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Abstract

We study ratio-induced mismatch cost functions of the form c(s, o) = J
(
ιS(s)/ιO(o)

)
built

from positive scale maps ιS : S → R>0 and ιO : O → R>0 and a penalty J : (0, ∞) →
[0, ∞). Assuming inversion symmetry, strict convexity, coercivity, normalization at 1, and
a multiplicative d’Alembert identity, we show that f (u) := 1 + J(eu) is continuous and
satisfies the additive d’Alembert equation; hence, by a classical classification theorem,
there exists a > 0 such that J(x) = cosh(a log x) − 1 = 1

2
(
xa + x−a) − 1, x > 0. We

then analyze the associated argmin mapping over feasible scale sets: existence under
explicit subspace-closedness assumptions, an explicit geometric-mean decision geometry
for finite dictionaries with stability away from boundaries, exact compositionality for
product models, and an optimal sequential mediation principle described by a geometric
mean (or its log-space projection when infeasible). The paper is purely mathematical; any
semantic interpretation is optional and external to theorems proved here.

Keywords: functional equations; d’Alembert equation; reciprocal convex cost; ratio-based
optimization; geometric-mean decision boundaries; compositionality; sequential mediation

MSC: Primary 39B52; 49J40; Secondary 26A51; 90C25; 94A17; 90C31

1. Introduction
This section introduces the optimization-based model of reference, fixes terminology

and standing assumptions, and outlines the main results and organization.
The paper’s goal is to make the ratio-matching paradigm mathematically explicit.

We fix ratio-induced costs of the form c(s, o) = J(ιS(s)/ιO(o)) and define meanings by
the argmin rule. The first question is structural: under inversion symmetry, convex-
ity/regularity, and a multiplicative compatibility axiom, which mismatch penalties J are
admissible, and how canonical is the resulting form? The second question is geometric:
once J is fixed, what decision boundaries and stability properties are forced for finite dictio-
naries, and how do these behave under products and sequential mediation? The intended
contribution is a self-contained set of theorems that separate what is proved inside the
axioms from any external semantic or empirical interpretation.(e.g., Wigner [1] for a classic
motivation about mathematics and empirical applicability)

We start with two sets:

• a configuration (token) space S (words, codes, internal states, messages, . . . ),
• an object space O (candidate referents, concepts, states of affairs, . . . ).

Axioms 2026, 15, 151 https://doi.org/10.3390/axioms15020151

https://crossmark.crossref.org/dialog?doi=10.3390/axioms15020151&domain=pdf&date_stamp=2026-02-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0009-0001-8868-7497
https://orcid.org/0000-0003-2829-8438
https://doi.org/10.3390/axioms15020151


Axioms 2026, 15, 151 2 of 24

Terminology.

Throughout, we use configuration (or token) for an arbitrary element s ∈ S. We reserve
the term symbol for o for a configuration s satisfying the predicate in Definition 8, i.e.,
o ∈ Mean(s) together with the compression inequality JS(s) < JO(o).

Model ingredients and notation

For quick reference, the functionals and maps used throughout are organized
as follows:

• Scale maps: ιS : S → R>0 and ιO : O → R>0.
• Mismatch penalty: J : (0, ∞) → [0, ∞) (axioms in Definition 1, explicit choice in

Definition 2).
• Reference cost: c(s, o) := J(ιS(s)/ιO(o)) (1).
• Meaning set (argmin rule): Mean(s) := arg mino∈O c(s, o) (Definition 7).
• Intrinsic costs: JS(s) and JO(o) (Definition 3); in the canonical setting these are induced

by scales via JS(s) = J(ιS(s)) and JO(o) = J(ιO(o)) (see Definition 6).
• Symbol predicate: s is a symbol for o if o ∈ Mean(s) and the compression inequality

JS(s) < JO(o) holds (Definition 8).

Each space is equipped with a positive scale map ιS : S → R>0 and ιO : O → R>0,
interpreted as an intrinsic “size/complexity” in a common currency. A cost functional
J : (0, ∞) → [0, ∞) is fixed with the properties stated in Section 2 (symmetry under
inversion, strict convexity, and a unique minimum at 1). We then define a ratio-induced
reference cost

c(s, o) := J
(

ιS(s)
ιO(o)

)
, (s, o) ∈ S × O. (1)

Meaning as minimization.

The meaning set of a configuration s is the set of objects achieving minimal cost:

Mean(s) := arg min
o∈O

c(s, o).

Equivalently, o ∈ Mean(s) iff c(s, o) ≤ c(s, o′) for all o′ ∈ O (Definition 7). Ties are allowed:
meaning is set-valued unless uniqueness is proved under additional hypotheses.

Interpretive content (and its limits).

Because J is minimized at 1, low reference cost forces scale matching: a configuration
can only refer cheaply to objects whose scale is close to its own. This yields an explicit,
checkable constraint on admissible reference patterns. The framework is deliberately
axiomatic: the scale maps and the chosen J are inputs.

1.1. A Toy Example: Three-Object Dictionary

Let O = {o1, o2, o3} with scales yi := ιO(oi) satisfying 0 < y1 < y2 < y3. For a
configuration s with scale x := ιS(s), the meaning rule compares the three costs J(x/yi). For
the explicit functional (3), the boundary between preferring o1 and o2 occurs at the geometric
mean

√
y1y2, and similarly between o2 and o3 at

√
y2y3 (Theorem 8). Thus, the model

induces a piecewise-constant semantic partition of the positive line in the configuration
ratio x, with stability away from the boundary points.

1.2. Relation to Prior Work

Classical analyses of reference emphasize logical form and truth conditions (e.g., Frege
and Russell) [2,3]. The symbol-grounding literature highlights that purely formal symbol
manipulation does not by itself determine what symbols are about [4]. The present paper
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does not attempt to resolve these debates empirically. Instead, it isolates a mathemati-
cally tractable selection principle: aboutness is determined by minimizing an explicit mis-
match cost. For comparison with contemporary subject matter/aboutness and truthmaker-
semantics accounts (e.g., Yablo [5], Hawke [6], and the Philosophical Studies symposium
discussion [7–9]), see Section 9. The intended payoff is that, once scales are fixed, aboutness
becomes a tractable variational problem with explicit decision boundaries and composition
theorems.

This paper adopts an optimization-first viewpoint: once a mismatch cost is fixed,
semantic meaning is defined by an argmin rule (Definition 7). A closely related measurement-
first stance appears in Recognition Geometry [10], which takes recognition events as primitive
and derives observable space as a quotient under an operational indistinguishability
relation ([10], Def. 4). In the same spirit, the present framework treats mismatch costs
as primitive measurements and regards stable meanings as effective equivalence classes of
cost minimization events. Both viewpoints emphasize operationally defined structure over a
priori metaphysical commitments, and both isolate exactly which axioms must be validated
when connecting the formalism to an empirical domain.

1.3. Contributions and What Is Proved

Within the ratio-induced model (1) (and the explicit choice (3) used throughout), we
establish the following structural facts under clearly stated hypotheses:

• Existence. If the feasible scale set ιO(O) ⊂ R>0 is nonempty and closed in the usual
topology on (0, ∞) and if the minimum is attained (as made precise in Theorem 2),
then every configuration admits at least one meaning.

• Finite-dictionary decision geometry. For finite ordered dictionaries, decision bound-
aries are given by geometric means of adjacent object scales, and meanings are locally
stable away from these boundaries (Theorem 8 and Corollary 7).

• Compositionality. For product symbol/object spaces with separable scales, meaning
factorizes componentwise (Theorem 5).

• Mediation. For sequential reference through an intermediate representation, the set of
optimal mediator ratios is characterized explicitly in log-coordinates; and whenever
the balance-point ratio bgeo is feasible, mediation weakly decreases the total mismatch
cost relative to direct reference (Theorem 6 and Corollary 3).

1.4. Organization

Section 2 states the axioms for J and fixes the explicit mismatch functional (3). Section 3
defines costed spaces, ratio-induced reference, and the meaning relation. Section 4 contains
the principal theorems, followed by compositionality (Section 5), extensions, and examples.

