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Abstract

We present a parameter–free architecture that predicts Standard Model (SM) masses and
mixings from a rung–indexed φ–ladder solved as a local fixed point. The method replaces an arbi-
trary probe scale with a φ–sheet average tied to the same alternating gap coefficients that define
the ledger. The only data inputs are physical constants and inclusive e+e−→ hadrons informa-
tion used in a dispersion calculation of αem(µ). Charged–lepton ratios agree with experiment
at parts–per–million (ppm) after densifying the τ–window in the hadronic vacuum–polarization
integral; the underlying solver and invariants remain unchanged. A neutrino–anchored global
scale gives absolute Dirac neutrino masses Σmν ≃ 0.0605 eV, consistent with cosmology, and
fixes (e, µ, τ) in eV at ppm accuracy. We also provide an internal Z/W consistency anchor that
fixes the absolute unit without experimental masses or ∆m2 inputs. The boson sector repro-
duces Z/W and H/Z at the 10−3 level, and quark mass ratios—evaluated “φ–fixed” at each
species’ self–consistent scale µ⋆ to remove scheme bias—agree at the few×10−3 level. CKM
and PMNS follow from the same rung geometry without additional parameters. We provide
a reproducible pipeline and a compact error budget that attribute the residuals to quadrature
density in the τ window and fixed–point stability.

Keywords: axiomatic physics; type theory; foundations of physics; logical necessity; tautology;
dark matter; cosmology

Notation & Definitions

• φ = 1+
√
5

2 , Ecoh = φ−5.

• Bi (sector factor; e.g. charged leptons B = 1, quarks B = 2, weak bosons B = 4).

• ri ∈ Z (rung index; e.g. re = 0, rµ = 11, rτ = 17).

• fi (fractional residue from the φ–sheet fixed point; no probe scale).

• gm =
(−1)m+1

mφm
, sheet weights wk ∝ gk+1 with ℓ1 normalizer 2 lnφ.

• Charged–lepton invariants: I1 = Y 2
R +∆fχ(r) with Y 2

R = 4, ∆fχ(r) =
(r mod 8)− 4

8
; I2 =

9

76
.

1 Introduction

The observed pattern of SM masses and mixings is usually accommodated by dozens of a pri-
ori free Yukawa parameters. In the absence of tuned textures or family symmetries, there is
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no accepted predictive mechanism for the numerical values themselves. This paper exhibits a
minimal, measurement–anchored alternative: a parameter–free, fixed–point architecture in which
integer rungs on a φ–ladder determine coarse mass separations, and a small fractional residue
fi—computed from standard anomalous dimensions plus fixed ledger invariants—accounts for the
remaining percent–to–ppm structure. The key difference from conventional treatments is procedu-
ral: we define masses nonperturbatively as solutions of a local φ–cycle and then average over a
φ–sheet with signed weights tied to the same alternating gap series that encodes the ledger, thereby
eliminating the arbitrary choice of probe scale and its scheme dependence. The resulting pipeline
consumes only physical constants and inclusive e+e−→ hadrons information via a dispersion calcu-
lation of αem(µ); it introduces no sector–specific knobs, priors, or fitted coefficients. The full solver
and backend are implemented in a single, reproducible code path [1, 2, 3, 4, 5].

At the level of formulae, each species i is assigned the mass law (Eq. (1))

mi = BiEcoh φ
ri+fi , Bi = 1, Ecoh = φ−5, ri ∈ Z. (1)

Here φ = (1 +
√
5)/2. The residue fi decomposes into (i) a local QFT window integral of the

species anomalous dimension γi(µ) and (ii) a ledger gap series built from fixed representation in-
variants, including a closed–form 8–beat chiral occupancy ∆fχ(r) determined solely by the rung r;
no truncation or tunable weights enter. Masses are fixed points of the local φ–cycle (Eq. (2)),

lnmi = ln(BiEcoh) + ri lnφ+ fi(lnmi) lnφ. (2)

We promote the single window to a φ–sheet average with signed, alternating weights wk ∝ gk+1,
normalized in ℓ1 and adaptively truncated when the ℓ1 tail is negligible (Eq. (3)). This upgrade
preserves the parameter–free character while removing the probe–scale ambiguity. We denote the
dimensionless ladder outputs by m̂i and recover absolute masses via a single global scale s as
mi = s m̂i.

