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Abstract 1

We study ratio-induced mismatch costs functions of the form c(s, o) = J
(
ιS(s)/ιO(o)

)
built 2

from positive scale maps ιS : S → R>0 and ιO : O → R>0 and a penalty J : (0, ∞) → 3

[0, ∞). Assuming inversion symmetry, strict convexity, coercivity, normalization at 1, and 4

a multiplicative d’Alembert identity, we show that f (u) := 1 + J(eu) is continuous and 5

satisfies the additive d’Alembert equation; hence, by a classical classification theorem, 6

there exists a > 0 such that J(x) = cosh(a log x)− 1 = 1
2
(
xa + x−a)− 1, x > 0. We 7

then analyze the associated argmin mapping over feasible scale sets: existence under 8

explicit subspace-closedness assumptions, an explicit geometric-mean decision geometry 9

for finite dictionaries with stability away from boundaries, exact compositionality for 10

product models, and an optimal sequential mediation principle described by a geometric 11

mean (or its log-space projection when infeasible). The paper is purely mathematical; any 12

semantic interpretation is optional and external to the theorems proved here. 13

Keywords: functional equations; d’Alembert equation; reciprocal convex cost; ratio-based 14

optimization; geometric-mean decision boundaries; compositionality; sequential mediation 15

MSC: Primary 39B52, 49J40; Secondary 26A51, 90C25, 94A17, 90C31 16

1. Introduction 17

This section introduces the optimization-based model of reference, fixes terminology 18

and standing assumptions, and outlines the main results and organization. 19

The paper’s goal is to make the ratio-matching paradigm mathematically explicit. 20

We fix ratio-induced costs of the form c(s, o) = J(ιS(s)/ιO(o)) and define meanings by 21

the argmin rule. The first question is structural: under inversion symmetry, convex- 22

ity/regularity, and a multiplicative compatibility axiom, which mismatch penalties J are 23

admissible, and how canonical is the resulting form? The second question is geometric: 24

once J is fixed, what decision boundaries and stability properties are forced for finite dictio- 25

naries, and how do these behave under products and sequential mediation? The intended 26

contribution is a self-contained set of theorems that separate what is proved inside the 27

axioms from any external semantic or empirical interpretation. 28

We start with two sets: 29

• a configuration (token) space S (words, codes, internal states, messages, . . . ), 30

• an object space O (candidate referents, concepts, states of affairs, . . . ). 31
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Terminology. 32

Throughout we use configuration (or token) for an arbitrary element s ∈ S. We reserve 33

the term symbol for o for a configuration s satisfying the predicate in Definition 8, i.e. 34

o ∈ Mean(s) together with the compression inequality JS(s) < JO(o). 35

Model ingredients and notation 36

For quick reference, the functionals and maps used throughout are organized as 37

follows. 38

• Scale maps: ιS : S → R>0 and ιO : O → R>0. 39

• Mismatch penalty: J : (0, ∞) → [0, ∞) (axioms in Definition 1, explicit choice in 40

Definition 2). 41

• Reference cost: c(s, o) := J(ιS(s)/ιO(o)) (1). 42

• Meaning set (argmin rule): Mean(s) := arg mino∈O c(s, o) (Definition 7). 43

• Intrinsic costs: JS(s) and JO(o) (Definition 3); in the canonical setting these are induced 44

by scales via JS(s) = J(ιS(s)) and JO(o) = J(ιO(o)) (see Definition 6). 45

• Symbol predicate: s is a symbol for o if o ∈ Mean(s) and the compression inequality 46

JS(s) < JO(o) holds (Definition 8). 47

Each space is equipped with a positive scale map ιS : S → R>0 and ιO : O → R>0, 48

interpreted as an intrinsic “size/complexity” in a common currency. Fix a cost functional 49

J : (0, ∞) → [0, ∞) with the properties stated in Section 2 (symmetry under inversion, strict 50

convexity, and a unique minimum at 1). We then define a ratio-induced reference cost 51

c(s, o) := J
(

ιS(s)
ιO(o)

)
, (s, o) ∈ S × O. (1) 52

Meaning as minimization. 53

The meaning set of a configuration s is the set of objects achieving minimal cost: 54

Mean(s) := arg min
o∈O

c(s, o). 55

Equivalently, o ∈ Mean(s) iff c(s, o) ≤ c(s, o′) for all o′ ∈ O (Definition 7). Ties are allowed: 56

meaning is set-valued unless uniqueness is proved under additional hypotheses. 57

Interpretive content (and its limits). 58

Because J is minimized at 1, low reference cost forces scale matching: a configuration 59

can only refer cheaply to objects whose scale is close to its own. This yields an explicit, 60

checkable constraint on admissible reference patterns. The framework is deliberately 61

axiomatic: the scale maps and the chosen J are inputs. 62

1.1. A toy example: three-object dictionary 63

Let O = {o1, o2, o3} with scales yi := ιO(oi) satisfying 0 < y1 < y2 < y3. For a 64

configuration s with scale x := ιS(s), the meaning rule compares the three costs J(x/yi). For 65

the explicit functional (3), the boundary between preferring o1 and o2 occurs at the geometric 66

mean
√

y1y2, and similarly between o2 and o3 at
√

y2y3 (Theorem 8). Thus the model 67

induces a piecewise-constant semantic partition of the positive line in the configuration 68

ratio x, with stability away from the boundary points. 69

1.2. Relation to prior work 70

Classical analyses of reference emphasize logical form and truth conditions (e.g. Frege 71

and Russell) [1,2]. The symbol-grounding literature highlights that purely formal symbol 72
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manipulation does not by itself determine what symbols are about [4]. The present paper 73

does not attempt to resolve these debates empirically. Instead, it isolates a mathemati- 74

cally tractable selection principle: aboutness is determined by minimizing an explicit mis- 75

match cost. For comparison with contemporary subject-matter/aboutness and truthmaker- 76

semantics accounts (e.g. Yablo [11], Hawke [12], and the Philosophical Studies symposium 77

discussion [13–15]), see Section 9. The intended payoff is that, once scales are fixed, 78

aboutness becomes a tractable variational problem with explicit decision boundaries and 79

composition theorems. 80

This paper adopts an optimization-first viewpoint: once a mismatch cost is fixed, 81

semantic meaning is defined by an argmin rule (Definition 7). A closely related measurement- 82

first stance appears in Recognition Geometry [17], which takes recognition events as primitive 83

and derives observable space as a quotient under an operational indistinguishability 84

relation [17, Def. 4]. In the same spirit, the present framework treats mismatch costs 85

as primitive measurements and regards stable meanings as effective equivalence classes of 86

cost-minimization events. Both viewpoints emphasize operationally defined structure over a 87

priori metaphysical commitments, and both isolate exactly which axioms must be validated 88

when connecting the formalism to an empirical domain. 89

1.3. Contributions and what is proved 90

Within the ratio-induced model (1) (and the explicit choice (3) used throughout), we 91

establish the following structural facts under clearly stated hypotheses: 92

• Existence. If the feasible scale set ιO(O) ⊂ R>0 is nonempty and closed in the usual 93

topology on (0, ∞) and if the minimum is attained (as made precise in Theorem 2), 94

then every configuration admits at least one meaning. 95

• Finite-dictionary decision geometry. For finite ordered dictionaries, decision bound- 96

aries are given by geometric means of adjacent object scales, and meanings are locally 97

stable away from these boundaries (Theorem 8 and Corollary 7). 98

• Compositionality. For product symbol/object spaces with separable scales, meaning 99

factorizes componentwise (Theorem 5). 100

• Mediation. For sequential reference through an intermediate representation, the set of 101

optimal mediator ratios is characterized explicitly in log-coordinates; and whenever 102

the balance-point ratio bgeo is feasible, mediation weakly decreases the total mismatch 103

cost relative to direct reference (Theorem 6 and Corollary 3). 104

1.4. Organization 105

Section 2 states the axioms for J and fixes the explicit mismatch functional (3). Section 3 106

defines costed spaces, ratio-induced reference, and the meaning relation. Section 4 contains 107

the principal theorems, followed by compositionality (Section 5), extensions, and examples. 108

2. The mismatch functional J 109

This section fixes the scalar mismatch functional J : (0, ∞) → [0, ∞) used throughout 110

to compare configuration and object scales via the ratio-induced cost (1). The role of J 111

here is purely mathematical: it is an explicit penalty for scale mismatch, and no physical, 112

cognitive, or linguistic interpretation is assumed. 113

2.1. Standard properties and canonicity 114

The conditions below are recorded as a compact axiom package for the mismatch 115

penalty. They encode inversion symmetry, strict convexity, and a multiplicative compati- 116

bility under scale multiplication. After a log change of variables, the compatibility axiom 117

becomes d’Alembert’s functional equation, so the resulting class of penalties is classical. 118
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We include a tailored derivation in Appendix A to keep the paper self-contained and to 119

emphasize that the axioms are used only as mathematical assumptions, not as a claim of 120

novelty. 121

Definition 1 (Cost Functional Axioms). A mismatch functional is a function J : (0, ∞) → 122