2. The Mismatch Functional J
This section fixes the scalar mismatch functional J : (0, ∞) → [0, ∞) used throughout

to compare configuration and object scales via the ratio-induced cost (1). The role of J
here is purely mathematical: it is an explicit penalty for scale mismatch, and no physical,
cognitive, or linguistic interpretation is assumed.

2.1. Standard Properties and Canonicity

The conditions below are recorded as a compact axiom package for the mismatch
penalty. They encode inversion symmetry, strict convexity, and a multiplicative compati-
bility under scale multiplication. After a log change of variables, the compatibility axiom
becomes d’Alembert’s functional equation, so the resulting class of penalties is classical.
We include a tailored derivation in Appendix A to keep the paper self-contained and to
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emphasize that the axioms are used only as mathematical assumptions, not as a claim
of novelty.

Definition 1 (Cost Functional Axioms). A mismatch functional is a function J : (0, ∞) →
[0, ∞) satisfying:

1. Normalization: J(1) = 0.
2. Strict convexity: J is strictly convex on (0, ∞).
3. Multiplicative d’Alembert identity: for all x, y > 0,

J(xy) + J(x/y) = 2J(x) + 2J(y) + 2J(x)J(y). (2)

The d’Alembert identity (2) is the dominant structural constraint. Inversion symmetry is not
assumed as an axiom; it is derived from (2) and normalization in Lemma 1. We invoke strict
convexity only in statements where uniqueness is required; existence and attainment statements are
formulated without using strict convexity.

Lemma 1 (Derived inversion symmetry). Assume J satisfies normalization J(1) = 0 and the
multiplicative d’Alembert identity (2). Then for every x > 0 one has J(x) = J(x−1).

Proof. Set y = 1 in (2). Using J(1) = 0, obtain

J(x) + J(x−1) = 2J(x) + 2J(1) + 2J(x)J(1) = 2J(x),

hence J(x−1) = J(x).

First, record a basic consequence used repeatedly: under strict convexity, the normalization point
x = 1 is the unique zero of J.

Lemma 2 (Uniqueness of the zero-cost point). If J satisfies Definition 1, then J(x) = 0 implies
x = 1.

Proof. By (2) and (1), J attains its minimum value 0 at x = 1. By strict convexity (3), the
minimizer is unique. Hence J(x) = 0 forces x = 1.

2.2. The Explicit Choice Used in This Paper

Definition 2 (The functional fixed below). In the remainder of this paper, we fix the explicit
functional

J(x) = 1
2 (x + x−1)− 1 = (x−1)2

2x (x > 0). (3)

The next proposition verifies that the explicit functional indeed satisfies the axioms, so
subsequent sections can treat Definition 1 as established.

Proposition 1 (Verification of the axioms). Function (3) satisfies Definition 1.

Proof. Normalization and inversion symmetry are immediate from (3), and (3) shows
J(x) ≥ 0 for all x > 0. Differentiating J(x) = 1

2 (x + x−1)− 1 gives

J′(x) = 1
2 − 1

2x2 , J′′(x) = 1
x3 > 0 (x > 0),

so J is strictly convex on (0, ∞). For (4), set C(x) = 1 + J(x) = 1
2 (x + x−1). Then

C(xy) + C(x/y) = 1
2

(
xy + 1

xy + x
y + y

x

)
= 1

2
(
x + 1

x
)(

y + 1
y
)
= 2C(x)C(y),
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which is equivalent to (2) after substituting C = 1 + J and expanding.

Proposition 2 (Classical characterization of J). Assume J : (0, ∞) → [0, ∞) satisfies Defini-
tion 1. Then there exists a constant a > 0 such that for all x > 0,

J(x) = cosh(a log x)− 1 = 1
2
(
xa + x−a)− 1.

Moreover, if we replace the scale maps by ι̃S := ιaS and ι̃O := ιaO, then the ratio-induced model with
parameter a becomes the same model written with parameter 1. Consequently, one may take a = 1
without loss of generality at the level of the induced reference costs.

Proof. See Appendix A.

Example 1 (Small-mismatch regime). For |u| ≪ 1, one has

J(1 + u) =
u2

2
+ O(u3),

so near balance the mismatch cost behaves like a quadratic penalty in the relative deviation.

3. Costed Spaces and Reference Structures
We now formalize the axioms of the model introduced in Section 1. Throughout, the

mismatch functional J is fixed as in Section 2. The intent is to make precise which pieces of
data are inputs (configuration/object spaces and their scale maps) and which pieces are
derived (reference costs and meaning).

3.1. Costed Spaces

Definition 3 (Costed space). Fix a mismatch functional J : (0, ∞) → [0, ∞) (Section 2). A
costed space is a triple (C, JC, ιC) consisting of

• a set C of configurations,
• a map ιC : C → R>0 called the scale map,
• a cost function JC : C → R≥0 satisfying JC(c) = J(ιC(c)) for all c ∈ C.

Equivalently, once ιC is fixed, JC is determined by J; we retain JC in the notation since later
statements compare configuration costs and object costs directly.

Notation 1. We write S = (S, JS, ιS) for a configuration (token) costed space and O = (O, JO, ιO)

for an object costed space.
Throughout, we identify R>0 with (0, ∞) and equip R>0 (and (R>0)

d) with the usual
Euclidean topology on (0, ∞) (equivalently, the Euclidean subspace topology inherited from R).
Accordingly, when we say that a set Y ⊂ R>0 is closed, we mean closed in the usual topology
on (0, ∞) (equivalently, Y = (0, ∞) ∩ F for some closed F ⊂ R). Likewise, for Y ⊂ (R>0)

d the
term closed means closed in the usual topology on (0, ∞)d.

Example 2 (Ratio space). The canonical example is C = R>0 with ιC = id and JC = J.

The next example isolates a small neighborhood of the balanced point; it serves as a
convenient test class for stability statements.

Example 3 (Near-balanced configurations). For ϵ > 0, let Cϵ := {x ∈ R>0 : |x − 1| < ϵ}.
Then every c ∈ Cϵ satisfies JC(c) = J(c) < J(1 + ϵ).
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3.2. Reference Structures

Definition 4 (Reference structure). A reference structure from S to O is a function

cR : S × O → R≥0, (4)

called the reference cost. It assigns to each pair (s, o) the cost of using s to refer to o.

In the remainder of the paper, we focus on the ratio-induced costs generated by J and the
scale maps.

Definition 5 (Ratio-induced reference). Given scale maps ιS and ιO, the ratio-induced reference
structure is defined by

cJ
R(s, o) := J

( ιS(s)
ιO(o)

)
. (5)

This is the cost used in the Introduction (Equation 1).

Link to comparative recognizers.

The ratio-induced reference cost (5) can be viewed as a specific instantiation of a
comparative recognizer in the sense of Recognition Geometry ([10], Axiom 5 (RG4)). In
that framework, a comparative recognizer maps pairs of configurations to an event space
([10], Axiom 2 (RG1)) so as to induce comparative structure (order/distance) from ob-
servable events. Here, the “event” is the scalar mismatch value J(ιS(s)/ιO(o)), and the
induced indistinguishability relation ([10], Def. 4) corresponds to the zero-cost condition
J(ιS(s)/ιO(o)) = 0, which forces exact scale match ιS(s) = ιO(o) by Lemma 2.
The following admissibility condition specifies when the reference cost is exactly the
canonical ratio penalty.

Definition 6 (Admissible reference structure). A reference structure R from S to O is called
admissible (with respect to J and the scale maps ιS, ιO) if it is ratio-induced, i.e.,

cR(s, o) = J
( ιS(s)

ιO(o)

)
∀(s, o) ∈ S × O. (6)

Unless stated otherwise, we work with admissible reference structures.

Admissibility transfers the symmetry properties of Jto the reference cost; we record this for
later use.

Proposition 3 (Inversion symmetry of the reference cost). If R is admissible, then for all
(s, o) ∈ S × O one has

cR(s, o) = J
( ιS(s)

ιO(o)

)
= J
( ιO(o)

ιS(s)

)
.

Proof. Immediate from admissibility and inversion symmetry J(x) = J(x−1) (Lemma 1).

