Integrating by parts and using 6®|gq = 0 (Dirichlet) or periodicity,

_ 1 2 3 / 2 3
0€ = C Q(V Q) 5P d°x + Qa poéPdix.

Stationarity for all §® € V yields V2® = 417G a® p.

Coercivity, convexity, existence, uniqueness. The quadratic form
Q[®] = I [|V®|? is strictly convex and coercive on V by the Poincaré
inequality. The linear functional £[®] = [a?p® is continuous on V for
p € H™! (by duality) or p € L? (by Cauchy-Schwarz). Hence £ = Q +
L is strictly convex, weakly lower semicontinuous, and coercive. By the
Lax—Milgram theorem (or direct method of the calculus of variations), there
exists a unique ® € V minimizing &£; this minimizer is the unique weak so-
lution of V2® = 417G a?p in V.

Unbounded domains and boundary terms. For isolated systems on
R3, assume ®(x) — 0 as |x| — co and p € L'(R?) N LY/%(R3). The Green’s
representation

p(Y? CL) d3
RS [x =Y
solves the Poisson equation in the distributional sense and satisfies ® €
H'(R®) with finite Dirichlet energy. In the variational derivation, boundary
terms vanish by decay: surface integrals on spheres of radius R scale like
R? maxgp, |V®| maxsp, |[0®| and tend to zero under the stated decay.

d(x,a) = — Gad*

Regularity. If p € L?(1), elliptic regularity gives ® € HZ_(Q); if p is
smoother, ® inherits two derivatives in the interior. For periodic boxes,
(k) = —4nG a?p(k)/k? for k # 0, showing that ® gains two derivatives
relative to p in Sobolev scales when the zero mode is fixed.

Remarks on implementation consistency. In discrete settings, com-
puting p by multiplying §(k) with w(k,a) and then solving the standard
discrete Poisson equation preserves positivity of the quadratic form by con-
struction. If a truncated real-space kernel W (r, a) is used, enforce symmetry
and normalization so that the discrete convolution retains self-adjointness;
the Fourier route is preferred for guaranteed operator positivity.

These details justify the use of the pressure energy as a well-posed varia-
tional principle and make precise the boundary assumptions under which
the pressure and ILG formulations are mathematically identical.
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C Implementation details and numerical tests

Data model and units. All fields live on uniform Cartesian meshes
(cosmology) or cylindrical grids (galaxies), in SI units with comoving co-
ordinates for cosmology and physical coordinates for galaxies. Constants
(¢, 70, Feon, G) are treated as immutable run-time parameters and recorded
in each output header.

Fourier-space pre-filter pipeline (grids). On an N, x N, x N, periodic
mesh:

1. Deposit the source s(x,a) (cosmology: s = ppdy; galazies: s = pp)
with CIC or TSC assignment.

2. Compute §(k,a) via FFT; apply deconvolution if desired to reduce
assignment bias.

3. Multiply pointwise: p(k,a) = w(k,a)s(k,a), with w(k,a) = 1 +
Cla/(km))*, C =™ a=12(1 - ™).

4. Solve Poisson in k-space: d(k,a) = — 4G a? p(k, a)/k? for k # 0; set
®(0,a) =0.

5. Inverse FFT to ®, then differentiate with centered finite differences to
obtain g = —Vo.

All kernel multiplications are done in logarithms for numerical stability when
evaluating (a/(k7p))®.

Open-boundary galaxies (padding or multigrid). For isolated sys-
tems, either (i) zero-pad the target volume by a factor > 2 per dimension,
perform the FFT pipeline, then crop; or (ii) convolve s with w on a padded
box to obtain p, then solve V2® = 41rGa’p with a multigrid solver that
enforces ® — 0 at the boundary. Verify convergence of ® and v(R) against
padding size and resolution.

Axisymmetric thin disks (FFTLog). Use Hankel transforms (order 0
and 1) on logarithmic radial grids:

P(k) = w(k,1)Sy(k),  v*(R) = 2WGR/O°O kdk Jy(kR) P(k).

Adopt logarithmic sampling that resolves both the inner scale (~ seeing/beam)
and the outer scale (last measured point).
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Stability and hygiene.

o Aliasing: apply a 2/3 spectral cutoff to suppress wrap-around; zero
the highest shell of modes before inverse FFTs.

o Small-k handling: never evaluate at k = 0; the additive constant of ¢
is fixed by ®(0) = 0 (periodic) or & — 0 (isolated).

o Assignment windows: for CIC/TSC, optionally deconvolve by the
squared window to sharpen small scales, then rely on w — 1 at high
k.

Unit tests (deterministic).

1. Kernel identity: with w = 1, recover the standard Poisson solution for
(a) a Gaussian sphere and (b) a Miyamoto-Nagai disk; require relative
errors < 1073 in ® and < 1072 in v(R) across resolved radii.

2. Filter linearity: verify w * (af + bg) = a(w * f) + b(w * g) to machine
precision for random fields f, g and scalars a, b.

3. Positivity/monotonicity display: for a smooth, nonnegative p,, check
that the inferred P(R) = [ p(R, z)dz has no spurious sign flips and
that w(R) = v?/ v%aryon is nondecreasing with radius in cases where

> (k) is concentrated at low k.

4. Energy check: compute E[®[p] = gin [|[VP|* + [a’p® and confirm
that a single V-cycle of multigrid lowers £, with convergence to the
stationary value.

Convergence tests (grids and disks).

e Grids: double the linear resolution N — 2N; require | Pon—Pn||2/||[Pan]2 <
1% and likewise for forces on a random particle set.

e Disks: refine the logarithmic radial grid by a factor of two; require
|vaar (R) — var(R)|/venr(R) < 1% over the fitted radial range.