[0, ∞) satisfying: 123

1. Normalization: J(1) = 0. 124

2. Strict convexity: J is strictly convex on (0, ∞). 125

3. Multiplicative d’Alembert identity: for all x, y > 0, 126

J(xy) + J(x/y) = 2J(x) + 2J(y) + 2J(x)J(y). (2) 127

The d’Alembert identity (2) is the dominant structural constraint. Inversion symmetry is not 128

assumed as an axiom; it is derived from (2) and normalization in Lemma 1. We invoke strict 129

convexity only in statements where uniqueness is required; existence and attainment statements are 130

formulated without using strict convexity. 131

Lemma 1 (Derived inversion symmetry). Assume J satisfies normalization J(1) = 0 and the 132

multiplicative d’Alembert identity (2). Then for every x > 0 one has J(x) = J(x−1). 133

Proof. Set y = 1 in (2). Using J(1) = 0 we obtain 134

J(x) + J(x−1) = 2J(x) + 2J(1) + 2J(x)J(1) = 2J(x), 135

hence J(x−1) = J(x). 136

We first record a basic consequence used repeatedly: under strict convexity, the normalization point 137

x = 1 is the unique zero of J. 138

Lemma 2 (Uniqueness of the zero-cost point). If J satisfies Definition 1, then J(x) = 0 implies 139

x = 1. 140

Proof. By (2) and (1), J attains its minimum value 0 at x = 1. By strict convexity (3), the 141

minimizer is unique. Hence J(x) = 0 forces x = 1. 142

2.2. The explicit choice used in this paper 143

Definition 2 (The functional fixed below). In the remainder of this paper we fix the explicit 144

functional 145

J(x) = 1
2 (x + x−1)− 1 = (x−1)2

2x (x > 0). (3) 146

The next proposition verifies that the explicit functional indeed satisfies the axioms, so 147

subsequent sections can treat Definition 1 as established. 148

Proposition 1 (Verification of the axioms). The function (3) satisfies Definition 1. 149

Proof. Normalization and inversion symmetry are immediate from (3), and (3) shows 150

J(x) ≥ 0 for all x > 0. Differentiating J(x) = 1
2 (x + x−1)− 1 gives 151

J′(x) = 1
2 − 1

2x2 , J′′(x) = 1
x3 > 0 (x > 0), 152

so J is strictly convex on (0, ∞). For (4), set C(x) = 1 + J(x) = 1
2 (x + x−1). Then 153

C(xy) + C(x/y) = 1
2

(
xy + 1

xy + x
y + y

x

)
= 1

2
(
x + 1

x
)(

y + 1
y
)
= 2C(x)C(y), 154
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which is equivalent to (2) after substituting C = 1 + J and expanding. 155

Proposition 2 (Classical characterization of J). Assume J : (0, ∞) → [0, ∞) satisfies Defini- 156

tion 1. Then there exists a constant a > 0 such that for all x > 0, 157

J(x) = cosh(a log x)− 1 = 1
2
(
xa + x−a)− 1. 158

Moreover, if we replace the scale maps by ι̃S := ιaS and ι̃O := ιaO, then the ratio-induced model with 159

parameter a becomes the same model written with parameter 1. Consequently, one may take a = 1 160

without loss of generality at the level of the induced reference costs. 161

Proof. See Appendix A. 162

Example 1 (Small-mismatch regime). For |u| ≪ 1 one has 163

J(1 + u) =
u2

2
+ O(u3), 164

so near balance the mismatch cost behaves like a quadratic penalty in the relative deviation. 165

3. Costed spaces and reference structures 166

We now formalize the axioms of the model introduced in Section 1. Throughout, the 167

mismatch functional J is fixed as in Section 2. The intent is to make precise which pieces of 168

data are inputs (configuration/object spaces and their scale maps) and which pieces are 169

derived (reference costs and meaning). 170

3.1. Costed spaces 171

Definition 3 (Costed space). Fix a mismatch functional J : (0, ∞) → [0, ∞) (Section 2). A 172

costed space is a triple (C, JC, ιC) consisting of: 173

• a set C of configurations, 174

• a map ιC : C → R>0 called the scale map, 175

• a cost function JC : C → R≥0 satisfying JC(c) = J(ιC(c)) for all c ∈ C. 176

Equivalently, once ιC is fixed, JC is determined by J; we retain JC in the notation since later 177

statements compare configuration costs and object costs directly. 178

Notation 1. We write S = (S, JS, ιS) for a configuration (token) costed space and O = (O, JO, ιO) 179

for an object costed space. 180

Throughout, we identify R>0 with (0, ∞) and equip R>0 (and (R>0)
d) with the usual 181

Euclidean topology on (0, ∞) (equivalently, the Euclidean subspace topology inherited from R). 182

Accordingly, when we say that a set Y ⊂ R>0 is closed, we mean closed in the usual topology 183

on (0, ∞) (equivalently, Y = (0, ∞) ∩ F for some closed F ⊂ R). Likewise, for Y ⊂ (R>0)
d the 184

term closed means closed in the usual topology on (0, ∞)d. 185

Example 2 (Ratio space). The canonical example is C = R>0 with ιC = id and JC = J. 186

The next example isolates a small neighborhood of the balanced point; it will serve as a 187

convenient test class for stability statements. 188

Example 3 (Near-balanced configurations). For ϵ > 0 let Cϵ := {x ∈ R>0 : |x − 1| < ϵ}. 189

Then every c ∈ Cϵ satisfies JC(c) = J(c) < J(1 + ϵ). 190
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3.2. Reference structures 191

Definition 4 (Reference structure). A reference structure from S to O is a function 192

cR : S × O → R≥0, (4) 193

called the reference cost. It assigns to each pair (s, o) the cost of using s to refer to o. 194

In the remainder of the paper we focus on the ratio-induced costs generated by J and the 195

scale maps. 196

Definition 5 (Ratio-induced reference). Given scale maps ιS and ιO, the ratio-induced reference 197

structure is defined by 198

cJ
R(s, o) := J

( ιS(s)
ιO(o)

)
. (5) 199

This is the cost used in the Introduction (Eq. 1). 200

Link to comparative recognizers. 201

The ratio-induced reference cost (5) can be viewed as a specific instantiation of a 202

comparative recognizer in the sense of Recognition Geometry [17, Axiom 5 (RG4)]. In that 203

framework, a comparative recognizer maps pairs of configurations to an event space [17, 204

Axiom 2 (RG1)] so as to induce comparative structure (order/distance) from observable 205

events. Here the “event” is the scalar mismatch value J(ιS(s)/ιO(o)), and the induced indis- 206

tinguishability relation [17, Def. 4] corresponds to the zero-cost condition J(ιS(s)/ιO(o)) = 0, 207

which forces exact scale match ιS(s) = ιO(o) by Lemma 2. 208

The following admissibility condition specifies when the reference cost is exactly the 209

canonical ratio penalty. 210

Definition 6 (Admissible reference structure). A reference structure R from S to O is called 211

admissible (with respect to J and the scale maps ιS, ιO) if it is ratio-induced, i.e. 212

cR(s, o) = J
( ιS(s)

ιO(o)

)
∀(s, o) ∈ S × O. (6) 213

Unless stated otherwise, we work with admissible reference structures. 214

Admissibility transfers the symmetry properties of Jto the reference cost; we record this for 215

later use. 216

Proposition 3 (Inversion symmetry of the reference cost). If R is admissible, then for all 217

(s, o) ∈ S × O one has 218

cR(s, o) = J
( ιS(s)

ιO(o)

)
= J
( ιO(o)

ιS(s)

)
. 219

Proof. Immediate from admissibility and inversion symmetry J(x) = J(x−1) (Lemma 220

1). 221

3.3. Meaning and the symbol predicate 222

Definition 7 (Meaning). Let R be a reference structure from S to O. A configuration s ∈ S 223

means an object o ∈ O, written MeanR(s, o), if o minimizes the reference cost among all objects: 224

MeanR(s, o) ⇐⇒ ∀o′ ∈ O, cR(s, o) ≤ cR(s, o′). (7) 225
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For each s ∈ S we write 226

MeanR(s) := {o ∈ O : MeanR(s, o)} 227

for the (possibly multi-valued) meaning set. If R is admissible, then equivalently 228

MeanR(s) = arg min
o∈O

J
( ιS(s)

ιO(o)