3.3. Meaning and the Symbol Predicate

Definition 7 (Meaning). Let R be a reference structure from S to O. A configuration s ∈ S
means an object o ∈ O, written MeanR(s, o), if o minimizes the reference cost among all objects:

MeanR(s, o) ⇐⇒ ∀o′ ∈ O, cR(s, o) ≤ cR(s, o′). (7)

https://doi.org/10.3390/axioms15020151
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For each s ∈ S, we write

MeanR(s) := {o ∈ O : MeanR(s, o)}

for the (possibly multi-valued) meaning set. If R is admissible, then equivalently

MeanR(s) = arg min
o∈O

J
( ιS(s)

ιO(o)

)
.

Definition 8 (Symbol). Let R be a reference structure from S to O. A configuration s ∈ S is a
symbol for an object o ∈ O (relative to R) if

1. Reference: MeanR(s, o).
2. Compression: JS(s) < JO(o).

The compression requirement is a modeling assumption: it enforces that symbols
are lower-cost encodings than their referents in the common currency induced by J. No
empirical interpretation is asserted; the condition is simply part of the definition used in
later results.

4. Main Theorems
This section collects the main mathematical consequences of the ratio-induced refer-

ence model. Throughout, we fix the explicit mismatch functional

J(x) =
(x − 1)2

2x
= 1

2
(
x + x−1)− 1 (x > 0) (8)

which satisfies Definition 1, and we assume the reference structure is admissible:

cR(s, o) = J
(

ιS(s)
ιO(o)

)
. (9)

Thus, for each s ∈ S, the meaning set MeanR(s) is the set of minimizers of o 7→
J(ιS(s)/ιO(o)).

4.1. Sublevel Geometry of the Explicit Mismatch Cost

Lemma 3 (Sublevel intervals). Assume J is given by (3) (equivalently (8)). For each ϵ > 0, the
sublevel set

Lϵ := {x ∈ R>0 : J(x) ≤ ϵ}

coincides with the closed interval [aϵ, bϵ], where

bϵ := (1 + ϵ) +
√

ϵ(2 + ϵ), aϵ := (1 + ϵ)−
√

ϵ(2 + ϵ) =
1
bϵ

.

Proof. Using J(x) = (x−1)2

2x , the inequality J(x) ≤ ϵ is equivalent (after multiplying by
2x > 0) to

(x − 1)2 ≤ 2ϵx ⇐⇒ x2 − 2(1 + ϵ)x + 1 ≤ 0.

The quadratic has discriminant ∆ = 4ϵ(2 + ϵ) and roots x± = (1 + ϵ)±
√

ϵ(2 + ϵ). Since
it opens upward, the inequality holds exactly for x ∈ [x−, x+]. Set aϵ := x− and bϵ := x+.
Then aϵbϵ = (1 + ϵ)2 − ϵ(2 + ϵ) = 1, so aϵ = 1/bϵ.
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4.2. Meaning Constraints from a Balanced Baseline

Theorem 1 (Scale window for meanings of low-cost configurations). Assume 1 ∈ Y :=
ιO(O) and choose o0 ∈ O with ιO(o0) = 1. Let s ∈ S and let o ∈ MeanR(s). Then

cR(s, o) ≤ cR(s, o0) = J(ιS(s)) = JS(s). (10)

In particular, for every ϵ > 0, if JS(s) ≤ ϵ then

ιS(s)
ιO(o)

∈ [aϵ, bϵ] (11)

and hence
ιS(s)

bϵ
≤ ιO(o) ≤

ιS(s)
aϵ

, (12)

where [aϵ, bϵ] is as in Lemma 3.

Proof. Since o ∈ MeanR(s), by definition cR(s, o) ≤ cR(s, o0). By admissibility (9) and
ιO(o0) = 1, cR(s, o0) = J(ιS(s)) = JS(s), which gives (10). If JS(s) ≤ ϵ, then (10) implies
J(ιS(s)/ιO(o)) ≤ ϵ, hence (11) by Lemma 3. Rearranging yields (12).

Corollary 1 (Near-balanced configurations force near-balanced meanings). Under the hy-
potheses of Theorem 1, if JS(s) ≤ ϵ and o ∈ MeanR(s), then

ιO(o) ∈
[ 1

b2
ϵ

, b2
ϵ

]
.

In particular, as ϵ ↓ 0, any meaning of an ϵ-cheap symbol must satisfy ιO(o) → 1.

Proof. From JS(s) = J(ιS(s)) ≤ ϵ and Lemma 3, we have ιS(s) ∈ [aϵ, bϵ]. Combining this
with (12) and aϵ = 1/bϵ gives the stated bounds.

4.3. Existence of Meanings Under Attainment Hypotheses

Lemma 4 (Coercivity of J). Assume J is given by (3). Then J(x) → ∞ as x → 0+ and as x → ∞.
In particular, for each M ≥ 0 the sublevel set {x ∈ R>0 : J(x) ≤ M} is compact in R.

Proof. From (8), J(x) = 1
2 (x + x−1)− 1. As x → ∞ the term 1

2 x dominates, and as x → 0+

the term 1
2 x−1 dominates, so in both limits J(x) → ∞. If J(x) ≤ M then x+ x−1 ≤ 2(M+ 1),

hence both x and x−1 are bounded; the sublevel set is therefore closed and bounded away
from 0 and ∞, hence compact.

Theorem 2 (Existence of meanings for ratio-induced reference). Assume R is admissible and
that J is given by (3). Let Y := ιO(O) ⊂ R>0 be nonempty and closed in the usual topology on
(0, ∞). Then for every s ∈ S there exists o ∈ O such that MeanR(s, o) (equivalently, MeanR(s) ̸=
∅). Moreover, if x := ιS(s) ∈ Y, then any o ∈ O with ιO(o) = x is a meaning and satisfies
cR(s, o) = 0.

Proof. Fix s and set x := ιS(s). Consider f : Y → R≥0 defined by f (y) := J(x/y). The
map f is continuous. By Lemma 4, f (y) → ∞ as y → 0+ or y → ∞, so the infimum of f
over Y is achieved on a compact sublevel set. Concretely, choose a minimizing sequence
yn ∈ Y with f (yn) ↓ infY f . Coercivity implies (yn) is bounded away from 0 and ∞, hence
has a convergent subsequence; since Y is closed in (0, ∞), the limit y∗ ∈ Y, and continuity
gives f (y∗) = infY f . Choose o ∈ O with ιO(o) = y∗. Then cR(s, o) = f (y∗) ≤ f (ιO(o′)) =

https://doi.org/10.3390/axioms15020151
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cR(s, o′) for all o′ ∈ O, i.e., MeanR(s, o). If x ∈ Y, take y∗ = x; then J(x/x) = J(1) = 0, so
any o with ιO(o) = x is a meaning with zero reference cost.

Remark 1. If Y = ιO(O) is not closed in (0, ∞), the minimum need not be attained; in that case
MeanR(s) may be empty even though the infimum exists.

4.4. A Simple Total-Cost Benchmark

Theorem 3 (Balanced reference minimizes the intrinsic+reference sum). Assume admissible
reference (9) and intrinsic costs JS(s) = J(ιS(s)), JO(o) = J(ιO(o)). Define

C(s, o) := JS(s) + JO(o) + cR(s, o).

Then C(s, o) ≥ 0 for all (s, o) ∈ S × O, and

C(s, o) = 0 ⇐⇒ ιS(s) = 1 and ιO(o) = 1.

In particular, if there exist s0 ∈ S and o0 ∈ O with ιS(s0) = ιO(o0) = 1, then (s0, o0) is a global
minimizer of C over S × O.

Proof. Each term in C is nonnegative, hence C ≥ 0. If C(s, o) = 0, then all three terms
vanish; by Lemma 2 this forces ιS(s) = ιO(o) = 1. The converse is immediate from
J(1) = 0.

4.5. A Backbone Window for Near-Balanced Configuration Classes

Definition 9 (Referential capacity). Given a reference structure R from S to O, define the
referential capacity to be

Cap(S ,O;R) :=
∣∣{o ∈ O : ∃s ∈ S with o ∈ MeanR(s)}

∣∣.
(If O is infinite, this cardinality may be infinite.)

We now show that restricting to near-balanced configurations forces all attainable meanings
to lie in an explicit scale window.

