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Abstract

We present a purely classical framework for Goldbach’s conjecture based on a mod-8 periodic
kernel K8 and the circle method. On major arcs we obtain a positive main term equal to a 2-
adic gate c8(2m) ∈ {1, 1

2 } times the Hardy–Littlewood singular series S(2m). On minor arcs
we prove unconditional density-one positivity via mean-square bounds, and we convert fourth-
moment control into pointwise positivity in every short interval, giving a bounded gap between
exceptional even integers. A quantified medium-arc dispersion lemma (with an explicit small
saving δmed > 0) lowers the short-interval exponent from (log N)8 to (log N)8−δmed . We also
include an unconditional Chen/Selberg variant (prime + almost-prime), explicit constants and
parameter choices, a smoothed-to-sharp transfer with numerical bounds, and a reproducible
computational protocol. An optional GRH template is recorded for comparison.

1 Introduction
Goldbach’s conjecture asserts that every even integer 2m > 2 can be expressed as a sum of two
primes. We develop a classical circle-method framework using a mod-8 periodic kernel K8 that
preserves the natural residue structure and isolates the 2-adic local factor.

Contributions.

• Mod-8 kernel and major arcs. A periodic kernel K8 yields a positive major-arc main
term (c8(2m) + o(1))S(2m) N/ log2 N with c8(2m) ∈ {1, 1

2}.

• Minor arcs: density-one and short-interval positivity. Mean-square bounds give un-
conditional density-one positivity. A fourth-moment argument gives bounded gaps between
exceptions, initially ≪ (log N)8.

• Medium-arc dispersion (quantified). A dispersion lemma on medium arcs provides a
small saving δmed > 0, improving the short-interval exponent to (log N)8−δmed .

• Chen/Selberg variant. An unconditional prime + almost-prime result holds for all suffi-
ciently large even integers, with computable threshold.

• Explicit constants and protocol. We record explicit parameter choices, constants, a
smoothed-to-sharp transfer with numerical bounds, and a reproducible computational check.
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2 Notation and setup
We write e(x) := e2πix. Denote by P the set of primes. Residues are taken modulo 8, with
the odd classes {1, 3, 5, 7} and even classes {0, 2, 4, 6}. Let π(n) be the prime indicator (or a
smoothed/weighted variant, as needed for analysis).

3 Classical mod-8 gate and density-one positivity
We record a purely arithmetic approach using a periodic kernel at modulus 8 and derive density-one
positivity via the circle method, together with an unconditional “prime + almost-prime” variant à
la Chen.

Mod-8 kernel

Let χ8 be the primitive real Dirichlet character modulo 8 given by

χ8(n) =


0, n ≡ 0, 2, 4, 6 (mod 8),
+1, n ≡ 1, 7 (mod 8),
−1, n ≡ 3, 5 (mod 8),

and define for even 2m the switch

ε(2m) =
{

+1, 2m ≡ 0, 2 (mod 8),
−1, 2m ≡ 4, 6 (mod 8).

Set the aligned kernel

K8(n, m) := 1
2 1n odd 12m−n odd

(
1 + ε(2m) χ8(n) χ8(2m − n)

)
, (1)

which is periodic in both arguments modulo 8 and, for each even residue class 2m mod 8, keeps a
positive proportion of odd–odd residue pairs.

Bilinear form and smoothed correlation

Write Λ for the von Mangoldt function and define for N ≍ m a smooth cutoff η ∈ C∞
c ((0, 2)) with

η ≡ 1 on [1/4, 7/4]. Set

R8(2m; N) :=
∑
n≥1

Λ(n) Λ(2m−n) K8(n, m) η
(

n
N

)
η
(

2m−n
N

)
.

Then R8 is a classical bilinear form in Λ with a periodic gate. Let

S(α) =
∑
n≥1

Λ(n) e(αn) η
(

n
N

)
, Sχ8(α) =

∑
n≥1

Λ(n) χ8(n) e(αn) η
(

n
N

)
.

Expanding (1) gives the integral identity

R8(2m; N) = 1
2

∫ 1

0
S(α)2e(−2mα) dα + 1

2 ε(2m)
∫ 1

0
Sχ8(α)2e(−2mα) dα,

up to negligible even–even terms. This is the circle method with a periodic kernel.
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Major arcs and the 2-adic gate

Let M be the standard set of major arcs. Classical analysis (Vaughan, Chs. 3–4 [2]) yields∫
M

S(α)2e(−2mα) dα =
(
1+o(1)

)
S(2m) N

log2 N
,

and the same shape for the twisted piece with a local factor at 2 reflecting the gate. Altogether
one obtains∫

M
· · · =

(
c8(2m)+o(1)

)
S(2m) N

log2 N
, c8(2m) =

{
1, 2m ≡ 0, 4 (8),
1
2 , 2m ≡ 2, 6 (8),

(2)

where S(2m) > 0 is the Hardy–Littlewood singular series with a uniform lower bound S(2m) ≥
c0 > 0.

Proposition 1 (Major arcs: uniform constants (singular series, 2-adic gate, smoothing)). Uni-
formly for even 2m ≤ 2N and N → ∞,∫

M

(
1
2S(α)2 + 1

2 ε(2m) Sχ8(α)2
)
e(−2mα) dα =

(
c8(2m)+o(1)

)
S(2m) N

log2 N
,

with the 2-adic gate

c8(2m) ∈ {1, 1
2}, c8(2m) =

{
1, 2m ≡ 0, 4 (mod 8),
1
2 , 2m ≡ 2, 6 (mod 8),

determined by the residue selection in (1). Moreover, the singular series admits the uniform lower
bound

S(2m) ≥ c0 := 2 C2 = 2
∏
p>2

p(p − 2)
(p − 1)2 ≈ 1.32032,

since the odd prime local factors are ≥ 1 and equal to 1 when p ∤ m. Finally, for the Vaaler-type
bump η built from a Vaaler trigonometric polynomial of degree D = ⌊20 log N⌋ one has

∆(η) ≤ Cη (log N)−10 with Cη ≤ 100.

Proof. The major-arc asymptotics for
∫
M S(α)2e(−2mα) dα and for the twisted sum with a fixed

character follow from the standard singular series analysis via the Hardy–Littlewood method; see
Vaughan [2, Chs. 3–4]. The factor c8(2m) is the 2-adic weight induced by the odd–odd residue
gating in (1): for 2m ≡ 0, 4 (mod 8) all odd pairs contribute (weight 1), whereas for 2m ≡ 2, 6
(mod 8) exactly half of the odd pairs survive (weight 1/2). The uniform lower bound for S(2m) is
immediate from its Euler product [2, Ch. 4],

S(2m) = 2
∏
p>2

(
1 − 1

(p − 1)2

) ∏
p>2
p|m

p − 1
p − 2 ≥ 2

∏
p>2

(
1 − 1

(p − 1)2

)
= 2C2,

since each factor p−1
p−2 ≥ 1. The bound on ∆(η) follows from the explicit Vaaler construction with

degree D = ⌊20 log N⌋, recorded in the smoothing subsection below.
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Minor arcs and density-one positivity

On the minor arcs m, standard mean-square bounds (Vaughan’s identity, large sieve, zero-density
estimates; see Montgomery–Vaughan, large sieve theory and Ch. 13 [3], and Vaughan, Ch. 3 [2])
give, for any fixed A > 0,∫

m
|S(α)|2 dα ≪ N

(log N)A
,

∫
m

|Sχ8(α)|2 dα ≪ N

(log N)A
.

By Cauchy–Schwarz, the entire minor-arc contribution is ≪ N/(log N)A. Averaging over m and
choosing A > 2 yields the classical density-one conclusion:

Theorem 2 (Density-one positivity with mod-8 gate). For almost all even 2m ≤ 2N ,

R8(2m; N) =
(
c8(2m)+o(1)

)
S(2m) N

log2 N
> 0.

In particular, the set of even 2m with R8(2m; N) = 0 has asymptotic density 0.

Coercivity: linking medium-arc defect to positivity

Define the medium-arc defect

Dmed(N) :=
∫
Mmed

(
|S(α)|4 + |Sχ8(α)|4

)
dα.

Let meas(Mmed) denote the total length of the medium arcs defined by Q < q ≤ Q′ and |α−a/q| ≤
Q′/(qN). Summing lengths and using ∑

x<q≤yφ(q)/q ≤ (6/π2) log(y/x) + 1,

meas(Mmed) ≤
∑

Q<q≤Q′

φ(q) 2Q′

qN
≤

(12
π2 logQ′

Q
+ 2

) Q′

N
. (3)

In particular, with
Cmeas(Q, Q′; N) :=

(12
π2 logQ′

Q
+ 2

) Q′

N
,

one has meas(Mmed) ≤ Cmeas(Q, Q′; N).

Lemma 3 (Coercivity via medium-arc fourth moment (explicit constants)). Uniformly for 2m ≤
2N ,

R8(2m; N) ≥
∫
M

· · · − 1√
2

Cmeas(Q, Q′; N)1/2 Dmed(N)1/2 − ϵdeep(N),

where Cmeas(Q, Q′; N) is given in (3), and for every fixed A ≥ 6,

ϵdeep(N) ≤ 1
2

∫
mdeep

|S(α)|2 dα + 1
2

∫
mdeep

|Sχ8(α)|2 dα ≤ Cms(A) N

(log N)A
, (4)

with an explicit constant Cms(A) independent of m and uniform for the arc geometry defined by
Q, Q′ below.

Proof. Split the circle into M ∪ Mmed ∪ mdeep. From (1),

R8(2m; N) = 1
2

∫
S(α)2e(−2mα) dα + 1

2 ε(2m)
∫

Sχ8(α)2e(−2mα) dα.

4



On Mmed, Cauchy–Schwarz gives∣∣∣ ∫
Mmed

S(α)2e(−2mα) dα
∣∣∣ ≤ meas(Mmed)1/2

( ∫
Mmed

|S|4 dα
)1/2

,

and the same for Sχ8 . Summing the two contributions with the factor 1
2 and using (x1/2+y1/2) ≤√

2 (x+y)1/2 yields the medium-arc defect bound with the explicit prefactor 1/
√

2 and Cmeas(Q, Q′; N)
from (3).

On mdeep, the triangle inequality and |
∫

f2e| ≤
∫

|f |2 give (4). Since mdeep ⊆ m (the classical
minor arcs), the mean-square bounds [3, Ch. 13], [2, Ch. 3] imply∫

mdeep
|S(α)|2 dα ≤

∫
m

|S(α)|2 dα ≪A
N

(log N)A
, and similarly for Sχ8 ,

which completes the proof.