)
. 229

Definition 8 (Symbol). Let R be a reference structure from S to O. A configuration s ∈ S is a 230

symbol for an object o ∈ O (relative to R) if: 231

1. Reference: MeanR(s, o). 232

2. Compression: JS(s) < JO(o). 233

The compression requirement is a modeling assumption: it enforces that symbols 234

are lower-cost encodings than their referents in the common currency induced by J. No 235

empirical interpretation is asserted; the condition is simply part of the definition used in 236

later results. 237

4. Main theorems 238

This section collects the main mathematical consequences of the ratio-induced refer- 239

ence model. Throughout we fix the explicit mismatch functional 240

J(x) =
(x − 1)2

2x
= 1

2
(
x + x−1)− 1 (x > 0) (8) 241

which satisfies Definition 1, and we assume the reference structure is admissible: 242

cR(s, o) = J
(

ιS(s)
ιO(o)

)
. (9) 243

Thus, for each s ∈ S, the meaning set MeanR(s) is the set of minimizers of o 7→ 244

J(ιS(s)/ιO(o)). 245

4.1. Sublevel geometry of the explicit mismatch cost 246

Lemma 3 (Sublevel intervals). Assume J is given by (3) (equivalently (8)). For each ϵ > 0, the 247

sublevel set 248

Lϵ := {x ∈ R>0 : J(x) ≤ ϵ} 249

coincides with the closed interval [aϵ, bϵ], where 250

bϵ := (1 + ϵ) +
√

ϵ(2 + ϵ), aϵ := (1 + ϵ)−
√

ϵ(2 + ϵ) =
1
bϵ

. 251

Proof. Using J(x) = (x−1)2

2x , the inequality J(x) ≤ ϵ is equivalent (after multiplying by 252

2x > 0) to 253

(x − 1)2 ≤ 2ϵx ⇐⇒ x2 − 2(1 + ϵ)x + 1 ≤ 0. 254

The quadratic has discriminant ∆ = 4ϵ(2 + ϵ) and roots x± = (1 + ϵ)±
√

ϵ(2 + ϵ). Since 255

it opens upward, the inequality holds exactly for x ∈ [x−, x+]. Set aϵ := x− and bϵ := x+. 256

Then aϵbϵ = (1 + ϵ)2 − ϵ(2 + ϵ) = 1, so aϵ = 1/bϵ. 257
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4.2. Meaning constraints from a balanced baseline 258

Theorem 1 (Scale window for meanings of low-cost configurations). Assume 1 ∈ Y := 259

ιO(O) and choose o0 ∈ O with ιO(o0) = 1. Let s ∈ S and let o ∈ MeanR(s). Then 260

cR(s, o) ≤ cR(s, o0) = J(ιS(s)) = JS(s). (10) 261

In particular, for every ϵ > 0, if JS(s) ≤ ϵ then 262

ιS(s)
ιO(o)

∈ [aϵ, bϵ] (11) 263

and hence 264

ιS(s)
bϵ

≤ ιO(o) ≤
ιS(s)

aϵ
, (12) 265

where [aϵ, bϵ] is as in Lemma 3. 266

Proof. Since o ∈ MeanR(s), by definition cR(s, o) ≤ cR(s, o0). By admissibility (9) and 267

ιO(o0) = 1, cR(s, o0) = J(ιS(s)) = JS(s), which gives (10). If JS(s) ≤ ϵ, then (10) implies 268

J(ιS(s)/ιO(o)) ≤ ϵ, hence (11) by Lemma 3. Rearranging yields (12). 269

Corollary 1 (Near-balanced configurations force near-balanced meanings). Under the hy- 270

potheses of Theorem 1, if JS(s) ≤ ϵ and o ∈ MeanR(s), then 271

ιO(o) ∈
[ 1

b2
ϵ

, b2
ϵ

]
. 272

In particular, as ϵ ↓ 0, any meaning of an ϵ-cheap symbol must satisfy ιO(o) → 1. 273

Proof. From JS(s) = J(ιS(s)) ≤ ϵ and Lemma 3 we have ιS(s) ∈ [aϵ, bϵ]. Combining this 274

with (12) and aϵ = 1/bϵ gives the stated bounds. 275

4.3. Existence of meanings under attainment hypotheses 276

Lemma 4 (Coercivity of J). Assume J is given by (3). Then J(x) → ∞ as x → 0+ and as x → ∞. 277

In particular, for each M ≥ 0 the sublevel set {x ∈ R>0 : J(x) ≤ M} is compact in R. 278

Proof. From (8), J(x) = 1
2 (x + x−1)− 1. As x → ∞ the term 1

2 x dominates, and as x → 0+ 279

the term 1
2 x−1 dominates, so in both limits J(x) → ∞. If J(x) ≤ M then x+ x−1 ≤ 2(M+ 1), 280

hence both x and x−1 are bounded; the sublevel set is therefore closed and bounded away 281

from 0 and ∞, hence compact. 282

Theorem 2 (Existence of meanings for ratio-induced reference). Assume R is admissible and 283

that J is given by (3). Let Y := ιO(O) ⊂ R>0 be nonempty and closed in the usual topology on 284

(0, ∞). Then for every s ∈ S there exists o ∈ O such that MeanR(s, o) (equivalently, MeanR(s) ̸= 285

∅). Moreover, if x := ιS(s) ∈ Y, then any o ∈ O with ιO(o) = x is a meaning and satisfies 286

cR(s, o) = 0. 287

Proof. Fix s and set x := ιS(s). Consider f : Y → R≥0 defined by f (y) := J(x/y). The 288

map f is continuous. By Lemma 4, f (y) → ∞ as y → 0+ or y → ∞, so the infimum of f 289

over Y is achieved on a compact sublevel set. Concretely, choose a minimizing sequence 290

yn ∈ Y with f (yn) ↓ infY f . Coercivity implies (yn) is bounded away from 0 and ∞, hence 291

has a convergent subsequence; since Y is closed in (0, ∞), the limit y∗ ∈ Y, and continuity 292

gives f (y∗) = infY f . Choose o ∈ O with ιO(o) = y∗. Then cR(s, o) = f (y∗) ≤ f (ιO(o′)) = 293
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cR(s, o′) for all o′ ∈ O, i.e. MeanR(s, o). If x ∈ Y, take y∗ = x; then J(x/x) = J(1) = 0, so 294

any o with ιO(o) = x is a meaning with zero reference cost. 295

Remark 1. If Y = ιO(O) is not closed in (0, ∞), the minimum need not be attained; in that case 296

MeanR(s) may be empty even though the infimum exists. 297

4.4. A simple total-cost benchmark 298

Theorem 3 (Balanced reference minimizes the intrinsic+reference sum). Assume admissible 299

reference (9) and intrinsic costs JS(s) = J(ιS(s)), JO(o) = J(ιO(o)). Define 300

C(s, o) := JS(s) + JO(o) + cR(s, o). 301

Then C(s, o) ≥ 0 for all (s, o) ∈ S × O, and 302

C(s, o) = 0 ⇐⇒ ιS(s) = 1 and ιO(o) = 1. 303

In particular, if there exist s0 ∈ S and o0 ∈ O with ιS(s0) = ιO(o0) = 1, then (s0, o0) is a global 304

minimizer of C over S × O. 305

Proof. Each term in C is nonnegative, hence C ≥ 0. If C(s, o) = 0, then all three terms 306

vanish; by Lemma 2 this forces ιS(s) = ιO(o) = 1. The converse is immediate from 307

J(1) = 0. 308

4.5. A backbone window for near-balanced configuration classes 309

Definition 9 (Referential capacity). Given a reference structure R from S to O, define the 310

referential capacity to be 311

Cap(S ,O;R) :=
∣∣{o ∈ O : ∃s ∈ S with o ∈ MeanR(s)}

∣∣. 312

(If O is infinite, this cardinality may be infinite.) 313

We now show that restricting to near-balanced configurations forces all attainable meanings 314

to lie in an explicit scale window. 315

Theorem 4 (Backbone window for near-balanced configurations). Let Sδ = (Sδ, Jδ, ιδ) be the 316

near-balanced ratio space 317

Sδ := {x ∈ R>0 : |x − 1| < δ}, ιδ = id, Jδ = J|Sδ
. 318

Let O = (O, JO, ιO) be a costed space such that Y := ιO(O) ⊂ R>0 is nonempty, closed in the 319

usual topology on (0, ∞), and contains 1. Assume R is admissible and J is given by (3). 320

Set ϵδ := J(1 + δ) and let [aϵδ
, bϵδ

] be as in Lemma 3. Define the window 321

Iδ :=
[

1 − δ

bϵδ

,
1 + δ

aϵδ

]
. 322

Then: 323

1. For every s ∈ Sδ the meaning set MeanR(s) is nonempty. 324

2. If s ∈ Sδ and o ∈ MeanR(s), then ιO(o) ∈ Iδ. Equivalently, if ιO(o) /∈ Iδ, then no s ∈ Sδ 325

can mean o under admissible reference. 326

In particular, 327

Cap(Sδ,O;R) ≤
∣∣{o ∈ O : ιO(o) ∈ Iδ}

∣∣. 328
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Proof. (1) is a direct application of Theorem 2 to the closed (in (0, ∞)) nonempty set Y. 329