Theorem 4 (Backbone window for near-balanced configurations). Let Sδ = (Sδ, Jδ, ιδ) be the
near-balanced ratio space

Sδ := {x ∈ R>0 : |x − 1| < δ}, ιδ = id, Jδ = J|Sδ
.

Let O = (O, JO, ιO) be a costed space such that Y := ιO(O) ⊂ R>0 is nonempty, closed in the
usual topology on (0, ∞), and contains 1. Assume R is admissible and J is given by (3).

Set ϵδ := J(1 + δ) and let [aϵδ
, bϵδ

] be as in Lemma 3. Define the window

Iδ :=
[

1 − δ

bϵδ

,
1 + δ

aϵδ

]
.

Then

1. For every s ∈ Sδ the meaning set MeanR(s) is nonempty.
2. If s ∈ Sδ and o ∈ MeanR(s), then ιO(o) ∈ Iδ. Equivalently, if ιO(o) /∈ Iδ, then no s ∈ Sδ

can mean o under admissible reference.

In particular,
Cap(Sδ,O;R) ≤

∣∣{o ∈ O : ιO(o) ∈ Iδ}
∣∣.
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Proof. (1) is a direct application of Theorem 2 to the closed (in (0, ∞)) nonempty set Y.
For (2), fix s ∈ Sδ and write x := ιδ(s) ∈ (1 − δ, 1 + δ). Let o ∈ MeanR(s) and choose

o0 ∈ O with ιO(o0) = 1 (possible since 1 ∈ Y). By Theorem 1,

J
(

x
ιO(o)

)
= cR(s, o) ≤ cR(s, o0) = J(x) ≤ J(1 + δ) = ϵδ.

Applying Lemma 3 gives x/ιO(o) ∈ [aϵδ
, bϵδ

], hence

x
bϵδ

≤ ιO(o) ≤
x

aϵδ

.

Using x ∈ [1 − δ, 1 + δ] yields ιO(o) ∈ Iδ.
For the capacity bound, any object counted in Cap(Sδ,O;R) lies in MeanR(s) for

some s ∈ Sδ, hence satisfies ιO(o) ∈ Iδ by (2).

5. Compositionality
This section records two elementary composition mechanisms for reference costs: (i)

product composition (independent coordinates) and (ii) sequential mediation through an
intermediate space. Both are purely variational constructions: they introduce no semantic
primitive beyond the cost function(s).

5.1. Product Reference and Coordinatewise Meaning

Definition 10 (Product reference). Let R1 be a reference structure from a configuration (token)
set S1 to an object set O1, and let R2 be a reference structure from a configuration (token) set S2 to
an object set O2. Write their costs as cRi . The product reference structure R1 ⊗R2 : S1 × S2 →
O1 × O2 is defined by

cR1⊗R2

(
(s1, s2), (o1, o2)

)
:= cR1(s1, o1) + cR2(s2, o2). (13)

With the product cost in hand, meaning decomposes coordinatewise; the next theorem
makes this precise.

Theorem 5 (Compositionality of product meaning). For any reference structures R1,R2 and
their product R1 ⊗R2, and for every (s1, s2) ∈ S1 × S2, the meaning set in the product structure
factorizes as the Cartesian product

MeanR1⊗R2(s1, s2) = MeanR1(s1)× MeanR2(s2).

Equivalently, viewing meaning as a relation MeanRi ⊆ Si ×Oi, one has equality of relations inside
(S1 × S2)× (O1 × O2):

MeanR1⊗R2 = MeanR1 × MeanR2 ,

where the right-hand side denotes the Cartesian product relation.

Proof. Fix (s1, s2) ∈ S1 × S2 and write

A := MeanR1⊗R2(s1, s2) ⊆ O1 × O2, Ai := MeanRi (si) ⊆ Oi(i = 1, 2).

By definition of the product reference structure, for every (o′1, o′2) ∈ O1 × O2,

cR1⊗R2

(
(s1, s2), (o′1, o′2)

)
= cR1(s1, o′1) + cR2(s2, o′2).
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Inclusion A ⊆ A1 × A2. Let (o1, o2) ∈ A. Then for all (o′1, o′2) ∈ O1 × O2,

cR1(s1, o1) + cR2(s2, o2) ≤ cR1(s1, o′1) + cR2(s2, o′2).

Specializing to o′2 = o2 gives, for all o′1 ∈ O1,

cR1(s1, o1) ≤ cR1(s1, o′1),

so o1 ∈ A1. Similarly, specializing to o′1 = o1 gives o2 ∈ A2. Hence (o1, o2) ∈ A1 × A2.

Inclusion A1 × A2 ⊆ A. Let o1 ∈ A1 and o2 ∈ A2. Then for all o′1 ∈ O1 and all o′2 ∈ O2,

cR1(s1, o1) ≤ cR1(s1, o′1), cR2(s2, o2) ≤ cR2(s2, o′2).

Adding yields, for all (o′1, o′2) ∈ O1 × O2,

cR1(s1, o1) + cR2(s2, o2) ≤ cR1(s1, o′1) + cR2(s2, o′2),

which is exactly the defining inequality for (o1, o2) ∈ A in the product structure. Thus
A1 × A2 ⊆ A. Combining the two inclusions gives A = A1 × A2, i.e., MeanR1⊗R2(s1, s2) =

MeanR1(s1)× MeanR2(s2).

Corollary 2 (Existence of product meanings under the explicit mismatch cost). Assume the
explicit mismatch cost (8) and admissible reference on each component. If, for i = 1, 2, the object
ratio set YOi := ιOi (Oi) ⊂ R>0 is nonempty and closed in the usual topology on (0, ∞), then for
every (s1, s2) ∈ S1 × S2 the product meaning set MeanR1⊗R2(s1, s2) is nonempty.

Proof. Under the stated hypotheses, Theorem 2 implies MeanRi (si) ̸= ∅ for each i. Pick
oi ∈ MeanRi (si). Then Theorem 5 yields (o1, o2) ∈ MeanR1⊗R2(s1, s2).

5.2. Sequential Mediation

Definition 11 (Sequential reference). Let R1 : S → M and R2 : M → O be reference
structures. Their sequential composition R2 ◦R1 : S → O is defined by the infimal convolution

cR2◦R1(s, o) = inf
m∈M

[
cR1(s, m) + cR2(m, o)

]
. (14)

A mediator m is optimal for (s, o) if it attains the infimum in (14).

We next compute the optimal mediator explicitly under the canonical mismatch cost.

Theorem 6 (Geometric-mean mediator for the explicit mismatch cost). Assume the explicit
mismatch functional (8) and admissible reference for R1 : S → M and R2 : M → O with scale
maps ιS, ιM, ιO. Fix s ∈ S and o ∈ O and set a := ιS(s) and c := ιO(o). Let YM := ιM(M) ⊂
R>0. Assume that YM is nonempty and closed in the usual topology on (0, ∞). Set bgeo :=

√
ac

and U := {log b : b ∈ YM} ⊂ R. Then the infimum in (14) is attained by at least one mediator
m∗ ∈ M. Moreover, a mediator m ∈ M with b := ιM(m) is optimal if and only if log b minimizes
| log b − log bgeo| over U (equivalently, b minimizes | log(b/bgeo)| over YM). If bgeo /∈ YM, write
u0 := log bgeo and let δ := dist(u0, U), where U = {log b : b ∈ YM} ⊂ R. Let u∗ ∈ U be a
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closest point to u0 (so |u∗ − u0| = δ) and set b∗ := eu∗ . Then, for the explicit cost, the constrained
optimum value admits the closed form

cR2◦R1(s, o) =
(

cosh
( 1

2 log(a/c) + δ
)
− 1
)
+
(

cosh
( 1

2 log(a/c)− δ
)
− 1
)

= 2 cosh
(

1
2 log

a
c

)
cosh(δ)− 2.

In particular, the suboptimality gap relative to the unconstrained geometric mean (i.e., relative
to δ = 0) is

cR2◦R1(s, o)− 2 J
(√

a
c

)
= 2 cosh

(
1
2 log

a
c

)(
cosh(δ)− 1

)
≥ 0.