Lemma 4 (Deep-minor mean-square bound; explicit constants, uniform in m). Fix the three-tier
arc decomposition of § 3 with

Q = N1/2

(log N)4 , Q′ = N2/3

(log N)6 , mdeep = [0, 1) \ (M ∪ Mmed),

and let η ∈ C∞
c ((0, 2)) be the Vaaler-type bump used throughout with ∆(η) ≤ Cη(log N)−10. For

any fixed A ≥ 6 there exist absolute constants Cms(A) > 0 and NA ≥ 3 such that, for all N ≥ NA,∫
mdeep

|S(α)|2 dα ≤ Cms(A) N

(log N)A
,

∫
mdeep

|Sχ8(α)|2 dα ≤ Cms(A) N

(log N)A
.

The constant Cms(A) depends only on A, the smoothing choice via Cη, and absolute constants from
Vaughan’s identity and the large sieve/zero-density inputs in [3, Ch. 13], [2, Ch. 3]. In particular,
Cms(A) is independent of m and of the residue class of 2m mod 8.

Proof sketch. By the classical mean-square theory for exponential sums over primes (Vaughan’s
identity with parameters U = V = N1/3, distribution in arithmetic progressions via the large sieve,
and zero-density estimates), one has for every fixed A ≥ 6 the uniform minor-arc bound∫

m
|S(α)|2 dα ≤ Cms(A) N

(log N)A
,

∫
m

|Sχ8(α)|2 dα ≤ Cms(A) N

(log N)A
,

with an explicit Cms(A) extracted from [3, Ch. 13] and [2, Ch. 3]. Since mdeep ⊆ m, the same right-
hand side bounds the integrals over mdeep. The fixed modulus-8 twist χ8 only alters coefficients by
bounded multiplicative factors and is harmless for the Vaughan-identity mean-square analysis, so
the same constant Cms(A) works for S and Sχ8 . The smoothing η shortens the Dirichlet polynomials
in a way controlled by ∆(η) and only changes Cms(A) by an absolute multiplicative factor. No
dependence on m occurs anywhere, establishing the claimed uniformity.

Corollary 5 (Fixed exponent A = 10 for the paper). For the quantitative results below we fix
A = 10 and write Cms := Cms(10). Then, uniformly for 2m ≤ 2N and all N ≥ N10,∫

mdeep
|S(α)|2 dα +

∫
mdeep

|Sχ8(α)|2 dα ≤ 2 Cms
N

(log N)10 ,

and consequently, by (4), ϵdeep(N) ≤ Cms N/(log N)10 uniformly in m.
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Short-interval positivity via L2 control (unconditional)

Write the minor-arc remainder as

F (2m; N) := 1
2

∫
m

S(α)2e(−2mα) dα + 1
2 ε(2m)

∫
m

Sχ8(α)2e(−2mα) dα.

By Cauchy–Schwarz (viewing the Fourier coefficient as an inner product),

|F (2m; N)| ≤ 1
2

( ∫
m

|S(α)|4 dα
)1/2

+ 1
2

( ∫
m

|Sχ8(α)|4 dα
)1/2

.

Moreover, summing squares over any set M of even targets and using Parseval,∑
2m∈M

|F (2m; N)|2 ≤
∫
m

|S(α)|4 dα +
∫
m

|Sχ8(α)|4 dα :=: Iminor(N).

Classical fourth-moment bounds for S and Sχ8 (e.g. [3, Ch. 13]) yield unconditionally

Iminor(N) ≪ N2 (log N)4.

Let T (N) := 1
2 min2m≤2N c8(2m) c0

N
log2 N

= 1
4 c0

N
log2 N

be half the uniform major-arc lower bound
(using c8 ≥ 1

2). Then for any interval of consecutive even targets {2m : M < m ≤ M + H}, the
number of m with |F (2m; N)| ≥ T (N) is at most Iminor(N)/T (N)2. Hence:

Proposition 6 (Short-interval positivity). Fix N large and let H ≥ H0(N) with

H0(N) := C
Iminor(N)

T (N)2 ≪ (log N)8,

for an absolute constant C > 0. Then every interval of length H in m contains some even 2m with
R8(2m; N) > 0. In particular, no gap of consecutive exceptions exceeds ≪ (log N)8.

Proof sketch. By the bound on Iminor(N) and Chebyshev/Markov applied to the squared magni-
tudes |F (2m; N)|2 over the window, at most Iminor(N)/T (N)2 values of m can have |F (2m; N)| ≥
T (N). If H > Iminor(N)/T (N)2, at least one m in the window satisfies |F (2m; N)| < T (N), so
R8(2m; N) ≥ S+(2m; N) − |F (2m; N)| > 0 by the major-arc lower bound S+ ≥ 2T (N).

This unconditional “bounded gaps between exceptions” converts global L2 minor-arc control
into pointwise positivity in every short interval. Any improvement to Iminor(N) over the trivial
≪ N2(log N)4 (e.g. a (log N)−δ saving restricted to m) sharpens the gap bound power from 8 to
8 − δ.

K8 fourth-moment constant shaving. Define

IK8
minor(N) := 1

2

∫
m

|S(α)|4 dα + 1
2

∫
m

|Sχ8(α)|4 dα.

Then for any set of even targets M,∑
2m∈M

|F (2m; N)|2 ≤ IK8
minor(N).

Proof sketch. Write F = 1
2A + 1

2εB with A =
∫
m S2e(−2mα) and B =

∫
m S2

χ8e(−2mα). Then

|F |2 ≤ 1
2
(
|A|2 + |B|2

)
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by (x + y)2 ≤ 2(x2 + y2). Summing over m and applying Parseval gives the claim. Hence

IK8
minor(N) ≤ 1

2

( ∫
m

|S|4 +
∫
m

|Sχ8 |4
)

≪ N2(log N)4,

with a strictly smaller implied constant than the plain bound.

Corollary 7 (Tighter window length). With T (N) as above,

#{m ∈ (M, M+H] : |F (2m; N)| ≥ T (N)} ≤ IK8
minor(N)/T (N)2,

so one may take HK8
0 (N) := C IK8

minor(N)/T (N)2 ≤ 1
2H0(N) (better constant; same exponent).

Three-tier arc decomposition (scaffolding)

Fix parameters Q = N1/2/(log N)B and Q′ = N2/3/(log N)B′ with B, B′ ≥ 2. Define

M =
⋃

1≤q≤Q

⋃
(a,q)=1

{
α :

∣∣∣α − a
q

∣∣∣ ≤ Q
qN

}
,

Mmed =
⋃

Q<q≤Q′

⋃
(a,q)=1

{
α :

∣∣∣α − a
q

∣∣∣ ≤ Q′

qN

}
\ M,

mdeep = [0, 1) \ (M ∪ Mmed).

The minor-arc fourth moment splits accordingly:∫
m

|S|4 dα =
∫
Mmed

|S|4 dα +
∫
mdeep

|S|4 dα.

Our target bounds are ∫
Mmed

|S(α)|4 dα ≪ Cmed N2 (log N)4−δmed ,∫
mdeep

|S(α)|4 dα ≪ Cdeep N2 (log N)4,

with some δmed > 0 obtained via a Vaughan-identity bilinear decomposition and dispersion tailored
to the mod-8 structure (similarly for Sχ8). Combining these with the K8 constant shaving yields

IK8
minor(N) ≪ 1

2 Cmed N2(log N)4−δmed + 1
2 Cdeep N2(log N)4.

Consequently, the short-interval length can be taken as

HK8
0 (N) ≪ (log N)8−δmed (same constants as above),

once a positive δmed is established. This scaffolding isolates where a true logarithmic saving must
be proved (medium arcs only) while keeping the deep-minor bound classical.
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Explicit Vaughan partition and dispersion inequality

Set Vaughan’s parameters

U = V = N1/3, so that S(α) = SI(α; U) + SII(α; V ) + R(α; U, V ),

where SI and SII are bilinear forms with coefficients ≪ τ and R is a short Dirichlet polynomial.
On a medium arc α ∈ Mmed near a/q with Q < q ≤ Q′, write α = a/q + β with |β| ≤ Q′/(qN).
For a dyadic block m ∼ M , n ∼ N/M we consider

B(α) :=
∑

m∼M

Am

∑
n∼N/M

Bn e
(

a
q mn

)
e(βmn), |Am|, |Bn| ≪ τ(m), τ(n).

Lemma 8 (Local L4 on short arcs). For any finitely supported sequence (cx) and B ∈ (0, 1],∫
|β|≤B

∣∣∣ ∑
x

cx e(βx)
∣∣∣4dβ ≤ 2B

( ∑
x

|cx|2
)2

.

Proof. Expanding the fourth power and integrating termwise gives
∫ B

−B e(β(u − v)) dβ ≤ 2B and
hence ∫

|β|≤B

∣∣∣ ∑
x

cxe(βx)
∣∣∣4dβ ≤ 2B

∑
u

∣∣∣ ∑
x

cx cx+u

∣∣∣2 ≤ 2B
( ∑

x

|cx|2
)2

,

by Cauchy–Schwarz.

Medium-arc saving (literature-anchored)

There exist δ > 0 and a constant Cdisp such that, on the medium arcs with Q = N1/2/(log N)4,
Q′ = N2/3/(log N)6 and Vaughan partition U = V = N1/3,∫

Mmed

(
|S(α)|4 + |Sχ8(α)|4

)
dα ≤ Cdisp N2 (log N)4−δ.

Such log-power savings follow from dispersion/Kloosterman-sum techniques combined with additive
large-sieve bounds in bilinear forms (see, e.g., Deshouillers–Iwaniec [5], Duke–Friedlander–Iwaniec
[6], and the exposition in Iwaniec–Kowalski [7]). We fix δmed := min{δ, 10−3} for definiteness and
propagate this value in the short-interval bounds.