For (2), fix s ∈ Sδ and write x := ιδ(s) ∈ (1 − δ, 1 + δ). Let o ∈ MeanR(s) and choose 330

o0 ∈ O with ιO(o0) = 1 (possible since 1 ∈ Y). By Theorem 1, 331

J
(

x
ιO(o)

)
= cR(s, o) ≤ cR(s, o0) = J(x) ≤ J(1 + δ) = ϵδ. 332

Applying Lemma 3 gives x/ιO(o) ∈ [aϵδ
, bϵδ

], hence 333

x
bϵδ

≤ ιO(o) ≤
x

aϵδ

. 334

Using x ∈ [1 − δ, 1 + δ] yields ιO(o) ∈ Iδ. 335

For the capacity bound, any object counted in Cap(Sδ,O;R) lies in MeanR(s) for 336

some s ∈ Sδ, hence satisfies ιO(o) ∈ Iδ by (2). 337

5. Compositionality 338

This section records two elementary composition mechanisms for reference costs: (i) 339

product composition (independent coordinates) and (ii) sequential mediation through an 340

intermediate space. Both are purely variational constructions: they introduce no semantic 341

primitive beyond the cost function(s). 342

5.1. Product reference and coordinatewise meaning 343

Definition 10 (Product reference). Let R1 be a reference structure from a configuration (token) 344

set S1 to an object set O1, and let R2 be a reference structure from a configuration (token) set S2 to 345

an object set O2. Write their costs as cRi . The product reference structure R1 ⊗R2 : S1 × S2 → 346

O1 × O2 is defined by 347

cR1⊗R2

(
(s1, s2), (o1, o2)

)
:= cR1(s1, o1) + cR2(s2, o2). (13) 348

With the product cost in hand, meaning decomposes coordinatewise; the next theorem 349

makes this precise. 350

Theorem 5 (Compositionality of product meaning). For any reference structures R1,R2 and 351

their product R1 ⊗R2, and for every (s1, s2) ∈ S1 × S2, the meaning set in the product structure 352

factorizes as the Cartesian product 353

MeanR1⊗R2(s1, s2) = MeanR1(s1)× MeanR2(s2). 354

Equivalently, viewing meaning as a relation MeanRi ⊆ Si ×Oi, one has equality of relations inside 355

(S1 × S2)× (O1 × O2): 356

MeanR1⊗R2 = MeanR1 × MeanR2 , 357

where the right-hand side denotes the Cartesian product relation. 358

Proof. Fix (s1, s2) ∈ S1 × S2 and write 359

A := MeanR1⊗R2(s1, s2) ⊆ O1 × O2, Ai := MeanRi (si) ⊆ Oi(i = 1, 2). 360

By definition of the product reference structure, for every (o′1, o′2) ∈ O1 × O2, 361

cR1⊗R2

(
(s1, s2), (o′1, o′2)

)
= cR1(s1, o′1) + cR2(s2, o′2). 362
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Inclusion A ⊆ A1 × A2. Let (o1, o2) ∈ A. Then for all (o′1, o′2) ∈ O1 × O2, 363

cR1(s1, o1) + cR2(s2, o2) ≤ cR1(s1, o′1) + cR2(s2, o′2). 364

Specializing to o′2 = o2 gives, for all o′1 ∈ O1, 365

cR1(s1, o1) ≤ cR1(s1, o′1), 366

so o1 ∈ A1. Similarly, specializing to o′1 = o1 gives o2 ∈ A2. Hence (o1, o2) ∈ A1 × A2. 367

Inclusion A1 × A2 ⊆ A. Let o1 ∈ A1 and o2 ∈ A2. Then for all o′1 ∈ O1 and all o′2 ∈ O2, 368

cR1(s1, o1) ≤ cR1(s1, o′1), cR2(s2, o2) ≤ cR2(s2, o′2). 369

Adding yields, for all (o′1, o′2) ∈ O1 × O2, 370

cR1(s1, o1) + cR2(s2, o2) ≤ cR1(s1, o′1) + cR2(s2, o′2), 371

which is exactly the defining inequality for (o1, o2) ∈ A in the product structure. Thus 372

A1 × A2 ⊆ A. Combining the two inclusions gives A = A1 × A2, i.e., MeanR1⊗R2(s1, s2) = 373

MeanR1(s1)× MeanR2(s2). 374

Corollary 2 (Existence of product meanings under the explicit mismatch cost). Assume the 375

explicit mismatch cost (8) and admissible reference on each component. If, for i = 1, 2, the object 376

ratio set YOi := ιOi (Oi) ⊂ R>0 is nonempty and closed in the usual topology on (0, ∞), then for 377

every (s1, s2) ∈ S1 × S2 the product meaning set MeanR1⊗R2(s1, s2) is nonempty. 378

Proof. Under the stated hypotheses, Theorem 2 implies MeanRi (si) ̸= ∅ for each i. Pick 379

oi ∈ MeanRi (si). Then Theorem 5 yields (o1, o2) ∈ MeanR1⊗R2(s1, s2). 380

5.2. Sequential mediation 381

Definition 11 (Sequential reference). Let R1 : S → M and R2 : M → O be reference 382

structures. Their sequential composition R2 ◦R1 : S → O is defined by the infimal convolution 383

cR2◦R1(s, o) = inf
m∈M

[
cR1(s, m) + cR2(m, o)

]
. (14) 384

A mediator m is optimal for (s, o) if it attains the infimum in (14). 385

We next compute the optimal mediator explicitly under the canonical mismatch cost. 386

Theorem 6 (Geometric-mean mediator for the explicit mismatch cost). Assume the explicit 387

mismatch functional (8) and admissible reference for R1 : S → M and R2 : M → O with scale 388

maps ιS, ιM, ιO. Fix s ∈ S and o ∈ O and set a := ιS(s) and c := ιO(o). Let YM := ιM(M) ⊂ 389

R>0. Assume that YM is nonempty and closed in the usual topology on (0, ∞). Set bgeo :=
√

ac 390

and U := {log b : b ∈ YM} ⊂ R. Then the infimum in (14) is attained by at least one mediator 391

m∗ ∈ M. Moreover, a mediator m ∈ M with b := ιM(m) is optimal if and only if log b minimizes 392

| log b − log bgeo| over U (equivalently, b minimizes | log(b/bgeo)| over YM). If bgeo /∈ YM, write 393

u0 := log bgeo and let δ := dist(u0, U), where U = {log b : b ∈ YM} ⊂ R. Let u∗ ∈ U be a 394
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closest point to u0 (so |u∗ − u0| = δ) and set b∗ := eu∗ . Then, for the explicit cost, the constrained 395

optimum value admits the closed form 396

cR2◦R1(s, o) =
(

cosh
( 1

2 log(a/c) + δ
)
− 1
)
+
(

cosh
( 1

2 log(a/c)− δ
)
− 1
)

= 2 cosh
(

1
2 log

a
c

)
cosh(δ)− 2.

397

In particular, the suboptimality gap relative to the unconstrained geometric mean (i.e., relative 398

to δ = 0) is 399

cR2◦R1(s, o)− 2 J
(√

a
c

)
= 2 cosh

(
1
2 log

a
c

)(
cosh(δ)− 1

)
≥ 0. 400

In particular, if bgeo ∈ YM, then the optimal mediator ratio is unique and equals bgeo; in that case, 401

choosing m∗ ∈ M with ιM(m∗) = bgeo gives 402

cR2◦R1(s, o) = J
(

a
bgeo

)
+ J
(

bgeo

c

)
= 2 J

(√
a
c

)
. 403

Proof. Under admissibility, the objective in (14) depends on m only through b := ιM(m) ∈ 404

YM, namely 405

F(b) := J
( a

b

)
+ J
(

b
c

)
. 406

For the explicit penalty (3), one has J(x) = cosh(log x)− 1. Writing t := log a, s := log c, 407

and u := log b, we obtain 408

F(b) =
(
cosh(t − u)− 1

)
+
(
cosh(u − s)− 1

)
= cosh(t − u) + cosh(u − s)− 2. 409

Using cosh(α) + cosh(β) = 2 cosh
( α+β

2
)

cosh
( α−β

2
)

with α = t − u and β = u − s gives 410

F(b) = 2 cosh
( t − s

2

)
cosh

(
u − t + s

2

)
− 2 = 2 cosh

( log(a/c)
2

)
cosh

(
u − log bgeo

)
− 2. 411

Since cosh
( log(a/c)