In particular, if bgeo ∈ YM, then the optimal mediator ratio is unique and equals bgeo; in that case,
choosing m∗ ∈ M with ιM(m∗) = bgeo gives

cR2◦R1(s, o) = J
(

a
bgeo

)
+ J
(

bgeo

c

)
= 2 J

(√
a
c

)
.

Proof. Under admissibility, the objective in (14) depends on m only through b := ιM(m) ∈
YM, namely

F(b) := J
( a

b

)
+ J
(

b
c

)
.

For the explicit penalty (3), one has J(x) = cosh(log x)− 1. Writing t := log a, s := log c,
and u := log b, we obtain

F(b) =
(
cosh(t − u)− 1

)
+
(
cosh(u − s)− 1

)
= cosh(t − u) + cosh(u − s)− 2.

Using cosh(α) + cosh(β) = 2 cosh
( α+β

2
)

cosh
( α−β

2
)

with α = t − u and β = u − s gives

F(b) = 2 cosh
( t − s

2

)
cosh

(
u − t + s

2

)
− 2 = 2 cosh

( log(a/c)
2

)
cosh

(
u − log bgeo

)
− 2.

Since cosh
( log(a/c)

2
)
> 0 is constant and cosh is even and strictly increasing on [0, ∞),

minimizing F over b ∈ YM is equivalent to minimizing |u − log bgeo| over u ∈ U = log YM.
Because log : (0, ∞) → R is a homeomorphism and YM is closed and nonempty, the set
U is closed and nonempty in R, hence the distance function u 7→ |u − log bgeo| attains its
minimum on U. This proves existence of at least one minimizer u∗ ∈ U, and the stated
characterization of optimal ratios. If bgeo ∈ YM (equivalently log bgeo ∈ U), then the unique
minimizer of u 7→ |u − log bgeo| on U is u = log bgeo, hence the optimal mediator ratio is
unique and equals bgeo. Substituting bgeo =

√
ac yields J(a/bgeo) = J

(√
a/c
)
= J(bgeo/c)

and the displayed formula.

Corollary 3 (Mediation can strictly reduce mismatch). For every x > 0 one has

2 J(
√

x) ≤ J(x),

with equality if and only if x = 1. Consequently, in the setting of Theorem 6, if bgeo ∈ YM and a
direct admissible reference R : S → O is available (built from the same J and scale maps), then

cR2◦R1(s, o) ≤ cR(s, o),

with equality if and only if ιS(s) = ιO(o).
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Proof. Let t :=
√

x > 0. Using (3), a direct calculation gives

J(t2)− 2 J(t) =
1
2

(
(t − 1)2 +

(
t−1 − 1

)2
)
≥ 0,

with equality if and only if t = 1, i.e., x = 1. If bgeo ∈ YM, Theorem 6 gives
cR2◦R1(s, o) = 2 J(

√
x) with x = ιS(s)/ιO(o); comparing with cR(s, o) = J(x), it yields the

stated inequality.

6. Extensions: Multi-Dimensional Scales and Robustness
The core framework above uses a single positive scale coordinate ι(·) ∈ R>0. In some

applications one may want a finite list of independent scale coordinates (for instance, a
configuration might carry multiple features, each measured in the same “cost currency”
through J). This section records a minimal extension of the model to d coordinates and a
simple robustness lemma for finite dictionaries.

6.1. Multi-Dimensional Costed Spaces

Definition 12 (Multi-dimensional costed space). Let d ∈ N. A d-dimensional costed space
is a triple (C, JC, ιC) where

• C is a set,
• ιC : C → (R>0)

d is a scale map, and
• JC : C → R≥0 is the induced (separable) cost

JC(c) :=
d

∑
i=1

J
(
ιC(c)i

)
, c ∈ C.

We extend admissible reference by taking a separable, coordinatewise ratio penalty.

Definition 13 (Multi-dimensional admissible reference). Let (S, JS, ιS) and (O, JO, ιO) be d-
dimensional costed spaces. A reference structure R from S to O is multi-dimensionally admissible
if its reference cost is the coordinatewise ratio cost

cR(s, o) =
d

∑
i=1

J
(

ιS(s)i
ιO(o)i

)
, (s, o) ∈ S × O. (15)

The separable form immediately implies that meanings factor coordinatewise.

Corollary 4 (Coordinatewise meaning for product models). Assume S = ∏d
i=1 Si and O =

∏d
i=1 Oi and that the scale maps factor coordinatewise: ιS(s)i = ιSi (si) and ιO(o)i = ιOi (oi). If R

is multi-dimensionally admissible, then

(o1, . . . , od) ∈ MeanR(s1, . . . , sd) ⇐⇒ ∀i, oi ∈ MeanRi (si),

where Ri denotes the induced one-dimensional admissible reference on (Si, Oi).

Proof. By (15) the cost is a separable sum of d nonnegative terms, each depending only on
(si, oi). Thus, minimizing over O = ∏i Oi is equivalent to minimizing each summand over
its coordinate; this is the same argument as in Theorem 5.

6.2. Log-Space Geometry for the Explicit Mismatch Cost

In this subsection, we specialize to the explicit mismatch functional

J(x) = 1
2 (x + x−1)− 1 (x > 0), (16)
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already used in Sections 2–5.

Lemma 5 (Log-coordinate form). For all t ∈ R one has J(et) = cosh(t)− 1.

Proof. Immediate from (16): J(et) = 1
2 (e

t + e−t)− 1 = cosh(t)− 1.

Proposition 4 (Quadratic regime with explicit remainder). For all t ∈ R,

0 ≤ J(et)− t2

2
≤ t4

24
cosh(|t|).

In particular, for |t| ≤ 1,
t2

2
≤ J(et) ≤ t2

2
+

cosh(1)
24

t4.

Proof. By Lemma 5 it suffices to estimate cosh(t)− 1 − 1
2 t2. Taylor’s theorem at 0 with

remainder gives

cosh(t) = 1 +
t2

2
+

t4

24
cosh(ξ)

for some ξ between 0 and t. Since cosh is even and increasing on R≥0, one has cosh(ξ) ≤
cosh(|t|), yielding the upper bound. Nonnegativity follows since cosh(ξ) > 0.

Corollary 5 (Local Euclidean geometry in log-ratio). For the explicit mismatch cost (16), set
x := ιS(s) and y := ιO(o). If | log(x/y)| ≤ 1, then

1
2
(

log(x/y)
)2 ≤ cR(s, o) ≤ 1

2
(

log(x/y)
)2

+
cosh(1)

24
(

log(x/y)
)4.

Thus, in the small-mismatch regime, meanings behave like nearest neighbors in the log-ratio metric.

Proof. For admissible reference, cR(s, o) = J(x/y) with x := ιS(s) and y := ιO(o). Write
t := log(x/y). Then x/y = et and |t| ≤ 1 by hypothesis. Apply Proposition 4 to obtain
1
2 t2 ≤ J(et) ≤ 1

2 t2 + cosh(1)
24 t4, and substitute t = log(x/y).

6.3. Margin Stability for Finite Dictionaries

Definition 14 (Decision margin). Fix a configuration s ∈ S and a finite object dictionary
O = {o1, . . . , oN}. Write Ck := cR(s, ok) and let M := min1≤k≤N Ck. The decision margin at
s is

∆(s) := min{Ck − M : 1 ≤ k ≤ N, Ck > M} ∈ [0, ∞],

with the convention ∆(s) = ∞ if all Ck are equal.

The margin parameter controls how stable the argmin is under perturbations of the cost
values.

Proposition 5 (Robustness under bounded perturbations). In the setting of Definition 14,
suppose the costs Ck are perturbed to numbers C̃k satisfying

max
1≤k≤N

|C̃k − Ck| ≤ η.

If ∆(s) > 2η, then the set of minimizers is unchanged:

{k : Ck = min
j

Cj} = {k : C̃k = min
j

C̃j}.

https://doi.org/10.3390/axioms15020151

https://doi.org/10.3390/axioms15020151


Axioms 2026, 15, 151 15 of 24

Proof. Let I := {k : Ck = M} be the (nonempty) set of original minimizers. For k ∈ I
one has C̃k ≤ M + η. If k /∈ I, then Ck ≥ M + ∆(s) by definition of ∆(s), hence C̃k ≥
M + ∆(s)− η. If ∆(s) > 2η then M + ∆(s)− η > M + η, so every perturbed minimizer
must lie in I and conversely every k ∈ I remains minimal.