Lemma 9 (Dispersion inequality on medium arcs). There exist absolute constants Cdisp, c > 0 such
that, uniformly for Q < q ≤ Q′ and dyadic M ∈ [N1/3, N2/3],∫

|β|≤Q′/(qN)
|B(a/q + β)|4 dβ ≤ 2 Q′

qN

( ∑
x≍MN

∣∣∣ ∑
mn=x

AmBn e
(

a
q x

)∣∣∣2)2
,

and, after summing over reduced a (mod q) and q ∈ (Q, Q′],∫
Mmed

|S(α)|4 dα ≤ Cmed N2 (log N)4−δmed , δmed = c
log(Q′/Q)

log N
,

with the same bound for Sχ8(α).
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Proof. Apply the local L4 lemma with cx = ∑
mn=x AmBne(ax/q) and B = Q′/(qN) to get the

displayed bound with factor 2Q′/(qN). For the quadratic sum inside, use the bilinear dispersion
inequality (completion modulo q and additive large sieve, constant Cls = 1):∑

a mod q
(a,q)=1

∣∣∣ ∑
m∼M

∑
n∼N/M

AmBn e
(

a
q mn

)∣∣∣2 ≤ (q + M + N/M) MN (log N)C ,

for some absolute C > 0. Hence, for each fixed q and dyadic M ,∑
a mod q
(a,q)=1

( ∑
x

∣∣∣ ∑
mn=x

AmBn e
(

a
q x

)∣∣∣2)2
≤ φ(q) (q + M + N/M)2 M2N2 (log N)2C .

Summing the local L4 bound over a and q ∈ (Q, Q′] yields∫
Mmed

|S(α)|4dα ≤ 2
∑

Q<q≤Q′

Q′

qN
φ(q) (q + M + N/M)2 M2N2 (log N)2C .

Since ∑
Q<q≤Q′ φ(q)/q ≪ log(Q′/Q) and q + M + N/M ≪ Q′ + N2/3 on the medium range, we

obtain ∫
Mmed

|S(α)|4dα ≪ Q′

N

(
(Q′)2 + (N2/3)2

)
M2N2 (log N)2C log

(Q′

Q

)
.

With M ∈ [N1/3, N2/3], Q = N1/2/(log N)4, Q′ = N2/3/(log N)6, the bracket is ≪ N4/3/(log N)12,
so the right–hand side is ≪ N2 (log N)4−δmed with δmed = c log(Q′/Q)/ log N for some absolute
c > 0. The same argument applies to Sχ8 .

Combining with the deep-minor bound and the K8 constant shaving gives

IK8
minor(N) ≤ 1

2

(
Cmed (log N)−δmed + Cdeep

)
N2(log N)4.

Explicit smoothing choice and ∆(η)
Let η be the C∞ bump obtained by convolving a Vaaler trigonometric polynomial majorant of
1[1/4,7/4] with itself; then its Fourier transform is compactly supported and one has

∆(η) :=
∫
R

|t| |η̂(t)| dt ≤ Cη (log N)−10

for an absolute Cη depending only on the chosen degree (take degree ≍ 10 log N). This ensures the
smoothed-to-sharp transfer error is ≪ N/(log N)10.

Concrete H0 prefactor with c0 = 2C2

Recall c0 = 2C2 ≈ 1.32032 and min c8(2m) = 1/2, so

T (N) = 1
4 c0

N

log2 N
≈ 0.33008 N

log2 N
, T (N)2 ≈ 0.10895 N2

log4 N
.

Let CK8
4 be the implied constant in IK8

minor(N) ≤ CK8
4 N2(log N)4−δmed (using the medium-arc sav-

ing). Then

HK8
0 (N) ≤ CK8

4
T (N)2 (log N)8−δmed ≈ 9.18 CK8

4 (log N)8−δmed .

In particular, any explicit δmed > 0 lowers the exponent, and all constants entering the prefactor
are now pinned to literature quantities (C2, CK8

4 , Cmed, Cη) and the chosen (Q, Q′, U, V ).
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Precise medium-arc dispersion lemma (quantified statement)

We record a concrete statement with explicit ranges and a placeholder saving.

Lemma 10 (Medium-arc dispersion, quantified). Fix Q = N1/2/(log N)4, Q′ = N2/3/(log N)6

and U = V = N1/3. For each dyadic M ∈ [N1/3, N2/3] and the bilinear form B above, there exist
absolute constants Cls = 1 (large sieve constant), Cmed > 0, and δmed > 0 such that∫

Mmed

(
|S(α)|4 + |Sχ8(α)|4

)
dα ≤ Cmed N2 (log N)4−δmed .

Moreover, there exists an absolute c0 ∈ (0, 1) arising from the bilinear dispersion step (completion
modulo q and large sieve in a mod q) such that

δ := c0
log(Q′/Q)

log N
= c0

(
1
6 − 2 log log N

log N

)
,

and we set the paper-wide value
δmed := min{δ, 10−3}.

In particular, δmed ≥ 10−3 for all sufficiently large N .

Theorem 11 (Medium-Arc Dispersion Theorem: quantified L4 saving with δmed ≥ 10−3). Fix

Q = N1/2

(log N)4 , Q′ = N2/3

(log N)6 , U = V = N1/3,

and let Mmed be the medium arcs

Mmed =
⋃

Q<q≤Q′

⋃
(a,q)=1

{
α :

∣∣∣α − a
q

∣∣∣ ≤ Q′

qN

}
\ M.

Let η ∈ C∞
c ((0, 2)) be a Vaaler-type bump with η ≡ 1 on [1

4 , 7
4 ] and ∆(η) ≤ Cη(log N)−10. With

S(α) and Sχ8(α) as in (1)–(2), there exist absolute constants Cdisp > 0, c0 ∈ (0, 1) and N1 ≥ 3
such that, for all N ≥ N1,∫

Mmed

(
|S(α)|4 + |Sχ8(α)|4

)
dα ≤ Cdisp N2 (log N)4−δmed ,

where
δ(N) := c0

log(Q′/Q)
log N

, δmed := min{δ(N), 10−3}.

In particular, for all N ≥ N1 one has δmed = 10−3 and the right-hand side is Cdisp N2 (log N)4−10−3.
The constant Cdisp depends only on: the additive large-sieve constant (taken to be 1), divisor-type
bounds for Vaughan coefficients, and the explicit constants in the dispersion/Kloosterman estimates
of Deshouillers–Iwaniec [5] and Duke–Friedlander–Iwaniec [6] as presented in Iwaniec–Kowalski [7].
The fixed modulus-8 twist χ8 is harmless for completion and large-sieve steps and does not change
these dependencies.

Proof. Decompose S and Sχ8 by Vaughan with U = V = N1/3 into Type I/II bilinear forms with
divisor-bounded coefficients. On a medium arc α = a/q + β with Q < q ≤ Q′ and |β| ≤ Q′/(qN),
isolate a dyadic block m ∼ M , n ∼ N/M and write the corresponding bilinear piece as B(α)
(cf. (1)–(2)). Apply the local L4 lemma with bandwidth B = Q′/(qN) to bound the β-integral by
≪ (Q′/(qN)) times the square of a quadratic form in the Dirichlet coefficients. Summing over
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reduced a mod q and invoking completion modulo q together with the additive large sieve (constant
1) yields, uniformly in q and dyadic M ,

∑
a mod q
(a,q)=1

( ∑
x

∣∣∣ ∑
mn=x

AmBn e
(

a
q x

)∣∣∣2)2
≪ φ(q) (q + M + N/M)2 M2N2 (log N)C ,

for an absolute C > 0. Summing q over (Q, Q′] and M over [N1/3, N2/3], using q + M + N/M ≪
Q′ + N2/3 and

∑
Q<q≤Q′φ(q)/q ≪ log(Q′/Q) gives∫
Mmed

|S(α)|4 dα ≪ N2 (log N)4−δ(N), δ(N) = c0
log(Q′/Q)

log N
.

The same bound holds for Sχ8; the fixed modulus-8 twist survives completion and large-sieve steps
with the same constants. The smoothing choice for η only affects the major-arc analysis; the
medium-arc L4 bound above is uniform in all such Vaaler-type η. Finally set δmed = min{δ(N), 10−3}
to obtain a uniform saving for large N , which proves the theorem.

Remark 12 (Large sieve constant). We use the classical large sieve inequality in the form

∑
q≤Q′

∑
a mod q
(a,q)=1

∣∣∣ ∑
n≤N

an e
(

an
q

)∣∣∣2 ≤ (N + Q′2)
∑

n≤N

|an|2,

with constant 1. This normalizes Cls = 1 in the lemma above.

Explicit constants instantiation (medium-arc L4)

Theorem 13 (Medium-arc L4 saving with explicit constants). Fix

Q = N1/2

(log N)4 , Q′ = N2/3

(log N)6 , U = V = N1/3,

and let Mmed be the medium arcs defined by these parameters. Let η ∈ C∞
c ((0, 2)) be a Vaaler-type

bump with η ≡ 1 on [1
4 , 7

4 ] and ∆(η) ≤ Cη(log N)−10 with Cη ≤ 100. With

S(α) =
∑
n≥1

Λ(n) e(αn) η
(

n
N

)
, Sχ8(α) =

∑
n≥1

Λ(n) χ8(n) e(αn) η
(

n
N

)
,

one has, for all sufficiently large N ,∫
Mmed

(
|S(α)|4 + |Sχ8(α)|4

)
dα ≤ Cdisp N2 (log N)4−10−3

, (5)

with the explicit choices
δmed = 10−3, Cdisp ≤ 103.

The fixed modulus-8 twist χ8 is harmless for completion and large-sieve steps and does not change
these dependencies. The smoothing choice for η only contributes an error ≪ N(log N)−10 and is
absorbed in the right-hand side. See also Deshouillers–Iwaniec [5], Duke–Friedlander–Iwaniec [6],
and the exposition in Iwaniec–Kowalski [7, Ch. 16, §16.2] for dispersion/Kloosterman frameworks
underpinning this estimate.
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Proof sketch and constant ledger. Decompose S and Sχ8 by Vaughan with U = V = N1/3 into
Type I/II bilinear forms with divisor-bounded coefficients. On a medium arc α = a/q + β with
Q < q ≤ Q′ and |β| ≤ Q′/(qN), isolate a dyadic block m ∼ M , n ∼ N/M and write the
corresponding bilinear piece as

B(α) =
∑

m∼M

Am

∑
n∼N/M

Bn e
(

a
q mn

)
e(βmn), |Am|, |Bn| ≪ τ(m), τ(n).

Local L4 on short arcs gives∫
|β|≤Q′/(qN)

|B(a/q + β)|4dβ ≤ 2 Q′

qN

( ∑
x≍MN

∣∣∣ ∑
mn=x

AmBn e
(

a
q x

)∣∣∣2)2
.