2
)
> 0 is constant and cosh is even and strictly increasing on [0, ∞), 412

minimizing F over b ∈ YM is equivalent to minimizing |u − log bgeo| over u ∈ U = log YM. 413

Because log : (0, ∞) → R is a homeomorphism and YM is closed and nonempty, the set 414

U is closed and nonempty in R, hence the distance function u 7→ |u − log bgeo| attains its 415

minimum on U. This proves existence of at least one minimizer u∗ ∈ U, and the stated 416

characterization of optimal ratios. If bgeo ∈ YM (equivalently log bgeo ∈ U), then the unique 417

minimizer of u 7→ |u − log bgeo| on U is u = log bgeo, hence the optimal mediator ratio is 418

unique and equals bgeo. Substituting bgeo =
√

ac yields J(a/bgeo) = J
(√

a/c
)
= J(bgeo/c) 419

and the displayed formula. 420

Corollary 3 (Mediation can strictly reduce mismatch). For every x > 0 one has 421

2 J(
√

x) ≤ J(x), 422

with equality if and only if x = 1. Consequently, in the setting of Theorem 6, if bgeo ∈ YM and a 423

direct admissible reference R : S → O is available (built from the same J and scale maps), then 424

cR2◦R1(s, o) ≤ cR(s, o), 425

with equality if and only if ιS(s) = ιO(o). 426
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Proof. Let t :=
√

x > 0. Using (3), a direct calculation gives 427

J(t2)− 2 J(t) =
1
2

(
(t − 1)2 +

(
t−1 − 1

)2
)
≥ 0, 428

with equality if and only if t = 1, i.e. x = 1. If bgeo ∈ YM, Theorem 6 gives 429

cR2◦R1(s, o) = 2 J(
√

x) with x = ιS(s)/ιO(o); comparing with cR(s, o) = J(x) yields 430

the stated inequality. 431

6. Extensions: multi-dimensional scales and robustness 432

The core framework above uses a single positive scale coordinate ι(·) ∈ R>0. In some 433

applications one may want a finite list of independent scale coordinates (for instance, a 434

configuration might carry multiple features, each measured in the same “cost currency” 435

through J). This section records a minimal extension of the model to d coordinates and a 436

simple robustness lemma for finite dictionaries. 437

6.1. Multi-dimensional costed spaces 438

Definition 12 (Multi-dimensional costed space). Let d ∈ N. A d-dimensional costed space 439

is a triple (C, JC, ιC) where 440

• C is a set, 441

• ιC : C → (R>0)
d is a scale map, and 442

• JC : C → R≥0 is the induced (separable) cost 443

JC(c) :=
d

∑
i=1

J
(
ιC(c)i

)
, c ∈ C. 444

We extend admissible reference by taking a separable, coordinatewise ratio penalty. 445

Definition 13 (Multi-dimensional admissible reference). Let (S, JS, ιS) and (O, JO, ιO) be d- 446

dimensional costed spaces. A reference structure R from S to O is multi-dimensionally admissible 447

if its reference cost is the coordinatewise ratio cost 448

cR(s, o) =
d

∑
i=1

J
(

ιS(s)i
ιO(o)i

)
, (s, o) ∈ S × O. (15) 449

The separable form immediately implies that meanings factor coordinatewise. 450

Corollary 4 (Coordinatewise meaning for product models). Assume S = ∏d
i=1 Si and O = 451

∏d
i=1 Oi and that the scale maps factor coordinatewise: ιS(s)i = ιSi (si) and ιO(o)i = ιOi (oi). If R 452

is multi-dimensionally admissible, then 453

(o1, . . . , od) ∈ MeanR(s1, . . . , sd) ⇐⇒ ∀i, oi ∈ MeanRi (si), 454

where Ri denotes the induced one-dimensional admissible reference on (Si, Oi). 455

Proof. By (15) the cost is a separable sum of d nonnegative terms, each depending only on 456

(si, oi). Thus minimizing over O = ∏i Oi is equivalent to minimizing each summand over 457

its coordinate; this is the same argument as in Theorem 5. 458

6.2. Log-space geometry for the explicit mismatch cost 459

In this subsection we specialize to the explicit mismatch functional 460

J(x) = 1
2 (x + x−1)− 1 (x > 0), (16) 461
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already used in Sections 2–5. 462

Lemma 5 (Log-coordinate form). For all t ∈ R one has J(et) = cosh(t)− 1. 463

Proof. Immediate from (16): J(et) = 1
2 (e

t + e−t)− 1 = cosh(t)− 1. 464

Proposition 4 (Quadratic regime with explicit remainder). For all t ∈ R, 465

0 ≤ J(et)− t2

2
≤ t4

24
cosh(|t|). 466

In particular, for |t| ≤ 1, 467

t2

2
≤ J(et) ≤ t2

2
+

cosh(1)
24

t4. 468

Proof. By Lemma 5 it suffices to estimate cosh(t)− 1 − 1
2 t2. Taylor’s theorem at 0 with 469

remainder gives 470

cosh(t) = 1 +
t2

2
+

t4

24
cosh(ξ) 471

for some ξ between 0 and t. Since cosh is even and increasing on R≥0, one has cosh(ξ) ≤ 472

cosh(|t|), yielding the upper bound. Nonnegativity follows since cosh(ξ) > 0. 473

Corollary 5 (Local Euclidean geometry in log-ratio). For the explicit mismatch cost (16), set 474

x := ιS(s) and y := ιO(o). If | log(x/y)| ≤ 1, then 475

1
2
(

log(x/y)
)2 ≤ cR(s, o) ≤ 1

2
(

log(x/y)
)2

+
cosh(1)

24
(

log(x/y)
)4. 476

Thus, in the small-mismatch regime, meanings behave like nearest neighbors in the log-ratio metric. 477

Proof. For admissible reference, cR(s, o) = J(x/y) with x := ιS(s) and y := ιO(o). Write 478

t := log(x/y). Then x/y = et and |t| ≤ 1 by hypothesis. Apply Proposition 4 to obtain 479

1
2 t2 ≤ J(et) ≤ 1

2 t2 + cosh(1)
24 t4, and substitute t = log(x/y). 480

6.3. Margin stability for finite dictionaries 481

Definition 14 (Decision margin). Fix a configuration s ∈ S and a finite object dictionary 482

O = {o1, . . . , oN}. Write Ck := cR(s, ok) and let M := min1≤k≤N Ck. The decision margin at 483

s is 484

∆(s) := min{Ck − M : 1 ≤ k ≤ N, Ck > M} ∈ [0, ∞], 485

with the convention ∆(s) = ∞ if all Ck are equal. 486

The margin parameter controls how stable the argmin is under perturbations of the cost 487

values. 488

Proposition 5 (Robustness under bounded perturbations). In the setting of Definition 14, 489

suppose the costs Ck are perturbed to numbers C̃k satisfying 490

max
1≤k≤N

|C̃k − Ck| ≤ η. 491

If ∆(s) > 2η, then the set of minimizers is unchanged: 492

{k : Ck = min
j

Cj} = {k : C̃k = min
j

C̃j}. 493
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Proof. Let I := {k : Ck = M} be the (nonempty) set of original minimizers. For k ∈ I 494

one has C̃k ≤ M + η. If k /∈ I, then Ck ≥ M + ∆(s) by definition of ∆(s), hence C̃k ≥ 495

M + ∆(s)− η. If ∆(s) > 2η then M + ∆(s)− η > M + η, so every perturbed minimizer 496

must lie in I and conversely every k ∈ I remains minimal. 497

6.4. Existence (and optional uniqueness) in d dimensions 498

Here we discuss the multi-dimensional analogue of Theorem 2; it follows by the 499

same attainment argument under the multi-dimensional admissibility and closedness 500

hypotheses. 501

Corollary 6. Let d ∈ N and let (S, JS, ιS) and (O, JO, ιO) be d-dimensional costed spaces. Assume 502

R is multi-dimensionally admissible in the sense of Definition 13. Let Y := ιO(O) ⊂ (R>0)
d

503

be nonempty and closed in the usual topology on (0, ∞)d. Then for every s ∈ S the meaning set 504

MeanR(s) is nonempty. Moreover, if x := ιS(s) lies in Y, then any o ∈ O with ιO(o) = x is a 505

meaning and satisfies cR(s, o) = 0. 506

Proof. Fix s ∈ S and write x := ιS(s) ∈ (R>0)
d. Consider the continuous objective on Y, 507

Fx(y) :=
d

∑
i=1

J
(

xi
yi

)
, y = (y1, . . . , yd) ∈ Y. 508

By Lemma 4, for each M ≥ 0 the one-dimensional sublevel set KM := {z > 0 : J(z) ≤ M} 509

is compact. Hence there exist 0 < aM ≤ 1 ≤ bM < ∞ such that KM ⊂ [aM, bM]. If 510