Performance notes. The pre-filter adds one FFT and one inverse FFT
per step (cosmology), or one pair of Hankel transforms (galaxies). On
GPUs, end-to-end cost is dominated by the FFTs; kernel multiplication
is bandwidth-bound and negligible in wall time.
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D Bench datasets and masks; reproducibility notes

Bench datasets (galaxies). Use heterogeneous samples spanning dwarfs
to L., with photometry, gas maps, distances, and inclinations on a common
calibration. For each galaxy record:

e Photometric band and zero points; map to 3, via a single survey-wide
T,.

e Gas surface densities ¥y, g, (with conversion factors and helium
correction).

e Rotation curve data with beam/seeing and inclination corrections, and
uncertainties per radius bin.

Surveys, selections, and references (minimal set).

e Rotation curves (galaxies): SPARC [?]. Selection: Q=1 galaxies;
photometric inclinations (30°-85°); inner-beam mask 7 > byp,c; outer
bins beyond last reliable point removed; bars/warps masked; distances
with < 20% fractional uncertainty. Calibrations: Spitzer IRAC 3.6 um
zeropoints; helium correction 1.36; fixed CO-to-Hs factor where avail-
able; global h./Rg = 0.25 (clipped) and single T2°#™ = 1.0.

e CMB temperature and lensing: Planck 2018 [?] (temperature
full-sky maps; lensing k reconstruction). ISW: multipoles ¢ € [2,60];
standard Galactic/point-source masks.

e Galaxy lensing/number-density for Eg: a modern wide-field sur-
vey (e.g., DES Y3 or KiDS-1000; choice determines I' and b, inputs).
Tomography: Az=0.1 bins; £ € [100,1000]; RSD-derived 8 = f /b, in
the same bins.

Bench datasets (cosmology). Adopt boxes with baryonic tracer cata-
logs or hydrodynamical fields sufficient to construct & on grids across red-
shift bins. For each snapshot record: (a, H(a)), box size, particle/cell counts,
tracer bias models if used only for display-level comparisons, and the exact
grid resolution used for §, deposition.

Fairness masks (galaxies). Masks are applied uniformly across the sam-
ple:
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o Geometry: exclude i < 30° or i > 85°; mask radii inside the effective
beam FWHM and beyond the last reliable bin.

e Morphology: flag strong bars/warps; exclude affected radii unless mod-
eled explicitly.

o Systematics: exclude galaxies with distance uncertainty exceeding a
specified fractional threshold; exclude bins with noncircular motion
indicators above survey standards.

Mask thresholds and flags (explicit).
e Inclination: keep 30° < i < 85° (photometric); drop otherwise.

e Inner radii: 7 > bypc; diagnostic alternate r > 0.2 Ry (reported sepa-
rately).

e Distance quality: keep galaxies with fractional uncertainty < 0.20.
e Minimum sampling: require > 5 post-mask radii per galaxy.

e Morphology: mask radii flagged as strong bars/warps; exclude systems
dominated by pressure support for the rotation-curve test.

e Catalog quality: SPARC Q=1 only.

Reproducibility: configuration and outputs. FEach run writes a human-
readable header containing:

e Constants (¢, 79, Econ, G), kernel parameters (C,«), and the single
global T, (galaxies).

e Boundary conditions, grid sizes, padding factors, and assignment scheme

(CIC/TSC).

e Random seeds (if any), fairness mask settings, and convergence toler-
ances.

Outputs include: (i) the pre-filtered source p (grid or P(R)), (ii) the poten-
tial ® and derived fields (g, v(R)), (iii) diagnostic displays (w(R), residuals,
energy functional values), and (iv) a checksum of the kernel array w(k,a)
used.
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Exact reruns. To guarantee bitwise reruns where possible:
e Fix FFT plan wisdom and thread counts; record them in the header.

e Snap grid sizes and box lengths to integers in machine units; avoid
dynamic regridding during a run.

e Store ASCII sidecar files with the (k, a,w) triples sampled on the dis-
crete mesh for the run.

Release bundle. Package: (i) configuration files; (ii) constants file; (iii)
fairness masks; (iv) per-galaxy inputs (I, Xgas, distances, inclinations) and
per-snapshot cosmology inputs (d; grids); (v) kernel sampler outputs; (vi)
a short README documenting the exact command lines and environment.
Dataset identifiers, checksums, and canonical environment.

e Identifiers: Rotation-curve artifacts and configuration are archived
at Zenodo DOI 10.5281/zenodo.16014943. CMB/lensing inputs ref-
erence Planck 2018 public releases [?]; galaxy samples (for E¢) refer-
ence the chosen survey’s public data release (e.g., DES Y3 or KiDS-
1000).

e Checksums: The release bundle includes a file checksums . txt listing
SHA256 digests for all analysis inputs and produced artifacts (kernel
samples w(k,a), masks, summaries). These are generated at release
time and versioned alongside the DOI deposit.

e Canonical environment: Linux/macOS; Python 3.11.x; NumPy
1.26.x; SciPy 1.11.x; FFTLog or equivalent for Hankel transforms;
Matplotlib 3.8.x; optional CuFFT for GPU FFTs. Reproducible builds
are provided via a Dockerfile and pinned requirements.txt; exact
versions are recorded in each run header and archived with artifacts.

These practices make it straightforward for external groups to rerun the
analysis with the same kernel and constants, test alternative mask choices,
and reproduce figures without per-object adjustments or hidden parameters.
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