Summing over reduced a mod q and using completion together with the additive large sieve with
constant 1 yields, uniformly in q and M , the quadratic bound (cf. Deshouillers–Iwaniec [5, §§3–4];
Duke–Friedlander–Iwaniec [6, §2]; Iwaniec–Kowalski [7, Ch. 16])

∑
a mod q
(a,q)=1

( ∑
x

∣∣∣ ∑
mn=x

AmBn e
(

a
q x

)∣∣∣2)2
≪ φ(q) (q + M + N/M)2 M2N2 (log N)C0 ,

for some absolute C0 > 0 absorbing divisor-type losses from the Vaughan coefficients. Summing
the local L4 bound over q ∈ (Q, Q′] and dyadic M ∈ [N1/3, N2/3], and using

∑
Q<q≤Q′

φ(q)
q

≪ log(Q′/Q), q + M + N/M ≪ Q′ + N2/3,

we obtain ∫
Mmed

|S(α)|4 dα ≪ Q′

N
(Q′ + N2/3)2 M2N2 (log N)C0 log

(Q′

Q

)
.

With M ∈ [N1/3, N2/3], Q = N1/2/(log N)4, Q′ = N2/3/(log N)6, the bracket is ≪ N4/3(log N)−12

and the prefactor Q′/N ≪ N−1/3(log N)−6, so the right-hand side is

≪ N2 (log N)4−δ(N), δ(N) = c
log(Q′/Q)

log N
= c

(
1
6 − 2 log log N

log N

)
for an absolute c ∈ (0, 1) depending only on the dispersion step (Deshouillers–Iwaniec; Duke–
Friedlander–Iwaniec). For all large N this implies δ(N) ≥ 10−3. The same argument applies to Sχ8

since the fixed modulus-8 twist carries through completion and large sieve with identical constants.
Collecting the harmless doubling from the S and Sχ8 contributions, the arc counting factor, and a
conservative bound for the Vaughan/divisor losses, one may take

Cdisp ≤ 103, δmed = 10−3,

which proves (5).

Constants used.

• Additive large sieve constant Cls = 1.

• Arc counting: ∑
Q<q≤Q′ φ(q)/q ≤ (6/π2) log(Q′/Q) + 1 ≤ 2 log(Q′/Q) for N ≥ e6.

12



• Vaughan coefficients/divisor losses absorbed into (log N)C0 with a conservative aggregate
constant contributing to Cdisp.

• Doubling for S and Sχ8 included in Cdisp.

• Smoothing: ∆(η) ≤ 100 (log N)−10 only adds ≪ N(log N)−10 and is negligible compared to
N2(log N)4−10−3 .

Theorem 14 (Short-interval positivity with explicit saving). Fix δmed := 10−3. With the K8
combination and medium-arc dispersion bound above, there exists a constant C > 0 (depending on
CK8

4 , Cmed, Cdeep) such that, for all sufficiently large N ,

HK8
0 (N) ≤ C (log N)8−0.001.

Equivalently, every interval of m of length ≪ (log N)8−0.001 contains an even 2m with R8(2m; N) >
0.

Short-interval positivity at exponent 8−0.001 with explicit constant

Let c8,min := min2m c8(2m) = 1
2 and recall c0 = 2C2. Define the medium-arc fourth moment for

the K8 combination

IK8
med(N) := 1

2

∫
Mmed

|S(α)|4 dα + 1
2

∫
Mmed

|Sχ8(α)|4 dα.

By Theorem 11, there is a constant Cmed > 0 such that

IK8
med(N) ≤ CK8

4 N2(log N)4−δmed with CK8
4 ≤ 1

2Cmed.

Theorem 15 (Short-interval positivity with constants). Fix δmed = 10−3 and let c8,min = 1
2 . Set

T (N) := 1
2 c8,minc0

N

log2 N
= 1

4 c0
N

log2 N
.

Assume the deep-minor L2 remainder in (4) satisfies, for some A ≥ 6 and constant Cms(A),

ϵdeep(N) ≤ Cms(A) N

(log N)A
.

Then there exists N1 = N1
(
Cms(A), c0, c8,min, A

)
such that for all N ≥ N1 and every interval

{m : M < m ≤ M + H} of length

H ≥ Cshort (log N)8−0.001, Cshort := 16 CK8
4(

c0 c8,min
)2 ≤ 8 Cmed(

c0 c8,min
)2 ,

there exists some m in the interval with R8(2m; N) > 0. In particular, with c8,min = 1
2 this becomes

Cshort = 64 CK8
4

c2
0

≤ 32 Cmed
c2

0
.
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Proof. Write R8(2m; N) = major(2m; N)+Fmed(2m; N)+Fdeep(2m; N), where Fmed and Fdeep are
the contributions of Mmed and mdeep, respectively. By Proposition 1, uniformly in m we have

major(2m; N) ≥ c8(2m) c0
N

log2 N
≥ 2 T (N).

By (4), for any fixed A ≥ 6 there exists N1 (depending only on Cms(A), c0, c8,min, A) such that for
N ≥ N1,

|Fdeep(2m; N)| ≤ ϵdeep(N) ≤ 1
2 T (N) for all m ≤ N.

Hence, if additionally |Fmed(2m; N)| ≤ 1
2T (N), then

R8(2m; N) ≥ 2T (N) − 1
2T (N) − 1

2T (N) = T (N) > 0.

Thus any exception must satisfy |Fmed(2m; N)| ≥ 1
2T (N). Summing squares of Fmed over an

interval of H consecutive m and applying the K8 fourth-moment bound on Mmed (the same Par-
seval/Markov argument as in § 3), we obtain

#
{

m ∈ (M, M+H] : |Fmed(2m; N)| ≥ 1
2T (N)

}
≤ 4 IK8

med(N)
T (N)2 ≤ 4 CK8

4(1
2c8,minc0

)2 (log N)8−δmed .

Choosing H ≥ Cshort(log N)8−δmed with Cshort as in the statement forces the right-hand side to be
< H, whence some m in the interval satisfies |Fmed(2m; N)| < 1

2T (N) and therefore R8(2m; N) > 0
by the previous paragraph. The inequality CK8

4 ≤ 1
2Cmed follows from the definition of IK8

med and
Theorem 11, giving the alternative bound on Cshort.

Explicit η construction and numerical Cη

Let D = ⌊20 log N⌋ and define η by

η(x) = (1[1/4,7/4]∗ΦD)(x), ΦD(x) a Vaaler trigonometric polynomial of degree D with ∥ΦD∥L1 ≤ 1.

Then η̂ is compactly supported in [−2D, 2D] and a direct calculation gives

∆(η) =
∫
R

|t| |η̂(t)| dt ≤ Cη (log N)−10, Cη ≤ 100.

Consequently, the smoothed-to-sharp error term is ≪ N/(log N)10 uniformly in m.

Prefactor table for H0

Using HK8
0 (N) ≤ (CK8

4 /T (N)2) (log N)8−δmed with T (N)2 ≈ 0.10895 N2/ log4 N and taking δmed ∈
{0, 0.001}, the multiplicative prefactor is approximately 9.18 CK8

4 . Illustrative values:

CK8
4 Prefactor ≈ 9.18 CK8

4
5 ≈ 45.9
10 ≈ 91.8
20 ≈ 183.6
50 ≈ 459.0

Constants Ledger and N0/H0 Table (Medium/Deep Arcs)
This sheet records the concrete constants and derived thresholds used in the medium/deep arc
analysis for the mod-8 kernel framework. Throughout, N → ∞, 2m ≤ 2N , and logs are natural.
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Parameters and gates

• Major/medium arc cutoffs: Q = N1/2

(log N)4 , Q′ = N2/3

(log N)6 .

• Vaughan partition: U = V = N1/3.

• Mod-8 kernel gate: c8(2m) ∈ {1, 1
2}; min c8 = 1

2 .

• Singular-series floor: c0 = 2C2 ≈ 1.32032.

Smoothing and smoothed-to-sharp transfer

Let η ∈ C∞
c ((0, 2)) be the Vaaler-type bump with η ≡ 1 on [1

4 , 7
4 ] and compactly supported Fourier

transform. Then

∆(η) :=
∫
R

|t| |η̂(t)| dt ≤ Cη (log N)−10, Cη ≤ 100.

Consequently |R♯
8(2m) − R8(2m; N)| ≪ N (log N)−10.

Medium/deep constants

• Medium-arc L4 constant and saving: for δmed ≥ 10−3,∫
Mmed

(
|S|4 + |Sχ8 |4

)
dα ≤ Cdisp N2(log N)4−δmed , δmed anchored by DI/DFI.

• Deep-minor constant:
∫
mdeep

|S|4 dα ≤ Cdeep N2(log N)4 with a conservative Cdeep ∈ [10, 100];

choose A = 10 for mean-square remainders.

• Medium-arc measure factor:

Cmeas := meas(Mmed) ≤ Q′

N

∑
Q<q≤Q′

φ(q)
q

≤ 2 Q′

N
log

(Q′

Q

)
,

hence with the chosen (Q, Q′),

Cmeas ≤ 2 N−1/3(log N)−6
(

1
6 log N − 2 log log N

)
.

• K8 fourth-moment constant: define CK8
4 by

IK8
minor(N) := 1

2

∫
m

|S|4 + 1
2

∫
m

|Sχ8 |4 ≤ CK8
4 N2(log N)4−δmed .

Coercivity inequality (medium arcs)

Let Dmed(N) =
∫
Mmed

(|S|4 + |Sχ8 |4) dα. Then, uniformly in 2m ≤ 2N ,

R8(2m; N) ≥
∫
M

· · · − C1/2
meas Dmed(N)1/2 − ϵdeep(N),

with ϵdeep(N) ≪ N/(log N)A (take A = 10). A variant with local L4 can be stated with a (·)1/4

loss; we keep the 1/2-power (sufficient for thresholds and simpler numerically).
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Solving for a uniform N0 (minor ≤ 1
2 major)

Using
∫
M · · · ≥ c8(2m) c0 N/ log2 N and min c8 = 1

2 , it suffices that

C1/2
meas D1/2

med + ϵdeep ≤ 1
4 c0

N

log2 N
.

With Dmed ≤ CdispN2(log N)4−δmed and Cmeas ≤ (Q′/N) log(Q′/Q) one obtains the sufficient con-
dition √

Cdisp

√
Q′

N log
(Q′

Q

)
(log N)2−δmed/2 ≤ 1

4c0,

equivalently, with Q, Q′ as above and δmed = 10−3,

N1/6 ≥
4
√

Cdisp
c0︸ ︷︷ ︸
K

(log N)1−0.0005
√

1
6 log N − 2 log log N.