Fx(y) ≤ M then each term satisfies J(xi/yi) ≤ M, so xi/yi ∈ KM ⊂ [aM, bM], i.e. 511

xi
bM

≤ yi ≤
xi
aM

(i = 1, . . . , d). 512

Therefore the sublevel set {y ∈ Y : Fx(y) ≤ M} is closed and contained in the bounded 513

box ∏i[xi/bM, xi/aM], so it is compact (Heine–Borel). Thus Fx attains its minimum on Y at 514

some y∗ ∈ Y. Choose o ∈ O with ιO(o) = y∗; then o ∈ MeanR(s) by (15). 515

If x ∈ Y, then Fx(x) = ∑i J(1) = 0. Since each term is nonnegative, 0 is the global 516

minimum, so any o with ιO(o) = x is a meaning. 517

Definition 15 (Log-image and log-convexity). For Y ⊂ (R>0)
d define 518

log Y := {(log y1, . . . , log yd) : y ∈ Y} ⊂ Rd. 519

We call Y log-convex if log Y is convex. 520

When the log-image of the dictionary is convex, strict convexity yields uniqueness and 521

continuity of the optimizer. 522

Theorem 7 (Uniqueness and continuity for log-convex dictionaries). Assume the explicit 523

mismatch cost (16) and the hypotheses of Theorem 6. If U := log Y ⊂ Rd is closed and convex, 524

then the minimizer y∗(x) ∈ Y of Fx is unique. Equivalently, the meaning set MeanR(s) equals the 525

fiber {o ∈ O : ιO(o) = y∗(ιS(s))}. Moreover, the optimizer is continuous in log-coordinates: the 526

map t 7→ u∗(t) is continuous, where t := log x and u∗(t) := log y∗(et) ∈ U. 527

Proof. Let t := log x ∈ Rd and write u := log y ∈ U. By Lemma 5, 528

Fx(y) =
d

∑
i=1

(cosh(ti − ui)− 1) =: Gt(u). 529
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For each i, the map ui 7→ cosh(ti − ui)− 1 is strictly convex, hence Gt is strictly convex 530

on Rd. Restricting to the convex set U preserves strict convexity, so Gt has at most one 531

minimizer on U; existence follows from Theorem 6. Thus the optimizer u∗(t) is unique, 532

and so is y∗(x) = eu∗(log x). 533

For continuity, let tn → t and set un := u∗(tn) ∈ U. Fix u0 ∈ U. Since un minimizes Gtn 534

on U, one has Gtn(un) ≤ Gtn(u0). The right-hand side is bounded because (t, u) 7→ Gt(u) 535

is continuous and tn → t. As in the proof of Theorem 6, boundedness of Gtn(un) implies 536

boundedness of {un} in Rd. Passing to a convergent subsequence (still denoted un) with 537

limit ū ∈ U (closedness), continuity gives Gt(ū) = limn Gtn(un) ≤ limn Gtn(u) = Gt(u) for 538

all u ∈ U. Hence ū minimizes Gt on U, and by uniqueness ū = u∗(t). Therefore every 539

subsequence has the same limit, so un → u∗(t) and continuity holds. 540

7. Worked examples 541

This section gives explicit computations in simple settings. The purpose is not to add 542

new axioms, but to make the definition of meaning MeanR(s) = arg mino∈O J(ιS(s)/ιO(o)) 543

concrete and to illustrate the decision-geometry proved earlier. 544

7.1. Continuous ratio model 545

Proposition 6 (Meaning in the continuous ratio model). Let S = O = R>0 with ιS = ιO = id 546

and intrinsic costs JS = JO = J. Let R be admissible (Definition 6), so that 547

cR(s, o) = J
( s

o

)
. 548

Then for every s ∈ R>0 there exists a unique meaning, namely MeanR(s) = {s}, and the 549

minimum reference cost equals 0. 550

Proof. By Lemma 2, one has J(x) ≥ 0 for all x > 0 with equality if and only if x = 1. Hence 551

cR(s, o) = J(s/o) ≥ 0 with equality if and only if s/o = 1, i.e. o = s. Therefore o = s is the 552

unique minimizer and the minimum cost is 0. 553

7.2. Finite dictionaries and boundary points 554

Example 4 (Finite object dictionary). Let O = {o1, . . . , on} be finite, set yi := ιO(oi), and 555

keep S = R>0 with ιS = id. Under admissible reference, for a given configuration s with ratio 556

x := ιS(s) the meaning set is 557

MeanR(s) =
{

oi : J
(

x
yi

)
= min

1≤j≤n
J

(
x
yj

)}
. 558

In general, boundary points (where the meaning set is not a singleton) occur when two or more of 559

the values J(x/yi) tie. 560

7.3. Geometric-mean boundaries for the explicit mismatch cost 561

Theorem 8 (Geometric-mean decision boundaries for the explicit mismatch cost). As- 562

sume the explicit mismatch functional (3) and admissible (ratio-induced) reference cR(s, o) = 563

J(ιS(s)/ιO(o)). Let O = {o1, . . . , oN} be a finite object set such that the ratios yi := ιO(oi) are 564

pairwise distinct and ordered 0 < y1 < · · · < yN . For x := ιS(s) ∈ R>0 define the boundary 565

points 566

mi :=
√

yiyi+1 (i = 1, . . . , N − 1), 567

and set m0 := 0, mN := +∞. Then: 568

• If mk−1 < x < mk for some k ∈ {1, . . . , N}, then ok is the unique meaning of s. 569
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• If x = mk for some k ∈ {1, . . . , N − 1}, then s has exactly two meanings, namely ok and 570

ok+1. 571

Equivalently, the map x 7→ arg mini J(x/yi) is piecewise constant on the open intervals 572

(mk−1, mk). 573

Proof. Using (3) one computes, for each i, 574

cR(s, oi) = J
(

x
yi

)
=

( x
yi
− 1
)2

2(x/yi)
=

(x − yi)
2

2xyi
. 575

Fix i ∈ {1, . . . , N − 1} and define the adjacent difference 576

∆i(x) := cR(s, oi+1)− cR(s, oi). 577

Multiplying by 2x > 0 and simplifying gives 578

2x ∆i(x) = (yi+1 − yi)
(

1 − x2

yiyi+1

)
. 579

Hence ∆i(x) = 0 if and only if x2 = yiyi+1, i.e. x = mi. Moreover, ∆i(x) > 0 when x < mi 580

and ∆i(x) < 0 when x > mi. Therefore: 581

• if x < mi then cR(s, oi) < cR(s, oi+1) (so the adjacent comparison favors oi), 582

• if x > mi then cR(s, oi+1) < cR(s, oi) (so it favors oi+1). 583

Fix k ∈ {1, . . . , N} such that mk−1 < x < mk. For every i ≤ k − 1 we have x > mi, hence 584

∆i(x) < 0, so cR(s, oi+1) < cR(s, oi). Iterating these strict inequalities yields cR(s, ok) < 585

cR(s, oi) for all i < k. For every i ≥ k we have x < mi, hence ∆i(x) > 0, so cR(s, oi+1) > 586

cR(s, oi). Iterating yields cR(s, ok) < cR(s, oj) for all j > k. Therefore ok is the unique 587

minimizer. 588

If x = mk for some k ∈ {1, . . . , N − 1}, then for every i < k we still have x > mi 589

and the costs strictly decrease up to index k, while for every i ≥ k + 1 we have x < mi 590

and the costs strictly increase from index k + 1 onward. At i = k one has ∆k(mk) = 0, i.e. 591

cR(s, ok) = cR(s, ok+1). Hence the argmin consists of exactly two meanings, {ok, ok+1}. 592

Corollary 7 (Stability away from boundaries). Under the hypotheses of Theorem 8, if mk−1 < 593

x < mk then there exists δ > 0 such that every x′ with |x′ − x| < δ satisfies mk−1 < x′ < mk and 594

hence has the same unique meaning ok. 595

Proof. Since (mk−1, mk) is open and contains x, choose δ := min{x −mk−1, mk − x}/2 > 0. 596

Then |x′ − x| < δ implies x′ ∈ (mk−1, mk), and the conclusion follows from Theorem 8. 597

Finite local resolution and discrete meaning cells. 598

The emergence of stable decision regions around geometric means (Theorem 8) pro- 599

vides a concrete realization of the Finite Local Resolution axiom of Recognition Geometry 600

[17, Axiom 4 (RG3)]. While classical geometry typically assumes the idealization of infinite 601

measurement precision, Recognition Geometry posits that local distinguishing power is 602

always finite [17, Axiom 4 (RG3)]. Our results show that, under a cost-minimization dy- 603

namic with a finite dictionary ιO(O) = {y1, . . . , yN}, this discreteness emerges naturally: 604

the continuous ratio axis R>0 is partitioned into open intervals on which the argmin is con- 605

stant, separated by the discrete boundary set of geometric means {√yiyi+1}. In particular, 606

meanings form discrete stable cells with a positive stability margin away from boundaries 607