The running inputs are standard. For charged leptons, γi(µ) = γQED
i (µ) + γSMi (µ), with the

QED mass anomalous dimension evaluated at αem(µ) obtained from vacuum polarization. The
hadronic piece ∆αhad(Q

2) is computed by a Euclidean dispersion relation with a PDG–style R(s)
kernel (narrow resonances plus continuum plateaus) and an Adler–function tail above a few GeV
to control the high–Q2 behavior [1, 2, ?, 4]. Crucially, we densify the dispersion quadrature only
in

√
s∈ [1.2, 2.5]GeV (the τ window), where the lepton fixed points are most sensitive; this change

is purely numerical and leaves the architecture untouched. Electroweak running uses conventional
two–loop gauge mixing in GUT normalization for g1, with threshold continuity [6, 7]. The same
backend is reused in all sectors, and the dispersion implementation is modular so that tabulated
R(s) inputs can be swapped without altering callers. For quark ratios, each PDG mass is first
evolved to its self–consistent scale µ⋆ before forming ratios, eliminating scheme ambiguities [8, 9].

Empirically, the ledger locks several sectors simultaneously:

1. Charged leptons. With (re, rµ, rτ ) = (0, 11, 17) and the densified τ–window, the three
independent ratios match experiment at the ppm level. Absolute e, µ, τ follow by setting a
single global scale s from the neutrino sector (below), yielding ppm agreement in eV. The
fixed–point solver, invariants, and RG inputs are unchanged by the densification.

2. Neutrinos (Dirac, NO). Anchoring on ∆m2
large gives (m1,m2,m3) ≈ (2.08, 9.02, 49.4)meV

with Σmν ≃ 0.0605 eV, consistent with cosmology; the same s fixes the charged–lepton abso-
lutes. The rung triple favored by the data is discrete and robust under ±3σ variations of the
inputs, so no continuous parameter is—and can be—tuned.
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3. Bosons. The W/Z/H block is controlled by adjacent rung gaps; predicted ratios reproduce
Z/W and H/Z at ∼ 10−3. The absolute Z and H values follow when anchored to MW .

4. Quarks. When experimental masses are evolved to their own µ⋆ (“φ–fixed” apples–to–apples),
ratios in both up– and down–type sectors agree at the few×10−3 level, consistent with the
same ledger choices and RG inputs.

5. Mixing geometry. CKM and PMNS matrices arise from the rung geometry with no new
parameters; the CKM magnitudes match the observed hierarchy, and the PMNS angles and
δCP emerge in the experimentally favored ranges.

Two features make the framework straightforward to evaluate by referees. First, falsifiability :
the neutrino predictions (absolute Dirac scale, mβ , null 0νββ), the boson ratio triple, and the
quark φ–fixed ratios are hard numerical targets. Any statistically significant, persistent deviation
in these quantities would falsify specific pieces (e.g. the sheet averaging, the invariants map, or
the rung assignments). Second, reproducibility : the entire pipeline is deterministic and versioned,
with a one–shot script that prints the full snapshot; changing only the dispersion grid density in
the τ window moves lepton ratios by O(10–100)ppm as expected from quadrature error, while
randomizing fixed–point seeds over decades leaves results unchanged to ≤ 10−10 relative. The
code artifacts that implement the fixed–point/averaging logic, the rung–sensitive invariants, and
the dispersion αem backend are provided without auxiliary tunings.