6.4. Existence (and Optional Uniqueness) in d Dimensions

Here we discuss the multi-dimensional analogue of Theorem 2; it follows by the
same attainment argument under the multi-dimensional admissibility and closedness
hypotheses.

Corollary 6. Let d ∈ N and let (S, JS, ιS) and (O, JO, ιO) be d-dimensional costed spaces. Assume
R is multi-dimensionally admissible in the sense of Definition 13. Let Y := ιO(O) ⊂ (R>0)

d

be nonempty and closed in the usual topology on (0, ∞)d. Then for every s ∈ S the meaning set
MeanR(s) is nonempty. Moreover, if x := ιS(s) lies in Y, then any o ∈ O with ιO(o) = x is a
meaning and satisfies cR(s, o) = 0.

Proof. Fix s ∈ S and write x := ιS(s) ∈ (R>0)
d. Consider the continuous objective on Y,

Fx(y) :=
d

∑
i=1

J
(

xi
yi

)
, y = (y1, . . . , yd) ∈ Y.

By Lemma 4, for each M ≥ 0 the one-dimensional sublevel set KM := {z > 0 : J(z) ≤ M}
is compact. Hence there exist 0 < aM ≤ 1 ≤ bM < ∞ such that KM ⊂ [aM, bM]. If
Fx(y) ≤ M then each term satisfies J(xi/yi) ≤ M, so xi/yi ∈ KM ⊂ [aM, bM], i.e.,

xi
bM

≤ yi ≤
xi
aM

(i = 1, . . . , d).

Therefore, the sublevel set {y ∈ Y : Fx(y) ≤ M} is closed and contained in the bounded
box ∏i[xi/bM, xi/aM], so it is compact (Heine–Borel). Thus, Fx attains its minimum on Y
at some y∗ ∈ Y. Choose o ∈ O with ιO(o) = y∗; then o ∈ MeanR(s) by (15).

If x ∈ Y, then Fx(x) = ∑i J(1) = 0. Since each term is nonnegative, 0 is the global
minimum, so any o with ιO(o) = x is a meaning.

Definition 15 (Log-image and log-convexity). For Y ⊂ (R>0)
d define

log Y := {(log y1, . . . , log yd) : y ∈ Y} ⊂ Rd.

We call Y log-convex if log Y is convex.

When the log-image of the dictionary is convex, strict convexity yields uniqueness and
continuity of the optimizer.

Theorem 7 (Uniqueness and continuity for log-convex dictionaries). Assume the explicit
mismatch cost (16) and the hypotheses of Theorem 6. If U := log Y ⊂ Rd is closed and convex,
then the minimizer y∗(x) ∈ Y of Fx is unique. Equivalently, the meaning set MeanR(s) equals the
fiber {o ∈ O : ιO(o) = y∗(ιS(s))}. Moreover, the optimizer is continuous in log-coordinates: the
map t 7→ u∗(t) is continuous, where t := log x and u∗(t) := log y∗(et) ∈ U.

Proof. Let t := log x ∈ Rd and write u := log y ∈ U. By Lemma 5,

Fx(y) =
d

∑
i=1

(cosh(ti − ui)− 1) =: Gt(u).
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For each i, the map ui 7→ cosh(ti − ui)− 1 is strictly convex, hence Gt is strictly convex
on Rd. Restricting to the convex set U preserves strict convexity, so Gt has at most one
minimizer on U; existence follows from Theorem 6. Thus, the optimizer u∗(t) is unique,
and so is y∗(x) = eu∗(log x).

For continuity, let tn → t and set un := u∗(tn) ∈ U. Fix u0 ∈ U. Since un minimizes Gtn

on U, one has Gtn(un) ≤ Gtn(u0). The right-hand side is bounded because (t, u) 7→ Gt(u)
is continuous and tn → t. As in the proof of Theorem 6, boundedness of Gtn(un) implies
boundedness of {un} in Rd. Passing to a convergent subsequence (still denoted un) with
limit ū ∈ U (closedness), continuity gives Gt(ū) = limn Gtn(un) ≤ limn Gtn(u) = Gt(u) for
all u ∈ U. Hence ū minimizes Gt on U, and by uniqueness ū = u∗(t). Therefore, every
subsequence has the same limit, so un → u∗(t) and continuity holds.

7. Worked Examples
This section gives explicit computations in simple settings. The purpose is not to add

new axioms but to make the definition of meaning MeanR(s) = arg mino∈O J(ιS(s)/ιO(o))
concrete and to illustrate the decision-geometry proved earlier.

7.1. Continuous Ratio Model

Proposition 6 (Meaning in the continuous ratio model). Let S = O = R>0 with ιS = ιO = id
and intrinsic costs JS = JO = J. Let R be admissible (Definition 6), so that

cR(s, o) = J
( s

o

)
.

Then for every s ∈ R>0 there exists a unique meaning, namely MeanR(s) = {s}, and the
minimum reference cost equals 0.

Proof. By Lemma 2, one has J(x) ≥ 0 for all x > 0 with equality if and only if x = 1. Hence
cR(s, o) = J(s/o) ≥ 0 with equality if and only if s/o = 1, i.e., o = s. Therefore, o = s is the
unique minimizer and the minimum cost is 0.

7.2. Finite Dictionaries and Boundary Points

Example 4 (Finite object dictionary). Let O = {o1, . . . , on} be finite, set yi := ιO(oi), and
keep S = R>0 with ιS = id. Under admissible reference, for a given configuration s with ratio
x := ιS(s) the meaning set is

MeanR(s) =
{

oi : J
(

x
yi

)
= min

1≤j≤n
J

(
x
yj

)}
.

In general, boundary points (where the meaning set is not a singleton) occur when two or more of
the values J(x/yi) tie.

7.3. Geometric-Mean Boundaries for the Explicit Mismatch Cost

Theorem 8 (Geometric-mean decision boundaries for the explicit mismatch cost). As-
sume the explicit mismatch functional (3) and admissible (ratio-induced) reference cR(s, o) =

J(ιS(s)/ιO(o)). Let O = {o1, . . . , oN} be a finite object set such that the ratios yi := ιO(oi)

are pairwise distinct and ordered 0 < y1 < · · · < yN . For x := ιS(s) ∈ R>0, define the
boundary points

mi :=
√

yiyi+1 (i = 1, . . . , N − 1),

and set m0 := 0, mN := +∞. Then

• If mk−1 < x < mk for some k ∈ {1, . . . , N}, then ok is the unique meaning of s.
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• If x = mk for some k ∈ {1, . . . , N − 1}, then s has exactly two meanings, namely ok and
ok+1.

Equivalently, the map x 7→ arg mini J(x/yi) is piecewise constant on the open intervals
(mk−1, mk).

Proof. Using (3) one computes, for each i,

cR(s, oi) = J
(

x
yi

)
=

( x
yi
− 1
)2

2(x/yi)
=

(x − yi)
2

2xyi
.

Fix i ∈ {1, . . . , N − 1} and define the adjacent difference

∆i(x) := cR(s, oi+1)− cR(s, oi).

Multiplying by 2x > 0 and simplifying gives

2x ∆i(x) = (yi+1 − yi)
(

1 − x2

yiyi+1

)
.

Hence ∆i(x) = 0 if and only if x2 = yiyi+1, i.e., x = mi. Moreover, ∆i(x) > 0 when x < mi

and ∆i(x) < 0 when x > mi. Therefore,

• if x < mi, then cR(s, oi) < cR(s, oi+1) (so the adjacent comparison favors oi),
• if x > mi, then cR(s, oi+1) < cR(s, oi) (so it favors oi+1).

Fix k ∈ {1, . . . , N} such that mk−1 < x < mk. For every i ≤ k − 1 we have x > mi,
hence ∆i(x) < 0, so cR(s, oi+1) < cR(s, oi). Iterating these strict inequalities yields
cR(s, ok) < cR(s, oi) for all i < k. For every i ≥ k, we have x < mi, hence ∆i(x) > 0,
so cR(s, oi+1) > cR(s, oi). Iterating yields cR(s, ok) < cR(s, oj) for all j > k. Therefore, ok is
the unique minimizer.