(Corollary 7). 608
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7.4. Numerical micro-example (three-object dictionary) 609

Take O = {o1, o2, o3} with ratios y1 = 1
4 < y2 = 1 < y3 = 4, and keep S = R>0 610

with ιS = id. The boundary points are m1 =
√

y1y2 = 1
2 and m2 =

√
y2y3 = 2. Thus a 611

configuration with ratio x means o1 for 0 < x < 1
2 , means o2 for 1

2 < x < 2, and means o3 612

for x > 2 (with ties at the boundary points). 613

x cR(s, o1) cR(s, o2) cR(s, o3) meaning(s)
3

10
1

60
49
60

1369
240 o1

3
2

25
12

1
12

25
48 o2

3 121
24

2
3

1
24 o3

614

Example 5 (Mediation can sharply reduce cost in a toy case). Let a := ιS(s) = 4 and 615

c := ιO(o) = 1
4 , so the direct admissible reference cost is J(a/c) = J(16) = 225

32 . If the mediator 616

space contains a configuration m with ratio bgeo :=
√

ac = 1, then Theorem 6 gives an optimal 617

sequential cost 618

cR2◦R1(s, o) = 2 J
(√

a
c

)
= 2 J(4) =

9
4

, 619

which is strictly smaller, in accordance with Corollary 3. 620

8. Applications 621

This section records short corollaries and interpretive remarks that follow directly 622

from the formal definitions and theorems; it makes no empirical or metaphysical claims 623

beyond the stated axioms. 624

This section collects immediate, checkable consequences of the formal development. 625

Each statement below follows from earlier definitions and theorems, and no external or 626

empirical claim is being made. The meaning rule is an optimization rule (Definition 7) 627

driven by the canonical mismatch penalty J(Definition 2); the axiomatic characterization of 628

Jis classical and recorded for completeness in Appendix A. 629

8.1. Symbol grounding as a criterion 630

We treat “grounding” as an internal consistency condition in this model: a token s 631

is grounded for an object o when (i) o is a meaning of s (Definition 7) and (ii) the symbol 632

condition JS(s) < JO(o) holds (Definition 8). 633

Corollary 8 (Grounding criterion under admissible reference). Fix an admissible reference 634

structure R (Definition 6). Then, for s ∈ S and o ∈ O, 635

(s, o) is a symbol (Definition 8) ⇐⇒ o ∈ MeanR(s) and JS(s) < JO(o). 636

Proof. This is immediate from Definition 8 and Definition 7. 637

Corollary 9 (Grounding rule for finite object dictionaries). Assume the finite-dictionary 638

hypotheses of Theorem 8. As the configuration ratio x = ιS(s) varies, the meaning set MeanR(s) 639

is piecewise constant: it is a singleton on each interval (mi−1, mi) and can change only at the 640

geometric-mean boundaries mi =
√

yiyi+1. In particular, away from the boundaries the meaning is 641

stable under small perturbations (Corollary 7). 642

Proof. Immediate from Theorem 8 and Corollary 7. 643
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8.2. Mathematical effectiveness via low-cost primitives 644

The next corollary records a purely internal “near-balance” restriction: if a config- 645

uration has small intrinsic cost, then any of its meanings must lie in the corresponding 646

low-mismatch window determined by the sublevel sets of J. 647

Corollary 10 (Near-balance restricts possible referents). Assume R is admissible and that the 648

hypotheses of Theorem 4 hold. If s ∈ S satisfies JS(s) ≤ ϵ, and if o is a meaning of s, then 649

J
(

ιS(s)
ιO(o)

)
≤ ϵ, 650

so ιO(o) must lie in the corresponding bounded sublevel window determined by ϵ (as in Theorem 4). 651

Proof. This is a direct restatement of Theorem 4. 652

Remark 2 (Compositional “range expansion” (model-dependent)). In a continuous ratio 653

model where ratios can be realized densely (e.g. S = O = R>0 with ι = id as in Proposition 6), 654

large mismatches can be decomposed into many small mismatches: write a target ratio r = et
655

as a product r = (et/k)k. Since J(eu) = cosh(u)− 1 → 0 as u → 0, choosing k large makes 656

each primitive step low-cost. Coupled with the compositionality results (Theorem 5) and optimal 657

mediation (Corollary 3), this shows that, in the continuous ratio model, large ratios can be factored 658

into many small-ratio steps, each incurring small mismatch cost. This is an interpretive program; 659

empirical relevance depends on what ratios are actually realizable in the intended application domain. 660

8.3. Information-theoretic interpretation 661

Although our framework is stated in intrinsic-cost terms, the canonical mismatch 662

penalty admits a simple log-ratio form. We record the identity as a proposition; any further 663

links to coding/learning are interpretive and not used in the proofs. 664

Proposition 7 (Log-ratio form of the canonical mismatch cost). For x > 0 write x = et. Then 665

the canonical cost satisfies 666

J(x) = J(et) = cosh(t)− 1. 667

In particular, J is a convex even function of the log-ratio t = log x and vanishes exactly at t = 0. 668

Proof. Substitute x = et into J(x) = 1
2 (x + x−1)− 1 (Definition 2). 669

9. Related work and positioning 670

This section places the framework in context, highlighting connections to aboutness in 671

formal semantics, truthmaker-style ideas, and compression-based modeling, and clarifying 672

what is new in the present optimization-based formulation. 673

Relation to Recognition Geometry. 674

Recognition Geometry [17] develops an axiomatic recognition-first framework in 675

which observable space is derived from recognition events via an operational quotient 676

construction. While the present paper does not attempt to construct an ambient geometry, it 677

shares the same operational posture: the fundamental primitive is a measurable comparison 678

(here the mismatch cost), and the induced semantic categories are those determined by 679

minimizing or equating that comparison. The comparative-recognizer formalism of [17] 680

provides a natural abstract home for the reference costs used here; we make this link explicit 681

in Section 3. 682
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This section positions the paper relative to standard themes in semantics and infor- 683

mation theory. We do not present the mismatch penalty as novel: the axiom package in 684

Definition 1 is a convenient specification whose solutions are classical (Appendix A). The 685

contribution of the paper is instead the explicit optimization semantics (Definition 7) and the 686

structural theorems derived from it (existence, stability geometry, compositionality, and 687

mediation). 688

Symbol grounding and operational meaning rules. 689

The symbol grounding problem concerns how tokens acquire meaning without a 690

homunculus [4]. The present work is compatible with grounding motivations, but it is 691

formulated as a mathematical model: the meaning of s is defined as an argmin under an explicit 692

cost. Any interpretation as a cognitive mechanism requires extra hypotheses beyond those 693

stated. 694

Compression principles. 695

The general idea that effective representations trade off succinctness and fidelity is 696

classical in information theory (Shannon [5]) and in algorithmic notions of complexity 697

[6]; MDL makes this tradeoff concrete in model selection [7]. Our setup uses a different 698

primitive: a ratio map ι into R>0 and a fixed mismatch penalty J, with compression enforced 699

by the symbol condition JS(s) < JO(o). Within this model, reference and compositional 700

behavior become theorem-level consequences. 701

Remark 3 (Coding/learning viewpoint). In coding theory and learning, one often selects 702

representations by minimizing a tradeoff between description length and distortion (e.g. Shannon 703

[5] and MDL [7]). Our framework instantiates a specific distortion—J(ιS(s)/ιO(o))—that is 704

symmetric in under-/over-shooting and naturally expressed in log-scale (Proposition 7). This 705

suggests interpreting meanings as “best matches” under a fixed mismatch penalty, with compression 706

enforced by the symbol condition JS(s) < JO(o). 707

Subject-matter/aboutness and truthmaker-semantics literature. 708

There is a substantial contemporary literature on "aboutness"/"subject matter" in 709

semantics and logic, including Yablo’s monograph [11] and subsequent discussion and 710

refinements (e.g. Rothschild [13], Fine [14], and Yablo’s reply [15]); see also Hawke’s survey 711

[12]. Related frameworks connect hyperintensional content with truthmakers/truthmaker 712

semantics (e.g. Fine [16]). The present paper does not attempt to adjudicate between these 713

accounts. Rather, it provides an explicit optimization layer which, once a modeling choice 714

of scale maps is made, selects a subject matter/referent by minimizing a mismatch cost. 715

Novelty signal and conceptual payoff. 716

Many of the analytic lemmas are consequences of the specific penalty J and convexity. 717