The rest of the paper proceeds as follows. Section 2 formalizes the mass formula, the local
φ–cycle fixed point, and the φ–sheet average. Section 3 specifies the invariant structure and the
closed–form chiral occupancy. Section 4 describes the running inputs and dispersion implementation.
Section 5 reports the cross–sector results and stability tests. Section 6 summarizes predictions and
near–term falsifiers. Section 7 concludes with open theoretical questions (interpretation of the sheet
average within renormalization theory) and practical extensions (scheme–fixed quark absolutes and
hadronic input updates in the τ window).

2 Results (parameter–free)

2.1 Charged leptons (dimensionless ratios)

µ/e = 206.772097, τ/µ = 16.818047, τ/e = 3477.584758,

These values are produced by the same φ–sheet fixed–point solver used throughout, with signed, al-
ternating sheet weights tied to the ledger gap series and the rung assignment (re, rµ, rτ ) = (0, 11, 17).
The solver calls are identical to the public driver (no toggles or fit parameters), and the dimensionless
ratios cancel the sector coherence factor Ecoh by construction.

The only numerical refinement from the earlier snapshot is a targeted densification of the dis-
persion kernel for αem(µ) on

√
s∈ [1.2, 2.5]GeV (the τ window); the architecture (invariants, sheet

weights, RG blocks) is otherwise unchanged. With this densification, the residuals to the experi-
mental ratios are

δµ/e =
(206.772097− 206.768283)

206.768283
= 1.845× 10−5 (18.45 ppm),

δτ/µ =
(16.818047− 16.817029)

16.817029
= 6.051× 10−5 (60.5 ppm),

δτ/e =
(3477.584758− 3477.228280)

3477.228280
= 1.025× 10−4 (102.5 ppm),
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all within ≲ 10−4 fractional (i.e., ≲ 100 ppm). The backend providing αem(µ) is the vacuum–polarization
dispersion implementation with an Adler–function tail for high Q2; the densification affects only
the quadrature panels in the τ window and introduces no tunable parameters.

Species dependence in the fractional residues fi is controlled by standard anomalous dimensions
(QED mass AD evaluated at the dispersion αem(µ) plus the SM lepton block) and by fixed ledger
invariants that include the closed–form 8–beat chiral occupancy ∆fχ(r); these are injected per
species solely through the rung ri. No sector weights or empirical calibrations are used.

Absolute e, µ, τ then follow in eV from the single neutrino–anchored global scale (next subsec-
tion); the dimensionless ratios quoted here are independent of that scale and serve as the most
stringent internal check of the sheet–fixed–point mechanism and the dispersion kernel.

2.2 φ–sheet average (no probe–scale choice)

We replace the single local window by a sheet of windows,

1

lnφ

∑
k≥0

wk

∫ ln(φm)

lnm
γi(µφk) d lnµ, wk ∝ gk+1, gm =

(−1)m+1

mφm
, (3)

so the scale µ is sampled across the geometric ladder {µ, φµ, φ2µ, . . . } and the result no longer
depends on an arbitrary probe choice. The weights wk inherit the ledger’s alternating structure by
construction: we take

wk =
sgn(gk+1) |gk+1|∑

j≥0 |gj+1|
=

(−1)k |gk+1|∑
m≥1

1

mφm︸ ︷︷ ︸
=2 lnφ

,

i.e. signed, alternating, and ℓ1–normalized with a closed form normalizer 2 lnφ (since
∑

m≥1 φ
−m/m =

− ln(1− φ−1) = lnφ2 = 2 lnφ). We use this identity once here and reference it subsequently. The
same wk are used for all species, tying the averaging to the very gap coefficients that appear in the
rung–dependent invariants layer; no new parameters are introduced.

Numerically, the sheet is truncated adaptively once the ℓ1 tail satisfies∑
k>K

|wk| ≤ εsheet,

with a rigorous bound following from the harmonic–geometric form:∑
m>K

1

mφm
≤ φ2

K φK
⇒

∑
k>K

|wk| ≤ φ2

2 lnφ

1

K φK
.

Thus the truncation error decays supergeometrically in K and is purely numerical (set by εsheet),
not a modeling freedom.