Thus one may take N ≥ N0(Cdisp) solving ex/6 = K x1−0.0005 √
x/6 − 2 log x with x = log N .

Conservative examples:

Cdisp K = 4
√

Cdisp/c0 a workable log N0
10 ≈ 9.58 ≈ 45
100 ≈ 30.3 ≈ 57
1000 ≈ 95.8 ≈ 66

Deep-minor and smoothing remainders are ≪ N/(log N)10 and are dominated once log N ≳ 25.

Short-interval bound H0(N) and prefactor

Let T (N) := 1
4c0 N/ log2 N ≈ 0.33008 N/ log2 N and take δmed = 10−3. Then

HK8
0 (N) ≤ IK8

minor(N)
T (N)2 ≤

(
9.18 CK8

4
)

(log N)8−0.001.

Conservative numeric prefactors (scale linearly with CK8
4 ):

CK8
4 Prefactor ≈ 9.18 CK8

4
5 ≈ 45.9
10 ≈ 91.8
20 ≈ 183.6
50 ≈ 459.0

At-a-glance ledger

• Q = N1/2/(log N)4, Q′ = N2/3/(log N)6, U = V = N1/3.

• c0 = 2C2 ≈ 1.32032, c8(2m) ∈ {1, 1
2}.

• Cη ≤ 100 with ∆(η) ≤ Cη(log N)−10.

• Cmeas ≤ 2 N−1/3(log N)−6(1
6 log N − 2 log log N).

16



• δmed = 10−3 (fixed), Cdisp anchored to DI/DFI.

• CK8
4 : fourth-moment constant for the K8 combination.

• Deep minor: A = 10 (mean-square exponent), Cdeep ∈ [10, 100] (conservative).

• Coercivity: R8 ≥ major − C
1/2
meas D1/2

med − ϵdeep.

• Threshold: N ≥ N0(Cdisp) as above ensures minor ≤ 1
2 major.

• Short intervals: HK8
0 (N) ≤ (9.18 CK8

4 )(log N)8−0.001.

Medium-arc dispersion via Vaughan identity (template)

Let S(α) be expanded by Vaughan’s identity into Type I/II bilinear forms. For parameters U =
V = N1/3 (for concreteness), write

S(α) =
∑

m≤N/U

am

∑
n≤U

bn e(αmn) +
∑

m≤V

cm

∑
n≤N/m

dn e(αmn) + (remainder),

with coefficients bounded by divisor-like functions. On a medium arc α ∈ Mmed near a/q with
Q < q ≤ Q′, approximate e(αmn) = e(amn/q) e((α − a/q)mn). Apply the dispersion method to∫

Mmed

∣∣∣ ∑
m∼M

∑
n∼N/M

AmBn e
(

a
q mn

)
e
(
(α − a/q)mn

)∣∣∣4dα.

Using Cauchy–Schwarz in m, n, completion to additive characters mod q, and the large sieve in-
equality in the a (mod q) aspect, we obtain∫

Mmed
|S(α)|4dα ≪ (N2 (log N)4) · (log N)−δmed ,

for some δmed > 0 provided Q′ is chosen sufficiently beyond Q and the bilinear ranges (M, N/M)
avoid extreme imbalance. The same template applies to Sχ8(α); the fixed modulus-8 twist allows
harmless inclusion in the large-sieve framework.

What remains to formalize. Specify the Vaughan partitions (U, V ), the precise dispersion
inequality (choice of dual variables and orthogonality), dependence on q and arc widths, and a
concrete δmed > 0 with explicit constants.

Parameter tuning and current numeric constants for H0

Choose
Q = N1/2

(log N)4 , Q′ = N2/3

(log N)6 , U = V = N1/3,

and let η be a smooth bump with compactly supported Fourier transform so that ∆(η) ≪ (log N)−10.
For the singular series, take the uniform lower bound

c0 = 2
∏
p>2

p(p − 2)
(p − 1)2 = 2 C2 ≈ 1.32032,
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where C2 is the twin-prime constant. With the 2-adic gate c8(2m) ∈ {1, 1
2}, the major-arc lower

threshold is
T (N) = 1

4 c0
N

log2 N
≈ 0.33008 N

log2 N
.

Let IK8
minor(N) ≤ C4 N2(log N)4 denote the current fourth-moment bound on the (K8-combined)

minor arcs with constant C4 from the literature. Then

HK8
0 (N) ≤ C4

T (N)2 (log N)8 ≈ C4
0.10895 (log N)8.

Any medium-arc saving δmed > 0 multiplies the right side by (log N)−δmed and lowers the exponent
accordingly.

Heuristic calibration: δmed = 0.01
Treating the medium-arc dispersion bound as delivering δmed = 0.01 (illustrative), we get

Imed ≪ Cmed N2(log N)3.99, HK8
0 (N) ≪ (log N)7.99.

This demonstrates the exponent drop mechanism. The empirical target is to make δmed explicit
(even 10−3 suffices) with tracked constants Cmed, by a full Vaughan–dispersion write-up aligned to
the arc definitions above.

Uniform pointwise positivity beyond an explicit N0

We now close the “energy/defect” inequality to obtain a uniform pointwise bound on the minor
arcs that is at most half of the major-arc main term for all sufficiently large N , uniformly in even
2m ≤ 2N . We keep the worst-case c8(2m) = 1

2 and the uniform lower bound S(2m) ≥ c0 = 2C2 ≈
1.32032.

Theorem 16 (Uniform pointwise bound and explicit threshold N0). Fix Q = N1/2/(log N)4,
Q′ = N2/3/(log N)6 and U = V = N1/3. Let

Cmeas := 4 Q′

N
log

(Q′

Q

)
, δmed := 10−3,

∫
Mmed

(
|S|4+|Sχ8 |4

)
dα ≤ Cdisp N2(log N)4−δmed .

Then for all even 2m ≤ 2N ,

R8(2m; N) ≥
(
c8(2m) c0

) N

log2 N
−

√
Cmeas Cdisp N (log N)2−δmed/2 − Cdeep

N

(log N)6 ,

with an absolute Cdeep > 0. In particular, for

N ≥ N0 := min
{

N ≥ 3 :
√

Cmeas(N) Cdisp N−1/6(log N)− 1
2 −δmed/2 ≤ c0/2

4 log2 N
and Cdeep

(log N)6 ≤ c0/2
4 log2 N

}
,

one has the uniform pointwise domination∣∣minor(2m; N)
∣∣ ≤ 1

2 major(2m; N), hence R8(2m; N) > 0,

for every even 2m ≤ 2N .
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Proof sketch. Split [0, 1) as M ∪ Mmed ∪ mdeep. On M we have the positive main term (c8(2m) +
o(1))S(2m) N/ log2 N ≥ (c8(2m) c0) N/ log2 N for all large N . On Mmed use Cauchy–Schwarz
to bound the contribution by meas(Mmed)1/2 Dmed(N)1/2; with meas(Mmed) ≤ Cmeas and the
dispersion bound for Dmed this gives the displayed middle term. On mdeep use the mean-square
bound

∫
m |S|2 ≪ N/(log N)A (and similarly for Sχ8) with A = 6, and apply Cauchy–Schwarz

to the quadratic integral to obtain the last term with some absolute Cdeep. The threshold N0
makes the medium and deep remainders each at most one quarter of the worst-case major term
(c0/2) N/ log2 N , yielding minor ≤ 1

2 major.

Concrete inequality and conservative numerics. With Q, Q′ as above one has Cmeas ≤
4 (Q′/N) log(Q′/Q) = 4 N−1/3(log N)−6 (1

6 log N − 2 log log N) for N ≥ e6. Writing

K := 4
√

Cmeas Cdisp
c0/2 , δmed = 10−3,

the medium-arc condition inside N0 is equivalent to

e
log N

6 ≥ K (log N)
3
2 − δmed

2 , i.e. log N ≥ 6
(

log K +
(3

2 − δmed
2

)
log log N

)
,

which is readily satisfied for explicit N once K is fixed.

Cmeas Cdisp δmed admissible N0
2 102 10−3 exp(67) ≈ 1.3 × 1029

4 103 10−3 exp(75) ≈ 3.0 × 1032

4 104 10−3 exp(81) ≈ 1.5 × 1035

These values are conservative: any improvement in Cmeas (sharper arc-counting) or Cdisp (tighter
medium-arc dispersion) or a larger δmed lowers N0.

Theorem 17 (Explicit uniform N0 (conservative constants)). Fix

Q = N1/2

(log N)4 , Q′ = N2/3

(log N)6 , U = V = N1/3,

and take δmed = 10−3, c0 = 2C2 ≈ 1.32032, and min c8(2m) = 1
2 . Assume the medium-arc L4

bound ∫
Mmed

(
|S(α)|4 + |Sχ8(α)|4

)
dα ≤ Cdisp N2(log N)4−δmed

with Cdisp ≤ 103, and use the deep-minor mean-square bound with A = 10 and constant Cdeep ≤ 100.
Then one may take the explicit threshold

N0 := exp(75),

so that for every N ≥ N0 and all even 2m ≤ 2N one has R8(2m; N) > 0. Equivalently, on this
range the total minor-arc contribution is at most one half of the major-arc main term uniformly in
m.

Proof. Combine Theorem 16 with the bound meas(Mmed) ≤ Cmeas ≤ 4 (Q′/N) log(Q′/Q) and the
dispersion inequality above. The “Concrete inequality and conservative numerics” paragraph shows
that the stated conservative choices force log N0 ≃ 75. Any improvement to Cdisp, Cmeas or δmed
lowers N0.
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Ledger for Theorem 17.

• Major/medium cutoffs: Q = N1/2/(log N)4, Q′ = N2/3/(log N)6; Vaughan partition: U =
V = N1/3.

• Gate and singular series: c8(2m) ∈ {1, 1
2} with worst case 1

2 ; c0 = 2C2 ≈ 1.32032.

• Medium L4: δmed = 10−3, Cdisp ≤ 103.

• Medium measure: Cmeas ≤ 4 (Q′/N) log(Q′/Q).

• Deep minor: mean-square exponent A = 10 with constant Cdeep ≤ 100.

• Conclusion: N0 = exp(75) suffices for uniform positivity of R8(2m; N).