If x = mk for some k ∈ {1, . . . , N − 1}, then for every i < k we still have x > mi and
the costs strictly decrease up to index k, while for every i ≥ k + 1 we have x < mi and
the costs strictly increase from index k + 1 onward. At i = k, one has ∆k(mk) = 0, i.e.,
cR(s, ok) = cR(s, ok+1). Hence the argmin consists of exactly two meanings, {ok, ok+1}.

Corollary 7 (Stability away from boundaries). Under the hypotheses of Theorem 8, if mk−1 <

x < mk then there exists δ > 0 such that every x′ with |x′ − x| < δ satisfies mk−1 < x′ < mk and
hence has the same unique meaning ok.

Proof. Since (mk−1, mk) is open and contains x, choose δ := min{x −mk−1, mk − x}/2 > 0.
Then |x′ − x| < δ implies x′ ∈ (mk−1, mk), and the conclusion follows from Theorem 8.

Finite local resolution and discrete meaning cells.

The emergence of stable decision regions around geometric means (Theorem 8) pro-
vides a concrete realization of the Finite Local Resolution axiom of Recognition Geometry
([10], Axiom 4 (RG3)). While classical geometry typically assumes the idealization of infi-
nite measurement precision, Recognition Geometry posits that local distinguishing power
is always finite ([10], Axiom 4 (RG3)). Our results show that, under a cost minimization
dynamic with a finite dictionary ιO(O) = {y1, . . . , yN}, this discreteness emerges naturally:
the continuous ratio axis R>0 is partitioned into open intervals on which the argmin is con-
stant, separated by the discrete boundary set of geometric means {√yiyi+1}. In particular,
meanings form discrete stable cells with a positive stability margin away from boundaries
(Corollary 7).
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7.4. Numerical Micro-Example (Three-Object Dictionary)

Take O = {o1, o2, o3} with ratios y1 = 1
4 < y2 = 1 < y3 = 4, and keep S = R>0

with ιS = id. The boundary points are m1 =
√

y1y2 = 1
2 and m2 =

√
y2y3 = 2. Thus, a

configuration with ratio x means o1 for 0 < x < 1
2 , means o2 for 1

2 < x < 2, and means o3

for x > 2 (with ties at the boundary points).

x cR(s, o1) cR(s, o2) cR(s, o3) meaning(s)
3

10
1

60
49
60

1369
240 o1

3
2

25
12

1
12

25
48 o2

3 121
24

2
3

1
24 o3

Example 5 (Mediation can sharply reduce cost in a toy case). Let a := ιS(s) = 4 and
c := ιO(o) = 1

4 , so the direct admissible reference cost is J(a/c) = J(16) = 225
32 . If the mediator

space contains a configuration m with ratio bgeo :=
√

ac = 1, then Theorem 6 gives an optimal
sequential cost

cR2◦R1(s, o) = 2 J
(√

a
c

)
= 2 J(4) =

9
4

,

which is strictly smaller, in accordance with Corollary 3.

8. Applications
This section records short corollaries and interpretive remarks that follow directly

from the formal definitions and theorems; it makes no empirical or metaphysical claims
beyond the stated axioms.

This section collects immediate, checkable consequences of the formal development.
Each statement below follows from earlier definitions and theorems, and no external or
empirical claim is being made. The meaning rule is an optimization rule (Definition 7)
driven by the canonical mismatch penalty J (Definition 2); the axiomatic characterization of
Jis classical and recorded for completeness in Appendix A.

8.1. Symbol Grounding as a Criterion

We treat “grounding” as an internal consistency condition in this model: a token s
is grounded for an object o when (i) o is a meaning of s (Definition 7) and (ii) the symbol
condition JS(s) < JO(o) holds (Definition 8).

Corollary 8 (Grounding criterion under admissible reference). Fix an admissible reference
structure R (Definition 6). Then, for s ∈ S and o ∈ O,

(s, o) is a symbol (Definition 8) ⇐⇒ o ∈ MeanR(s) and JS(s) < JO(o).

Proof. This is immediate from Definition 8 and Definition 7.

Corollary 9 (Grounding rule for finite object dictionaries). Assume the finite-dictionary
hypotheses of Theorem 8. As the configuration ratio x = ιS(s) varies, the meaning set MeanR(s)
is piecewise constant: it is a singleton on each interval (mi−1, mi) and can change only at the
geometric-mean boundaries mi =

√
yiyi+1. In particular, away from the boundaries the meaning is

stable under small perturbations (Corollary 7).

Proof. Immediate from Theorem 8 and Corollary 7.
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8.2. Mathematical Effectiveness via Low-Cost Primitives

The next corollary records a purely internal “near-balance” restriction: if a config-
uration has small intrinsic cost, then any of its meanings must lie in the corresponding
low-mismatch window determined by the sublevel sets of J.

Corollary 10 (Near-balance restricts possible referents). Assume R is admissible and that the
hypotheses of Theorem 4 hold. If s ∈ S satisfies JS(s) ≤ ϵ, and if o is a meaning of s, then

J
(

ιS(s)
ιO(o)

)
≤ ϵ,

so ιO(o) must lie in the corresponding bounded sublevel window determined by ϵ (as in Theorem 4).

Proof. This is a direct restatement of Theorem 4.

Remark 2 (Compositional “range expansion” (model-dependent)). In a continuous ratio
model where ratios can be realized densely (e.g., S = O = R>0 with ι = id as in Proposition 6),
large mismatches can be decomposed into many small mismatches: write a target ratio r = et

as a product r = (et/k)k. Since J(eu) = cosh(u)− 1 → 0 as u → 0, choosing k large makes
each primitive step low-cost. Coupled with the compositionality results (Theorem 5) and optimal
mediation (Corollary 3), this shows that, in the continuous ratio model, large ratios can be factored
into many small-ratio steps, each incurring small mismatch cost. This is an interpretive program;
empirical relevance depends on what ratios are actually realizable in the intended application domain.

8.3. Information-Theoretic Interpretation

Although our framework is stated in intrinsic-cost terms, the canonical mismatch
penalty admits a simple log-ratio form. We record the identity as a proposition; any further
links to coding/learning are interpretive and not used in the proofs.

Proposition 7 (Log-ratio form of the canonical mismatch cost). For x > 0 write x = et. Then
the canonical cost satisfies

J(x) = J(et) = cosh(t)− 1.

In particular, J is a convex even function of the log-ratio t = log x and vanishes exactly at t = 0.

Proof. Substitute x = et into J(x) = 1
2 (x + x−1)− 1 (Definition 2).

9. Related Work and Positioning
This section places the framework in context, highlighting connections to aboutness in

formal semantics, truthmaker-style ideas, and compression-based modeling, and clarifying
what is new in the present optimization-based formulation.

Relation to Recognition Geometry.

Recognition Geometry [10] develops an axiomatic recognition-first framework in
which observable space is derived from recognition events via an operational quotient
construction. While the present paper does not attempt to construct an ambient geometry, it
shares the same operational posture: the fundamental primitive is a measurable comparison
(here the mismatch cost), and the induced semantic categories are those determined by
minimizing or equating that comparison. The comparative recognizer formalism of [10]
provides a natural abstract home for the reference costs used here; we make this link explicit
in Section 3.

This section positions the paper relative to standard themes in semantics and infor-
mation theory. We do not present the mismatch penalty as novel: the axiom package in
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Definition 1 is a convenient specification whose solutions are classical (Appendix A). The
contribution of the paper is instead the explicit optimization semantics (Definition 7) and
the structural theorems derived from it (existence, stability geometry, compositionality,
and mediation).

Symbol grounding and operational meaning rules.

The symbol grounding problem concerns how tokens acquire meaning without a
homunculus [4]. The present work is compatible with grounding motivations, but it is
formulated as a mathematical model: the meaning of s is defined as an argmin under an
explicit cost. Any interpretation as a cognitive mechanism requires extra hypotheses
beyond those stated.