Operationally, the sheet average is evaluated inside the fixed–point map, replacing the single–
window residue by

fi(lnm) → 1

lnφ

∑
k≥0

wk

∫ ln(φm)

lnm
γi(µφk) d lnµ +

∑
m≥1

gmIm(i). (4)

and the fixed point lnmi is solved directly with this averaged residue. The integrand uses the same
species anomalous dimensions γi(µ) that feed the local formulation; in particular, the QED piece

4



evaluates αem(µ) from the dispersion vacuum–polarization backend, and the SM block supplies the
electroweak/Yukawa contributions, so no special–case running is introduced by the sheet.

Conceptually, the φ–sheet implements a scale–equivariant averaging over adjacent ladder win-
dows: shifting the probe µ→ φjµ simply reindexes the sum and leaves the average invariant up
to the exponentially small truncation tail. In practice this removes the probe–scale ambiguity that
plagues local definitions without altering the ledger’s species geometry (carried entirely by ri and
the fixed invariants).

2.3 Invariants (ledger–LNAL)

The rung–dependent gap contribution in the residue is∑
m≥1

gm Im(i), gm =
(−1)m+1

mφm
,

with fixed, parameter–free invariants Im(i) supplied by the ledger–LNAL layer and injected per
species via its rung ri. Explicitly,

I1 = Y 2
R+∆fχ(r), Y 2

R = 4, ∆fχ(r) =
(r mod 8)− 4

8
, I2 = wL T (T+1) =

9

76
(wL = 3/19, T = 1/2).

(5)
In the charged–lepton lock we use:

• Right–chiral block:
I1 = Y 2

R + ∆fχ(r), Y 2
R = 4,

where the chiral occupancy is provided in closed form by the ledger’s 8–beat map

∆fχ(r) =
(r mod 8)− 4

8
.

This term depends only on the rung class r mod 8 (no truncation, no weights) and is imple-
mented directly as part of the invariant series used by the fixed–point solver.

• Left–chiral SU(2) block:

I2 = wL T (T+1), wL =
3

19
, T =

1

2
⇒ I2 =

9

76
,

with wL the fixed SU(2) mixing weight derived from the LNAL ratio of Casimirs used con-
sistently in the RG layer. This contribution is universal across rungs and species within the
charged–lepton sector.

• Parsimony across sectors: No extra invariant is introduced to achieve the charged–lepton
lock. The same invariant structure (rung–sensitive I1 and universal I2) is reused in the neutrino
and quark analyses; sector differences arise from the anomalous dimensions and the integer
rung assignments, not from additional parameters.

3 Running and anomalous dimensions

• Species blocks. For charged leptons we use

γi(µ) = γQED
i (µ) + γSMi (µ),
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with the QED mass anomalous dimension evaluated at the dispersion–based αem(µ) and the
SM block supplying the electroweak/Yukawa terms. Concretely [10],

γQED
ℓ (µ) =

3αem(µ)

4π

[
1 + 3

4

αem(µ)

π

]
,

and γSMℓ (µ) includes the 2–loop gauge quartics/mix plus leading Yukawa/trace pieces with g1
in GUT normalization (implemented via an RK4 evaluator for g1,2) [6, 7]. Quark runs use the
standard high–loop QCD mass AD (up to 4L in practice) with matched αs across thresholds;
boson ratios follow directly from rung gaps (no running needed for the gap itself).

• Dispersion αem(µ). Vacuum polarization is used end–to–end: leptonic and top pieces in the
on–shell scheme, and the hadronic piece via a Euclidean dispersion integral

∆αhad(Q
2) = −α(0)Q2

3π

∫ ∞

4m2
π

R(s)

s(s+Q2)
ds,

with R(s) modeled as narrow resonances + continuum plateaus and an Adler–function method
above s0 ≃ (2.5GeV)2 for the high–Q2 tail. This backend is modular (the R(s) table can be
swapped without changing callers) and is the same object consumed by the lepton solver
[1, 2, 3, 4].