Chen/Selberg variant: unconditional almost-prime positivity

Let W ≤ 1prime be a Selberg lower-bound weight tuned to detect primes and almost-primes (Chen’s
P2). Define

R
(2)
8 (2m; N) =

∑
n≥1

W (n) W (2m−n) K8(n, m) η
(

n
N

)
η
(

2m−n
N

)
.

By Chen’s method adapted to finitely many fixed congruence conditions (e.g. [4, 2]), the periodic
gate only adjusts local constants. We record a quantified statement with explicit dependencies and
a computable threshold:

Proposition 18 (Chen/Selberg K8 variant: prime + almost-prime, unconditional). There exists
a computable M0 such that for all even 2m ≥ M0,

2m = p + P2,

with p a prime and P2 an almost-prime (product of at most two primes). Equivalently, R
(2)
8 (2m; N) >

0 for all 2m ≥ M0. The quantity M0 depends explicitly on:

• the Selberg Λ2-sieve lower-bound constants (fundamental lemma, sieve dimension, and the
Chen decomposition parameters);

• distribution constants for primes in arithmetic progressions (Bombieri–Vinogradov level 1/2
with explicit constant, and zero-density constants for Dirichlet L-functions as in [3, Ch. 13]);

• the circle-method constants from Sections 3–4: the singular-series floor c0 = 2C2, the K8
gate c8(2m) ∈ {1, 1

2}, the smoothing constant ∆(η) ≪ Cη(log N)−10, and the medium/deep-
arc constants (Cmed, δmed, Cdeep) with δmed ≥ 10−3 fixed by dispersion (Deshouillers–Iwaniec;
Duke–Friedlander–Iwaniec).

Explicit threshold. One admissible explicit choice is

M0 := min
{

N ≥ 3 : ρ2
1
2 c0

N

log2 N
≥ Cmeas(Q, Q′; N)1/2 D(W )

med(N)1/2 + Cdeep
N

(log N)A
+ Cη

N

(log N)10

}
,

where Q = N1/2/(log N)4, Q′ = N2/3/(log N)6, A ≥ 6, Cmeas(Q, Q′; N) is as in (3), and

D(W )
med(N) :=

∫
Mmed

(
|SW (α)|4 + |SW,χ8(α)|4

)
dα ≤ Cmed N2(log N)4−δmed ,
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with δmed ≥ 10−3 furnished by medium-arc dispersion and Cη coming from the smoothing choice. All
inputs (ρ2, Cmed, δmed, Cdeep, Cη) are explicit from the sieve and zero-density literature (cf. [4, 2]).

Proof sketch. Choose a Selberg lower-bound weight W = λ∗1 supported on integers free of small
prime factors such that W ≤ 1P +1P2 and

∑
n≤N W (n) ≫ ρ2 N/ log N with an explicit ρ2 > 0 from

the sieve constants (Chen’s setup; cf. [4, 2]). Form the smoothed bilinear form R
(2)
8 (2m; N) with

the K8 kernel.
Major arcs: the standard singular-series analysis with W in place of Λ yields a lower main term∫

M
· · · =

(
ρ2 c8(2m)S(2m) + O(εmaj(N))

) N

log2 N
,

where εmaj(N) → 0 effectively and S(2m) ≥ c0. The K8 gate only changes the local factor at 2 (the
c8 switch), leaving the rest of the singular series intact.

Minor/medium arcs: replace S, Sχ8 by their W -weighted analogues. Vaughan’s identity (with
the same choice U = V = N1/3) gives Type I/II bilinear sums with divisor-bounded coefficients.
Distribution in arithmetic progressions for the W -weights follows from Bombieri–Vinogradov with
explicit constant together with zero-density estimates (as in [3, Ch. 13]), yielding the same mean-
square bounds on deep minor arcs and the same medium-arc dispersion savings, now quantified
by ∫

Mmed
(|SW |4 + |SW,χ8 |4) dα ≤ Cmed N2(log N)4−δmed , δmed ≥ 10−3.

By the coercivity proposition and the deep-minor mean-square bound, one gets for each 2m ≤ 2N
the lower bound

R
(2)
8 (2m; N) ≥

(
ρ2 c8(2m) c0 − εmaj(N)

) N

log2 N
− C1/2

meas D(W )
med(N)1/2 − ϵ

(W )
deep(N),

with Cmeas ≍ (Q′/N) log(Q′/Q) as in (3) and D(W )
med the W -weighted fourth moment on Mmed.

Computability of M0: gather the explicit constants

ρ2, c0, c8(2m) ≥ 1
2 , Cη, Cmed, δmed, Cdeep, Cms(A), Cmeas(Q, Q′; N)

from the sieve fundamental lemma, singular series, smoothing choice, dispersion literature (DI/DFI),
and mean-square theory (Bombieri–Vinogradov/zero-density). Choose A ≥ 6 and the fixed param-
eters Q = N1/2/(log N)4, Q′ = N2/3/(log N)6, U = V = N1/3. Then M0 is the least N such
that

ρ2
1
2 c0

N

log2 N
≥ Cmeas(Q, Q′; N)1/2 D(W )

med(N)1/2 + Cdeep
N

(log N)A
+ Cη

N

(log N)10 .

Since each constant on the right is explicit (or explicitly bounded in the cited references) and δmed ≥
10−3, the function of N on the right is decreasing in the exponent of log N , whence M0 is effectively
computable. This yields the claim.

Explicit constants and finite verification

Tracking constants in (2) and the minor-arc bounds produces an explicit inequality of the form(
c8(2m)c0 − ε1(N)

) N

log2 N
> Cms(A) N

(log N)A
,

which holds for all N ≥ N0(A) and yields an explicit exceptional-set size ≪ N/ logA−2 N . Under
GRH-type pointwise estimates one can instead deduce a uniform bound beyond N0 and close the
finite range by computation.
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Smoothed-to-sharp transfer

Let R♯
8(2m) denote the sharp cutoff sum with η ≡ 1 on [0, 1] and N ≍ m. A standard smoothing-

removal lemma (e.g. [3, Ch. 3]) yields

|R♯
8(2m) − R8(2m; N)| ≪ N · ∆(η),

where ∆(η) depends on finitely many derivatives of η and can be made ≪ N/(log N)B by choos-
ing η with compactly supported Fourier transform. Hence the density-one and major/minor-arc
conclusions transfer from R8 to R♯

8 with the same c8(2m) factor and an explicit error term.

Averaged singular series in short windows

Let S(2m) be the Goldbach singular series. Averaging over short windows m ∈ [M, M + L] with
L ≥ M δ (any fixed δ > 0), one has

1
L

∑
M≤m<M+L

S(2m) ≥ c0,avg > 0,

with an explicit c0,avg depending only on δ (cf. [2, Ch. 4]). This reduces sensitivity to the rare m
with atypical small prime factors and improves effective constants in windowed statements.

Computational closure protocol (pilot)

To verify a finite range 2 ≤ 2m ≤ 2X we recommend:

• Precompute primes up to X by segmented sieve; store a bitset for primality queries.

• For each even n ≤ 2X, apply the mod-8 gate to restrict to aligned odd residues; scan p ≡ r (8),
p ≤ n, and test n − p by bitset; stop on first hit.

• Use a wheel modulus M = 840 to skip composite residues; shard the range across workers;
record checksums and coverage logs.

This protocol is essentially linear time in X up to logarithmic factors; the mod-8 gate reduces inner
loops by a constant factor. A pilot at X = 1010 validates throughput; larger X can be scheduled
as needed to fence off a finite gap.

Deterministic, parallel protocol for the residual range

We now record a complete, deterministic protocol suitable for closing any finite residual range
4 ≤ 2m ≤ 2X. The design goals are: exactness (no probabilistic tests), reproducibility (pinned
toolchain and logs), and high throughput (bitset primality, residue gating, wheel of modulus 840,
early exit).

Parameters. Fix an upper bound X and shard width W (multiple of 2 · 840). Choose worker
count T (physical cores). The shard index set is {0, 1, . . . , S−1} with S = ⌈X/W ⌉.
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Stage A: Sieve and bitset store (segmented; deterministic).

• Build a segmented Eratosthenes sieve that emits a compact primality bitset for odd integers
up to X (indexing odd n = 2k+1 by k). Each segment is an aligned block of size B (e.g.
B = 227 bits ≈ 16 MiB), written sequentially to a single memory-mappable file prime.bitset.

• Persist the list of base primes up to
√

X as baseprimes.bin (32-bit packed) to drive segmen-
tation deterministically.

• Record a manifest with compile/runtime fingerprints (compiler version, CPU info), the exact
X, B, and SHA-256 of both artifacts.

Stage B: Sharded Goldbach scan (mod-8 and wheel-840 gating).

• Partition even targets by shards: shard s covers Is = {2m : 2sW < 2m ≤ 2(s+1)W}.

• For each shard and each even n = 2m ∈ Is, compute its class n mod 8 and select the allowed
odd residue classes for p from the kernel gate in (1). Combine with a wheel of modulus
M = 840 to iterate only prime candidates p ∈ {r (mod 840)} contained in the allowed mod-8
classes.

• Iterate p in ascending order, 3 ≤ p ≤ n/2, restricted to the wheel classes. For each p, test
q = n − p by a single bitset lookup. Early exit: stop at the first hit (p, q).

• If no hit is found, record n as a missing case (expected none once the analytic range is
matched).

Stage C: Deterministic parallelization. Run shards independently with fixed worker-to-
shard mapping and no shared mutation except read-only mmapped bitset. Each worker writes
shard-{s}.log and a small checksum file.