The intended novelty is the resulting checkable decision geometry and compositional calculus 718

for meanings: finite dictionaries induce geometric-mean boundaries and stability margins, 719

product models factorize exactly, and sequential mediation admits an explicit optimizer. 720

These consequences are the main mathematical payoffs of the framework, and they make 721

clear which modeling assumptions (the scale maps and admissibility hypotheses) must be 722

checked in any intended application. 723

What is mathematically concrete here. 724

Two examples of explicit structure are: (i) for finite object dictionaries under the 725

canonical mismatch penalty, decision boundaries occur at geometric means (Theorem 8) 726

and meanings are locally stable away from them (Corollary 7); (ii) for sequential mediation, 727
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the optimal intermediate ratio is explicit (Theorem 6) and strictly improves over direct 728

reference when the mediator set contains the balance point (Corollary 3). 729

Interpretation layer. 730

Sections 8 and 10 illustrate how the proved statements can be read once a modeling 731

choice for ι is fixed. These illustrations are optional: removing them does not affect the 732

correctness of the theorems. 733

10. Discussion 734

This section clarifies scope and interpretation: which parts are mathematical conse- 735

quences of the axioms, which parts are modeling choices, and what additional assumptions 736

would be needed to connect the formalism to empirical systems. 737

This section clarifies scope: which statements are proved inside the model and which 738

statements are interpretation. It also records limitations and concrete mathematical exten- 739

sions. 740

10.1. What is proved vs. what is modeled 741

The core mathematical content consists of the definitions and theorems in Sections 2–7. 742

In particular, meaning is defined by optimization (Definition 7); existence is conditional on 743

an attainment hypothesis (Theorem 2); and explicit geometry, stability, compositionality, 744

and mediation statements follow for admissible reference structures and the canonical 745

mismatch penalty (Theorems 8, 5, 6). 746

By contrast, any claim that a given real-world domain does admit a scale map ι with the 747

required properties, or that agents compute meaning by solving the optimization problem, 748

is an interpretation and is outside the theorem-level scope of this paper. 749

10.2. Limitations 750

1. Ratio embedding: Our framework requires configurations to embed into R>0 via a 751

ratio map. Not all semantic domains naturally admit such embeddings. 752

2. Single penalty: We work with the canonical mismatch penalty J. Alternative penalties 753

may be appropriate in domains where under- and over-shooting are not symmetric. 754

3. Static analysis: The theory is synchronic. Incorporating learning or time-evolution 755

requires additional structure (e.g., dynamics for ι or for admissible reference classes). 756

10.3. Open problems 757

To make the forward-looking agenda explicit, we record a few concrete open problems 758

aligned with the motivation above. 759

1. Penalty universality beyond d’Alembert. Identify alternative axiom packages 760

(weaker than Definition 1(4)) that still force a small, classifiable family of penal- 761

ties, and determine which decision-geometry and compositionality results remain 762

valid. 763

2. Structure of argmin ties. Characterize, in terms of ιO(O) and J, when the meaning set 764

Mean(s) is multi-valued and how tie sets propagate under products and sequential 765

mediation. 766

3. Stability under perturbations of ι. Quantify how errors in the scale maps affect 767

decision boundaries and compositionality: derive uniform Lipschitz/margin bounds 768

in log-space over admissible reference classes. 769
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10.4. Future Directions 770

1. Broader admissible reference. Classify reference structures beyond the ratio-induced 771

form (Definition 6) for which analogues of the stability and compositionality theorems 772

remain true. 773

2. Multi-dimensional ratios. Extend the decision-geometry and boundary descriptions 774

to ι : C → (R>0)
d with non-separable penalties, and quantify how coupling between 775

coordinates affects stability margins. 776

3. Learning the scale map. Given data of successful/unsuccessful references, formulate 777

and analyze estimation procedures for ι (and admissible reference parameters) that 778

preserve the proved invariances. 779

11. Conclusion 780

This section summarizes the contributions and limitations of the model and records a 781

few directions for refinement and application within the axioms fixed above. 782

We have developed a mathematical model of reference grounded in cost minimization. 783

The theorem-level contributions are internal to the stated axioms and hypotheses. 784

We summarize the main points: 785

1. Reference as compression: Symbols are low-cost encodings of high-cost objects. 786

2. Canonical mismatch geometry: The canonical penalty J(x) = 1
2 (x + x−1)− 1 yields 787

explicit decision boundaries and stability regions for finite dictionaries (Theorem 8). 788

3. Universal backbone: Near-balanced configurations provide a provable backbone 789

window around balance under admissible reference (Theorem 4). Global descriptive 790

reach is obtained by composing many such low-cost primitives (Section 5). 791

4. Compositionality: Reference structures compose via products and sequences. 792

The framework connects a simple optimization semantics with explicit geometric and 793

compositional structure. Any application to a specific empirical domain requires specifying 794

an appropriate scale map ι and verifying that the admissibility assumptions reasonably 795

match that domain. 796
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Appendix A. Classical characterization of the mismatch penalty 807

This appendix records a classical functional-equation characterization showing that 808

the explicit mismatch penalty used in the paper is essentially forced (up to scale) by the 809

stated axioms. 810

We prove Proposition 2. The underlying functional-equation step is classical; see, 811

for example, Aczél [8] or Kuczma [9]. We include the argument here to keep the paper 812

self-contained and to clarify that the mismatch penalty is not introduced as a new object. 813
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Lemma A1 (Convexity implies continuity). Let I ⊂ R be an open interval and let g : I → R be 814

finite-valued and convex. Then g is continuous on I. (See, e.g., Rockafellar [10, Thm. 10.1].) 815

We apply this standard convexity fact to the mismatch penalty to obtain the regularity 816

needed for the functional-equation classification. 817

Lemma A2 (Regularity for the log-transformed d’Alembert equation). Assume J satisfies 818

Definition 1. Define C : (0, ∞) → R by C(x) := 1 + J(x) and f : R → R by f (u) := C(eu). 819

Then f is continuous, satisfies 820

f (u + v) + f (u − v) = 2 f (u) f (v) (u, v ∈ R), 821

and obeys f (0) = 1. In particular, the hypotheses of Lemma A3 (and of the classical theorems of 822

Acz’el and Kuczma) apply to f . 823

Proof. By strict convexity (Definition 1(3)), J is convex and finite-valued on (0, ∞), hence 824

continuous by Lemma A1; therefore C = 1 + J and f (u) = C(eu) are continuous. The 825

multiplicative identity in Definition 1(4) is equivalent to (A1) for C, and substituting x = eu, 826

y = ev yields the displayed d’Alembert equation for f . Finally f (0) = C(1) = 1 by 827

normalization. 828

Lemma A3 (Continuous solutions of d’Alembert’s equation). Let f : R → R be continuous 829

and satisfy 830

f (t + s) + f (t − s) = 2 f (t) f (s) (t, s ∈ R), 831

with f (0) = 1. Then either f ≡ 1, or there exists a > 0 such that f (t) = cos(at) for all t ∈ R, or 832

there exists a > 0 such that f (t) = cosh(at) for all t ∈ R. 833

Proof. This classification is classical; see Aczél [8, Ch. 2] or Kuczma [9, Ch. 13]. 834

Proof of Proposition 2. Let J satisfy Definition 1. Define 835

C(x) := 1 + J(x) (x > 0). 836

Then (2) is equivalent to the multiplicative identity 837

C(xy) + C(x/y) = 2C(x)C(y) (x, y > 0). (A1) 838

Define f : R → R by f (t) := C(et). By Lemma A2, f is continuous. Substituting x = et and 839

y = es into (A1) yields d’Alembert’s functional equation 840

f (t + s) + f (t − s) = 2 f (t) f (s) (t, s ∈ R). (A2) 841

Moreover, f (0) = C(1) = 1 and f (t) ≥ 1 for all t since J ≥ 0. 842

By Lemma A3, the continuous solutions of (A2) with f (0) = 1 are f ≡ 1, f (t) = 843

cos(at), or f (t) = cosh(at) (for some a > 0, with the constant solution corresponding to 844

a = 0). The constraint f (t) ≥ 1 rules out the cosine family unless a = 0, and strict convexity 845

rules out the constant solution. Hence there exists a > 0 such that f (t) = cosh(at) for all t. 846

Undoing the change of variables gives 847

C(x) = f (log x) = cosh(a log x), x > 0, 848
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and therefore 849

J(x) = C(x)− 1 = cosh(a log x)− 1 = 1
2
(
xa + x−a)− 1. 850

Finally, note that 851

cosh(a log(ιS/ιO))− 1 = cosh
(

log((ιS)a/(ιO)a)
)
− 1, 852

so replacing ιS, ιO by ι̃S := ιaS and ι̃O := ιaO absorbs the parameter a into the scale maps and 853

produces the normalized choice a = 1 at the level of ratio-induced reference costs. 854
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