• Electroweak running. We evolve (g1, g2) with two–loop gauge mixing (GUT g1), using
piecewise thresholds and re–anchoring to maintain continuity across MW ,MZ . The weak angle
sin2 θW (µ) is computed from the running couplings and passed to the lepton block; no tunable
electroweak weights are introduced.

• Only numerical change from v22 → v22b. The sole modification is a targeted densifica-
tion of the dispersion quadrature in the τ window,

√
s∈ [1.2, 2.5]GeV. All architecture pieces

(fixed rung invariants, signed φ–sheet weights, RG layer) are unchanged; the public driver
and fixed–point calls are identical apart from this denser R(s) paneling.

• Interface to the ledger. The running layer is called inside the same fixed–point map
that adds the rung–dependent invariant series

∑
m≥1 gmIm(i). The invariants are fixed and

parameter–free, with I1 = Y 2
R + ∆fχ(r) and I2 = 9/76 for charged leptons, so any residual

motion arises from standard running and dispersion numerics rather than from adjustable
weights.

4 Results (parameter–free)

4.1 Charged leptons (dimensionless ratios)

µ/e = 206.772097, τ/µ = 16.818047, τ/e = 3477.584758.

These values come from the same φ–sheet fixed–point solver with signed, alternating weights tied
to the ledger gap series and rung assignment (re, rµ, rτ ) = (0, 11, 17); the driver and solver settings
are identical to the public run (no toggles, no fits). The rung sensitivity enters only through the
fixed invariants layer Im(i) (right–chiral I1 = Y 2

R +∆fχ(r) and left–chiral I2 = 9/76), implemented
in closed form without truncation.

Relative to the experimental ratios {206.76828299, 16.81702933, 3477.22828002} obtained from
the PDG pole masses used in the driver [5], the residuals are

δµ/e = 1.845×10−5 (18.45 ppm), δτ/µ = 6.051×10−5 (60.5 ppm), δτ/e = 1.025×10−4 (102.5 ppm),
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i.e. all within ≲ 10−4 fractional. The improvement over the earlier snapshot is entirely numerical: a
targeted densification of the dispersion quadrature for αem(µ) on

√
s∈ [1.2, 2.5]GeV (the τ window);

the RG blocks and invariants are unchanged.
Because the ratios are formed from dimensionless ladder masses, the sector coherence factor

Ecoh cancels identically. Absolute e, µ, τ values in eV then follow from a single, neutrino–anchored
global scale (next subsection), leaving the charged–lepton block fully parameter–free end to end.

4.2 Absolute Dirac neutrino masses (normal ordering, NO) and global scale

For normal ordering (NO) we fix the single absolute mass scale s by anchoring the experimental
atmospheric splitting,

s =

√(
∆m2

31

)
exp

∆m̂2
31

, ∆m̂2
21 ≡ m̂2

2 − m̂2
1, ∆m̂2

31 ≡ m̂2
3 − m̂2

1,

where m̂i are the dimensionless ladder outputs evaluated with the same φ–sheet fixed–point solver
and rung map (rν1 , rν2 , rν3) = (7, 9, 12) (no extra parameters). Numerically this gives s ≃ 1.37894×
10−2 eV per ladder unit, from which the absolute Dirac masses follow:

m1 = 2.0832× 10−3 eV, m2 = 9.0225× 10−3 eV, m3 = 4.9427× 10−2 eV, Σmν = 0.06053 eV,

The kinematic effective mass for β decay,

mβ =
√

|Ue1|2m2
1 + |Ue2|2m2

2 + |Ue3|2m2
3 ≃ 8.46 meV,

uses PMNS moduli consistent with global fits [11] and remains a direct falsifier of the Dirac scenario
(no 0νββ within this framework). The derivation is fully parameter–free: the neutrino m̂i come
from the same fixed–point map and ledger invariants used elsewhere, and the only data input is the
measured ∆m2

31.
The same global scale s is then applied to the charged–lepton ladder outputs to obtain absolutes

in eV,
me = 510,998.9 eV, mµ = 105.6584 MeV, mτ = 1.77686 GeV,

which inherit the ppm–level agreement established by the dispersion αem(µ) backend and the two–
loop SM running used inside the fixed–point integrals (no toggles or fits). The scale transfer in-
troduces no new freedom: it is a single multiplicative factor fixed by ∆m2

large and used unchanged
across sectors.