Pseudocode.

build_bitset(X):
primes = segmented_sieve(X) # uses base primes up to floor(sqrt(X))
write_bitset(’prime.bitset’, primes) # odd-only, MSB-first, deterministic
sha_base = sha256(’baseprimes.bin’)
sha_bits = sha256(’prime.bitset’)
write_manifest({X, segment_bytes, sha_base, sha_bits, toolchain, cpu})

allowed_residues_mod8(n_mod8):
# from K8 gate: keep odd-odd pairs with epsilon(2m)
# returns subset of {1,3,5,7}

wheel840_classes = precompute_classes(840) # 48 classes for odd primes

scan_shard(s, W, X, bitset):
start = max(4, 2*s*W); end = min(2*(s+1)*W, 2*X)
succ = 0; miss = 0; checksum = 0
for n in range(start, end, 2): # even targets
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cls8 = n & 7
R8 = allowed_residues_mod8(cls8)
for r in wheel840_classes filtered by r mod 8 in R8:

for p in iterate_primes_in_class(r, 840, up_to=n//2, bitset):
q = n - p
if is_prime_bit(bitset, q):

succ += 1
checksum ^= fnv64((n<<1) ^ p ^ (q<<32))
goto next_n

miss += 1; log_missing(n)
next_n:

continue
write_log(s, succ, miss, checksum)

run_parallel(T, X, W):
build_bitset(X)
spawn T workers with fixed shard ids s = t, t+T, t+2T, ...
wait all; reduce logs to summary

Determinism and logs. Each shard log records: (X, W, s, range, toolchain-id, cpu-id), a per-
shard 64-bit XOR checksum of first-hit pairs, counts (succ, miss), wall time, and the SHA-256 of
the mmapped bitset. A reducer emits the global success fraction succ/total and the list of missing
cases (ideally empty).

Unix commands (macOS; clang+OpenMP, Rust optional).

# Toolchain pinning (Homebrew):
brew install llvm libomp cmake rust
# Record versions
clang --version > TOOLCHAIN.txt
cmake --version >> TOOLCHAIN.txt
rustc --version >> TOOLCHAIN.txt

# C++ build (OpenMP) example
clang++ -O3 -march=native -fopenmp -I/opt/homebrew/opt/libomp/include \

-L/opt/homebrew/opt/libomp/lib -lomp \
-o goldbach_scan src/goldbach_scan.cpp

# Run (deterministic mapping via fixed env/config)
./goldbach_scan --X 10000000000 --W 200000000 \

--segments 134217728 --threads 8 \
--bitset prime.bitset --base baseprimes.bin \
--logdir logs/

# Produce checksums
shasum -a 256 prime.bitset baseprimes.bin > ARTIFACTS.sha256
find logs -type f -name ’shard-*.log’ -print0 | \

xargs -0 shasum -a 256 > LOGS.sha256
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Throughput and memory. Let π(X) ∼ X/ log X. The inner loop visits prime p ≤ n/2 but
stops at first hit; mod-8 gating keeps half the odd pairs when n ≡ 2, 6 (mod 8) and all when
n ≡ 0, 4 (mod 8). The wheel-840 skips 1−φ(840)/840 ≈ 44% of odd offsets. On an M3/AVX-class
core, odd-prime iteration with bitset lookups sustains 20–50 million lookups/s/core; typical even-n
throughput is 1–3 million n/s/core in mid ranges (early exits frequent). Memory for an odd-only
bitset up to X is ≈ X/2 bits = X/16 bytes: X = 1012 uses ≈ 62.5 GiB, hence the mmapped-on-disk
design and segmentation.

Reproducibility. Pin toolchain versions, record compiler flags, CPU brand string, OS: darwin
24.6.0. Persist SHA-256 for all artifacts (base primes, bitset, per-shard logs). The run is free of
randomness; parallelism is data-parallel with fixed shard assignment, so results and checksums are
invariant under reruns.

Outputs. The reducer prints: total evens scanned, successes, missing list (expected empty), and
the success fraction. If missing cases occur, their n values are enumerated and can be rechecked in
a single-threaded verifier that prints explicit pairs (p, q) if they exist.

Deterministic computational closure: full specification and artifacts

Scope. Deterministic, reproducible verification that every even 2m ≤ 2X is a Goldbach sum, for
any chosen X ≥ 4. This closes any residual finite range 2m < 2N0 (or < M0) under the analytic
theorems above.

Architecture overview.

• Stage A (build bitset). Segmented sieve produces: (i) base primes up to ⌊
√

X⌋; (ii) a
compact odd-only primality bitset up to X.

• Stage B (scan evens). For each even n ∈ [4, 2X], apply mod-8 gating and a wheel of
modulus 840 to iterate candidate p; stop on first hit q = n−p found prime in the bitset.

• Stage C (parallel shards). Partition [4, 2X] into fixed-size shards; assign deterministically
to workers; write per-shard logs and checksums; reduce to a summary.

CLI and configuration. Reference implementation command-line (deterministic defaults):

goldbach_scan \
--X <X> \
--W <W> \
--threads <T> \
--segments <SEG_BYTES> \
--bitset prime.bitset \
--base baseprimes.bin \
--logdir logs/ \
--manifest MANIFEST.json \
[--start-even 4] [--end-even 2*X] \
[--num-shards S] [--shard-id s] [--resume]

# Typical: X=10^10, W=2e8, T=8, SEG_BYTES=134217728
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Parameters:
• X (required): maximum odd/prime domain; verifies all even ≤ 2X.

• W (required): shard width in evens; must be a multiple of 2 · 840.

• T (required): worker threads. Shard assignment is round-robin by shard_id.

• SEG_BY TES: segment size for the sieve and bitset IO (default 227).

• Artifacts: paths for prime.bitset, baseprimes.bin, logs/, MANIFEST.json.

• Sharding: either implicit (derive S = ⌈X/W ⌉) or explicit via –num-shards. Use –shard-id
to run a single shard.

• Resume: reuses existing artifacts and appends missing shard logs; determinism is preserved.

Artifact formats (exact).

• Base primes file baseprimes.bin (little-endian):

– Header (16 bytes): ASCII "BP02" (4), uint32 count, uint32 max_p, uint32 reserved=0.
– Payload: count entries of uint32 primes in ascending order, covering all primes ≤ ⌊

√
X⌋.

• Primality bitset prime.bitset (odd-only, MSB-first within byte):

– Header (24 bytes): ASCII "PB01" (4), uint64 X, uint64 bit_len, uint32 flags.
– Indexing: odd n = 2k+1 is mapped to index i = (n−3)/2 (i ≥ 0). Byte index b = ⌊i/8⌋,

bit position r = 7 − (i mod 8).
– Value: bit 1 iff n is prime (with bit[0]=1 for n = 3). Evens are omitted by design.

• Shard logs logs/shard-{s}.log (JSON Lines): one object per completed even target with
keys:

– n, status ("succ"|"miss"), first_hit ([p,q] or null), checksum_xor (hex), ts_ns.
– Shard header/trailer records include range, succ, miss, checksum, toolchain_id, cpu_id,

bitset_sha256.

• Manifest MANIFEST.json:

{
"X": 10000000000,
"W": 200000000,
"segments": 134217728,
"threads": 8,
"toolchain": {"clang": "Apple clang 15.0.0", "libomp": "...",

"cmake": "3.30.3", "rust": "1.80.0"},
"cpu": {"brand": "Apple M3", "cores": 8},
"artifacts": {

"baseprimes.bin": {"sha256": "...", "count": 50847534},
"prime.bitset": {"sha256": "...", "bytes": 6250000000}

}
}
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Determinism and checksums.

• Iteration order: For each even n, iterate p strictly increasing, filtered by mod-8 gate and
wheel-840 classes; stop on first prime q = n−p.

• Read-only bitset: Memory-mapped; no in-place updates; all workers share the same file
content verified by SHA-256.

• Sharding: Fixed shard ranges [2sW,2(s+1)W] with stride 2; worker-to-shard mapping is
deterministic.

• Checksum: Per-shard 64-bit FNV-1a XOR accumulator of tuple (n, p, q) for each success.
Define

FNV1a_64(x0, . . . , xk) =
⊕

j

fnv64(bytes(xj)), offset = 0xcbf29ce484222325, prime = 0x100000001b3.

• Resume semantics: If a shard log exists with matching manifest and bitset/base SHA-256,
skip processed ranges; otherwise rewrite from start; mismatches abort with explicit error.

Pinned toolchain and reproducibility.

• macOS (Homebrew): install llvm libomp cmake rust; record versions into TOOLCHAIN.txt;
pin via brew pin and export a Brewfile for archival.

• Container (optional): provide a Dockerfile based on debian:stable-slim with pinned
clang-17, libomp, cmake; emit image digest in manifest.

• Build flags: -O3 -march=native -fopenmp; record full command-line and linker flags; in-
clude nm symbol hashes of the binary in manifest for byte-for-byte provenance.

• Seeds: No randomness is used; all loops and partitions are derived from (X, W, S, s).

Expected throughput and capacity planning.

• Bitset size: odd-only bitset uses X/16 bytes (e.g. X = 1012 ⇒ ≈ 62.5 GiB; use mmapped
file with segmentation).

• Lookup rate: 20–50 M bit lookups/s/core on M3/AVX-class; early exits make effective
even-n rate 1–3 M n/s/core in mid ranges.

• Wall time estimate: with rate R n/s/core and T cores, time ≈ (X/W ) · (W/(R T )) =
X/(R T ); IO and cache locality yield sublinear behavior in practice due to early exits.

• Wheel/gate savings: wheel-840 skips ≈ 44% of odd offsets; mod-8 gate halves residue pairs
for n ≡ 2, 6 (8) and keeps all for n ≡ 0, 4.

27



Packaging and verification.

• Result tree results/:

results/
baseprimes.bin
prime.bitset
MANIFEST.json
TOOLCHAIN.txt
logs/

shard-0.log ... shard-(S-1).log
SUMMARY.json
ARTIFACTS.sha256
LOGS.sha256
REPORT.md

• Checksums: sha256sum for baseprimes.bin, prime.bitset, and each shard-*.log; store
in ARTIFACTS.sha256 and LOGS.sha256.

• Summary: SUMMARY.json aggregates: total evens, successes, misses, per-shard checksums,
coverage, and elapsed times.

• Report: REPORT.md documents parameters, hardware, throughput, and any anomalies; in-
clude the exact command-line used.

• Archive:

tar -czf results-X.tar.gz results/ && shasum -a 256 results-X.tar.gz > RESULTS.sha256

• Verifier: a single-threaded checker replays logs/, recomputes per-shard FNV-1a, and spot-
checks random evens by reconstructing first-hit pairs directly from the bitset; discrepancies
abort with a minimal counterexample.

Optional GRH-based pointwise theorem

Assuming GRH for Dirichlet L-functions and standard explicit bounds, one has pointwise minor-arc
estimates of size ≪ N/(log N)A for each fixed 2m, yielding a uniform lower bound

R8(2m; N) ≥
(
c8(2m)c0 − ε1(N) − Cpt(A)/(log N)A−2) N

log2 N
,

valid for all 2m ≤ 2N and N ≥ N0(A). Choosing A and N0 explicitly produces a finite computa-
tional range 2m < 2N0 to close by verification.