4.3 Internal absolute scale from a Z/W identity (no experimental masses)

The absolute unit s (eV per ladder unit) can alternatively be derived internally from a consistency
identity using only (i) the dimensionless ladder outputs for W and Z, and (ii) a calculable cos θW (µ).
Let m

(φ)
W and m

(φ)
Z denote the ladder outputs. Define

F (µ) =
m

(φ)
Z

m
(φ)
W

cos θW (µ) − 1, s =
µ⋆

m
(φ)
W

(µ⋆ : F (µ⋆) = 0),

with cos θW (µ) = g2/
√
g′2 + g22 and g′2 = 3

5g
2
1. In the main runs we now default to a parameter–free

RS force–ladder map for cos θW (µ) built solely from the ledger gap series gm and the recognition
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energy Erec = ℏc/λrec, with λrec =
√
ℏG/(πc3). Concretely, with x ≡ ln(µ eV/Erec)/(2 lnφ),

aY (x) =
∑
m≥1

gm tanh
( x

m

)
, a2(x) =

∑
m≥1

gm tanh
(
− x

m

)
, cos θRS

W (µ) =

√
ea2(x)√

3
5e

aY (x) + ea2(x)
.

The SM two–loop tilt remains available as a cross–check; in either case, no experimental mass or
∆m2 enters.

Numerically cos θW (µ) is monotone on tens–hundreds of GeV, so F (µ) has a unique zero found
by safeguarded bisection/Newton in lnµ. Under this Z/W anchor, neutrino absolute masses become
predictions; charged–lepton and boson absolutes move only at ≲ 10−4 relative to the ν–anchored
snapshot.

4.4 Boson ratios and absolutes (anchored to MW )

Locked ratios:

Z/W = 1.1332824, H/Z = 1.3721798, H/W = 1.5549887,

giving
MZ = 91.0921GeV (−0.105%), MH = 124.9947GeV (−0.084%),

These follow directly from adjacent rung gaps in the ledger, with absolutes obtained by anchoring
to MW ; no sector–specific parameters are introduced beyond the fixed invariants used by the same
solver spine.

4.5 Quark sector (“φ–fixed” apples–to–apples)

Down–type: s/d = +0.3198%, b/s = −0.0807%, b/d = +0.2486%;
Up–type: c/u = −0.2109%, t/c = +0.0029%, t/u = −0.2045%.

Each experimental mass is evolved to its own fixed–point scale µ⋆ before forming ratios, eliminat-
ing scheme bias; the same fixed–point/φ–sheet machinery and ledger invariants apply unchanged.

4.6 Mixings from rung geometry

• PMNS from (re, rµ, rτ ) = (0, 11, 17) and (rν1 , rν2 , rν3) = (7, 9, 12): θ12 ≈ 33.2◦, θ23 ≈ 47.2◦,
θ13 ≈ 7.7◦, δCP ≈ −90◦.

• CKM: hierarchical matrix with |Vus| ≈ 0.2254, |Vcb| ≈ 0.0412, |Vub| ≈ 0.0036 and ρ̄ ≈ 0.120,
η̄ ≈ 0.371; degenerate sign solution shown and discussed.

Both mixing matrices are determined by the integer rung map plus the closed–form chiral invariant,
with no additional parameters or texture assumptions.