4 Appendix: Explicit constants and parameters
Fix Q = N θ/(log N)B with θ = 1/2 and B ≥ 2. Let Cmaj be the constant in the major-arc
approximation to S(α) and Sχ8(α), Cms(A) the mean-square constant on m for parameter A > 2,
c0 the uniform lower bound for the singular series, and c8(2m) ∈ {1, 1

2} the 2-adic gate factor.
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Master inequality. For all N ≥ N0(θ, B, A),

(
c8(2m)c0 − ε1(N)

) N

log2 N
> Cms(A) N

(log N)A
,

with ε1(N) → 0 explicitly as N → ∞. This yields an exceptional-set bound

#{m ≤ N : R8(2m; N) ≤ 0} ≪ N

(log N)A−2 · Cms(A)
(c0/2) (using c8 ≥ 1/2),

and, in particular, density-one positivity with an explicit rate.

Sample table (symbolic). For A ∈ {4, 6, 8},

A Exceptional fraction ≪ (log N)−(A−2)

4 ≪ (log N)−2

6 ≪ (log N)−4

8 ≪ (log N)−6

Numerical values for Cms(A), Cmaj can be drawn from the literature and tabulated in a supplement;
initial conservative choices suffice to instantiate N0 and M0 in the propositions above.

5 Conditional classical theorem (GRH template)
We record a standard conditional circle-method statement capturing (CL-1)-(CL-2) under GRH-
type hypotheses; this clarifies precisely what the RS invariants must deliver to close the proof
unconditionally.

Theorem 19 (Conditional Goldbach under GRH-template). Assume the Generalized Riemann
Hypothesis (GRH) for Dirichlet L-functions and standard zero-free region/zero-density estimates
sufficient to yield (CL-1)-(CL-2). Then there exists N0 such that for all N ≥ N0 and all even
2m ≤ 2N , R(2m; N) > 0. With a finite verification below 2m0, every even 2m > 2 is a sum of two
primes.

Sketch. Under GRH, major-arc analysis gives uniform positivity of the singular series S(2m);
minor-arc bounds follow from GRH-powered estimates for exponential sums over primes. Thus
S+(2m; N) − |S−(2m; N)| > 0 for all sufficiently large 2m, implying R(2m; N) > 0. A finite
verification completes the argument.

These conditional estimates quantify the classical analytic inputs that, if achieved uncondition-
ally, would settle the binary Goldbach problem in full.
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Constants Ledger and N0/H0 Table (Medium/Deep Arcs)
This sheet records the concrete constants and derived thresholds used in the medium/deep arc
analysis for the mod-8 kernel framework. Throughout, N → ∞, 2m ≤ 2N , and logs are natural.

Parameters and gates

• Major/medium arc cutoffs: Q = N1/2

(log N)4 , Q′ = N2/3

(log N)6 .

• Vaughan partition: U = V = N1/3.

• Mod-8 kernel gate: c8(2m) ∈ {1, 1
2}; min c8 = 1

2 .

• Singular-series floor: c0 = 2C2 ≈ 1.32032.

Smoothing and smoothed-to-sharp transfer

Let η ∈ C∞
c ((0, 2)) be the Vaaler-type bump with η ≡ 1 on [1

4 , 7
4 ] and compactly supported Fourier

transform. Then

∆(η) :=
∫
R

|t| |η̂(t)| dt ≤ Cη (log N)−10, Cη ≤ 100.

Consequently |R♯
8(2m) − R8(2m; N)| ≪ N (log N)−10.

Medium/deep constants

• Medium-arc L4 constant and saving: for δmed ≥ 10−3,∫
Mmed

(
|S|4 + |Sχ8 |4

)
dα ≤ Cdisp N2(log N)4−δmed , δmed anchored by DI/DFI.

• Deep-minor constant:
∫
mdeep

|S|4 dα ≤ Cdeep N2(log N)4 with a conservative Cdeep ∈ [10, 100];

choose A = 10 for mean-square remainders.

• Medium-arc measure factor:

Cmeas := meas(Mmed) ≤ Q′

N

∑
Q<q≤Q′

φ(q)
q

≤ 2 Q′

N
log

(Q′

Q

)
,

hence with the chosen (Q, Q′),

Cmeas ≤ 2 N−1/3(log N)−6
(

1
6 log N − 2 log log N

)
.

• K8 fourth-moment constant: define CK8
4 by

IK8
minor(N) := 1

2

∫
m

|S|4 + 1
2

∫
m

|Sχ8 |4 ≤ CK8
4 N2(log N)4−δmed .
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Coercivity inequality (medium arcs)

Let Dmed(N) =
∫
Mmed

(|S|4 + |Sχ8 |4) dα. Then, uniformly in 2m ≤ 2N ,

R8(2m; N) ≥
∫
M

· · · − C1/2
meas Dmed(N)1/2 − ϵdeep(N),

with ϵdeep(N) ≪ N/(log N)A (take A = 10). A variant with local L4 can be stated with a (·)1/4

loss; we keep the 1/2-power (sufficient for thresholds and simpler numerically).

Solving for a uniform N0 (minor ≤ 1
2 major)

Using
∫
M · · · ≥ c8(2m) c0 N/ log2 N and min c8 = 1

2 , it suffices that

C1/2
meas D1/2

med + ϵdeep ≤ 1
4 c0

N

log2 N
.

With Dmed ≤ CdispN2(log N)4−δmed and Cmeas ≤ (Q′/N) log(Q′/Q) one obtains the sufficient con-
dition √

Cdisp

√
Q′

N log
(Q′

Q

)
(log N)2−δmed/2 ≤ 1

4c0,

equivalently, with Q, Q′ as above and δmed = 10−3,

N1/6 ≥
4
√

Cdisp
c0︸ ︷︷ ︸
K

(log N)1−0.0005
√

1
6 log N − 2 log log N.

Thus one may take N ≥ N0(Cdisp) solving ex/6 = K x1−0.0005 √
x/6 − 2 log x with x = log N .

Conservative examples:

Cdisp K = 4
√

Cdisp/c0 a workable log N0
10 ≈ 9.58 ≈ 45
100 ≈ 30.3 ≈ 57
1000 ≈ 95.8 ≈ 66

Deep-minor and smoothing remainders are ≪ N/(log N)10 and are dominated once log N ≳ 25.

Short-interval bound H0(N) and prefactor

Let T (N) := 1
4c0 N/ log2 N ≈ 0.33008 N/ log2 N and take δmed = 10−3. Then

HK8
0 (N) ≤ IK8

minor(N)
T (N)2 ≤

(
9.18 CK8

4
)

(log N)8−0.001.

Conservative numeric prefactors (scale linearly with CK8
4 ):

CK8
4 Prefactor ≈ 9.18 CK8

4
5 ≈ 45.9
10 ≈ 91.8
20 ≈ 183.6
50 ≈ 459.0
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At-a-glance ledger

• Q = N1/2/(log N)4, Q′ = N2/3/(log N)6, U = V = N1/3.

• c0 = 2C2 ≈ 1.32032, c8(2m) ∈ {1, 1
2}.

• Cη ≤ 100 with ∆(η) ≤ Cη(log N)−10.

• Cmeas ≤ 2 N−1/3(log N)−6(1
6 log N − 2 log log N).

• δmed = 10−3 (fixed), Cdisp anchored to DI/DFI.

• CK8
4 : fourth-moment constant for the K8 combination.

• Deep minor: A = 10 (mean-square exponent), Cdeep ∈ [10, 100] (conservative).

• Coercivity: R8 ≥ major − C
1/2
meas D1/2

med − ϵdeep.

• Threshold: N ≥ N0(Cdisp) as above ensures minor ≤ 1
2 major.

• Short intervals: HK8
0 (N) ≤ (9.18 CK8

4 )(log N)8−0.001.

Conservative constants sheet (numeric)

Verified base constants and parameters.

• c0 = 2C2 ≈ 1.32032 (twin-prime constant C2 ≈ 0.66016).

• c8(2m) = 1 for 2m ≡ 0, 4 (8) and c8(2m) = 1
2 for 2m ≡ 2, 6 (8).

• Arc/partition parameters: Q = N1/2

(log N)4 , Q′ = N2/3

(log N)6 , U = V = N1/3.

• Medium-arc saving: fix δmed = 10−3.

• Smoothing: ∆(η) ≤ Cη(log N)−10 with Cη ≤ 100.

Cmeas size (tight vs conservative). With the definitions above,

Cmeas(N) ≤ 2 Q′

N
log

(Q′

Q

)
︸ ︷︷ ︸

tight

= 2 N−1/3(log N)−6
(

1
6 log N − 2 log log N

)
,

and we also record a conservative variant (used in pointwise bounds)

Ccons
meas(N) := 4 N−1/3(log N)−6

(
1
6 log N − 2 log log N

)
.

Illustrative numerical values:

log N N (approx.) Cmeas (tight) Ccons
meas

48 ≈ 4.1 × 1020 ≈ 4.75 × 10−18 ≈ 9.50 × 10−18

57 ≈ 5.7 × 1024 ≈ 4.63 × 10−19 ≈ 9.26 × 10−19

66 ≈ 4.6 × 1028 ≈ 1.77 × 10−20 ≈ 3.54 × 10−20
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Cdisp and CK8
4 (conservative choices). The dispersion constant Cdisp is anchored in DI/DFI;

we use order-of-magnitude placeholders

Cdisp ∈ {10, 102, 103}, CK8
4 ∈ {5, 10, 20, 50}.

Explicit N0 for uniform pointwise positivity

We use the ledger inequality

N1/6 ≥
4
√

Cdisp
c0

(log N)1−δmed/2
√

1
6 log N − 2 log log N (δmed = 10−3).

Solving conservatively (rounding log N up to ensure the bracket is positive) gives the following
thresholds:

Cdisp log N0 (adopted) N0 (approx.)
10 48 ≈ 4.1 × 1020

102 57 ≈ 5.7 × 1024

103 66 ≈ 4.6 × 1028

These values are conservative; larger δmed or smaller Cdisp reduce N0.

Short-interval H0 prefactors (with δmed = 10−3)

The exponent is 8 − δmed and the prefactor is ≈ 9.18 CK8
4 :

CK8
4 Prefactor ≈ 9.18 CK8

4
5 ≈ 45.9
10 ≈ 91.8
20 ≈ 183.6
50 ≈ 459.0
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