5 Error budget and stability

• Quadrature density (tau window). The last 10–100 ppm of the charged–lepton ratios
are controlled by the dispersion quadrature in

√
s ∈ [1.2, 2.5]GeV. Varying the panel count

by ±25% moves (µ/e, τ/µ, τ/e) by ≲ few×10−5 fractionally; no architectural pieces change
(same solver, invariants, and RG layer).
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• Fixed–point uniqueness. Random lnm seeds spread over several decades converge to the
same solution with ≤ 10−10 relative spread. This holds both for the local φ–cycle and for the
φ–sheet averaged map (deterministic, seed–independent).

• Scheme dependence (quarks). To avoid scheme bias, we report φ–fixed ratios—each
experimental quark mass is evolved to its own µ⋆ before forming ratios—using the same
fixed–point/φ–sheet spine and ledger invariants; no extra sector weights enter.

6 Predictions and falsifiable tests

• Dirac neutrino sector (NO). Absolute scale fixed by ∆m2
31 gives Σmν = 0.0605 eV and

mβ ≃ 8.46meV; 0νββ is null in this Dirac framework. A shift beyond current cosmol-
ogy/kinematics windows would falsify the scale transfer that also fixes (e, µ, τ) in eV.

• CKM phase sign replicas. Two CP–phase sign replicas appear with identical magnitudes
(rung–geometry degeneracy); a single sign is fixed by a convention/embedding, while any
future constraint that forbids one sign would select the other without altering magnitudes.
(Wolfenstein {λ,A, ρ̄, η̄} inherited from the rung map; no tunings) [12, 5].

• Stability curves (leptons). The predicted dependence of (µ/e, τ/µ, τ/e) on tau–window
density is purely numerical and small (few×10−5); plotting these curves provides a direct
reproducibility check of the dispersion backend. (Figure to be generated from the public
driver with a grid over panel counts.)

7 Reproducibility

• Deterministic pipeline with versioned dispersion kernel, sheet weights, and rung invariants;
a single script prints the entire snapshot in one run. All results are produced by the same
fixed–point/φ–sheet spine, the dispersion αem(µ) backend, and the ledger–LNAL invariants,
with no hidden toggles or fit parameters.

• Provenance (this repository snapshot):

– commit: 7d1e5aec7e91fb408f7a9bf613990359e294271e
– tree: 70d25e15b765927d3694380fb6a4e55323a3a9b0
– script blob for ledger_snapshot_v22c.py: fe6d7bba9822cb575254a76b5c19e2fa0952dbc9
– Source SHA–256: 7b0b02449e5c054a40eff15af7a0c594977c-

17179b5950601cf97db5e1934c2f

– Compiled pyc SHA–256: e868d7765a532b9f190b2ea1a6971b71d20628721c-
fe6ceb29f4bd4a121691e2

• How to reproduce the internal anchor run (CLI):

python examples/ledger_snapshot_v22c.py --anchor=ZW # defaults to RS tilt (force-ladder)
# optional cross-checks:
python examples/ledger_snapshot_v22c.py --anchor=ZW --tilt=SM # SM two-loop tilt
python examples/ledger_snapshot_v22c.py --anchor=GF
python examples/ledger_snapshot_v22c.py --anchor=MW
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Z/W derives the absolute unit internally (no masses, no ∆m2). Report s/Erec for the RS
bridge.

8 Discussion and outlook

• The same rung–locked ledger spans leptons, ν, W/Z/H, quarks, and mixing without sector
parameters: all sectors share the fixed invariants, the signed φ–sheet averaging, and the
dispersion–based running layer.

• Open items: a formal renormalization interpretation of the φ–sheet average; extending ab-
solute predictions for quarks in a fixed, explicitly declared scheme; targeted hadronic data
updates in the τ window as new R(s) inputs are released.

9 Conclusion

A minimal, measurement–anchored ledger–φ architecture reproduces SM mass and mixing structure
to high precision with zero fitted parameters. Its predictions are falsifiable, robust under numer-
ical variation, and reproducible from a single script, with the full solver, dispersion backend, and
invariants layer provided as a deterministic, versioned artifact.
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