Compression principles.

The general idea that effective representations trade off succinctness and fidelity is
classical in information theory (Shannon [11]) and in algorithmic notions of complexity [12];
MDL makes this tradeoff concrete in model selection [13]. Our setup uses a different
primitive: a ratio map ι into R>0 and a fixed mismatch penalty J, with compression enforced
by the symbol condition JS(s) < JO(o). Within this model, reference and compositional
behavior become theorem-level consequences.

Remark 3 (Coding/learning viewpoint). In coding theory and learning, one often selects repre-
sentations by minimizing a tradeoff between description length and distortion (e.g., Shannon [11]
and MDL [13]). Our framework instantiates a specific distortion—J(ιS(s)/ιO(o))—that is sym-
metric in under-/over-shooting and naturally expressed in log-scale (Proposition 7). This suggests
interpreting meanings as “best matches” under a fixed mismatch penalty, with compression enforced
by the symbol condition JS(s) < JO(o).

Subject matter/aboutness and truthmaker-semantics literature.

There is a substantial contemporary literature on “aboutness”/“subject matter” in
semantics and logic, including Yablo’s monograph [5] and subsequent discussion and re-
finements (e.g., Rothschild [7], Fine [8], and Yablo’s reply [9]); see also Hawke’s survey [6].
Related frameworks connect hyperintensional content with truthmakers/truthmaker se-
mantics (e.g., Fine [14]). The present paper does not attempt to adjudicate between these
accounts. Rather, it provides an explicit optimization layer which, once a modeling choice
of scale maps is made, selects a subject matter/referent by minimizing a mismatch cost.

Novelty signal and conceptual payoff.

Many of the analytic lemmas are consequences of the specific penalty J and convexity.
The intended novelty is the resulting checkable decision geometry and compositional calculus
for meanings: finite dictionaries induce geometric-mean boundaries and stability margins,
product models factorize exactly, and sequential mediation admits an explicit optimizer.
These consequences are the main mathematical payoffs of the framework, and they make
clear which modeling assumptions (the scale maps and admissibility hypotheses) must be
checked in any intended application.

What is mathematically concrete here.

Two examples of explicit structure are: (i) for finite object dictionaries under the
canonical mismatch penalty, decision boundaries occur at geometric means (Theorem 8)
and meanings are locally stable away from them (Corollary 7); (ii) for sequential mediation,
the optimal intermediate ratio is explicit (Theorem 6) and strictly improves over direct
reference when the mediator set contains the balance point (Corollary 3).
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Interpretation layer.

Sections 8 and 10 illustrate how the proved statements can be read once a modeling
choice for ι is fixed. These illustrations are optional: removing them does not affect the
correctness of theorems.

10. Discussion
This section clarifies scope and interpretation: which parts are mathematical conse-

quences of the axioms, which parts are modeling choices, and what additional assumptions
would be needed to connect the formalism to empirical systems.

This section clarifies scope: which statements are proved inside the model and which
statements are interpretation. It also records limitations and concrete mathematical extensions.

10.1. What Is Proved vs. What Is Modeled

The core mathematical content consists of the definitions and theorems in Sections 2–7.
In particular, meaning is defined by optimization (Definition 7); existence is conditional on
an attainment hypothesis (Theorem 2); and explicit geometry, stability, compositionality,
and mediation statements follow for admissible reference structures and the canonical
mismatch penalty (Theorems 8, 5, 6).

By contrast, any claim that a given real-world domain does admit a scale map ι with the
required properties, or that agents compute meaning by solving the optimization problem,
is an interpretation and is outside the theorem-level scope of this paper.

10.2. Limitations

1. Ratio embedding: Our framework requires configurations to embed into R>0 via a
ratio map. Not all semantic domains naturally admit such embeddings.

2. Single penalty: We work with the canonical mismatch penalty J. Alternative penalties
may be appropriate in domains where under- and over-shooting are not symmetric.

3. Static analysis: The theory is synchronic. Incorporating learning or time-evolution
requires additional structure (e.g., dynamics for ι or for admissible reference classes).

10.3. Open Problems

To make the forward-looking agenda explicit, we record a few concrete open problems
aligned with the motivation above.

1. Penalty universality beyond d’Alembert. Identify alternative axiom packages
(weaker than Definition 1(4)) that still force a small, classifiable family of penalties,
and determine which decision-geometry and compositionality results remain valid.

2. Structure of argmin ties. Characterize, in terms of ιO(O) and J, when the mean-
ing set Mean(s) is multi-valued and how tie sets propagate under products and
sequential mediation.

3. Stability under perturbations of ι. Quantify how errors in the scale maps affect
decision boundaries and compositionality: derive uniform Lipschitz/margin bounds
in log-space over admissible reference classes.

10.4. Future Directions

1. Broader admissible reference. Classify reference structures beyond the ratio-induced
form (Definition 6) for which analogues of the stability and compositionality theorems
remain true.

2. Multi-dimensional ratios. Extend the decision-geometry and boundary descriptions
to ι : C → (R>0)

d with non-separable penalties, and quantify how coupling between
coordinates affects stability margins.
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3. Learning the scale map. Given data of successful/unsuccessful references, formulate
and analyze estimation procedures for ι (and admissible reference parameters) that
preserve the proved invariances.

11. Conclusions
This section summarizes the contributions and limitations of the model and records a

few directions for refinement and application within the axioms fixed above.
We developed a mathematical model of reference grounded in cost minimization. The

theorem-level contributions are internal to the stated axioms and hypotheses.
We summarize the main points:

1. Reference as compression: Symbols are low-cost encodings of high-cost objects.
2. Canonical mismatch geometry: The canonical penalty J(x) = 1

2 (x + x−1)− 1 yields
explicit decision boundaries and stability regions for finite dictionaries (Theorem 8).

3. Universal backbone: Near-balanced configurations provide a provable backbone
window around balance under admissible reference (Theorem 4). Global descriptive
reach is obtained by composing many such low-cost primitives (Section 5).

4. Compositionality: Reference structures compose via products and sequences.

The framework connects a simple optimization semantics with explicit geometric and
compositional structure. Any application to a specific empirical domain requires specifying
an appropriate scale map ι and verifying that the admissibility assumptions reasonably
match that domain.
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Appendix A. Classical Characterization of the Mismatch Penalty
This appendix records a classical functional-equation characterization showing that

the explicit mismatch penalty used in the paper is essentially forced (up to scale) by the
stated axioms.

We prove Proposition 2. The underlying functional-equation step is classical; see,
for example, Aczél [15] or Kuczma [16]. We include the argument here to keep the paper
self-contained and to clarify that the mismatch penalty is not introduced as a new object.

Lemma A1 (Convexity implies continuity). Let I ⊂ R be an open interval and let g : I → R be
finite-valued and convex. Then g is continuous on I. (See, e.g., Rockafellar ([17], Thm. 10.1).)

We apply this standard convexity fact to the mismatch penalty to obtain the regularity
needed for the functional-equation classification.
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Lemma A2 (Regularity for the log-transformed d’Alembert equation). Assume J satisfies
Definition 1. Define C : (0, ∞) → R by C(x) := 1 + J(x) and f : R → R by f (u) := C(eu).
Then, f is continuous, and it satisfies

f (u + v) + f (u − v) = 2 f (u) f (v) (u, v ∈ R),

and obeys f (0) = 1. In particular, the hypotheses of Lemma A3 (and of the classical theorems of
Acz’el and Kuczma) apply to f .

Proof. By strict convexity (Definition 1(3)), J is convex and finite-valued on (0, ∞), hence
continuous by Lemma A1; therefore, C = 1 + J and f (u) = C(eu) are continuous. The
multiplicative identity in Definition 1(4) is equivalent to (A1) for C, and substituting x = eu,
y = ev yields the displayed d’Alembert equation for f . Finally, f (0) = C(1) = 1 by
normalization.

Lemma A3 (Continuous solutions of d’Alembert’s equation). Let f : R → R be continuous
and satisfy

f (t + s) + f (t − s) = 2 f (t) f (s) (t, s ∈ R),

with f (0) = 1. Then, either f ≡ 1, or there exists a > 0 such that f (t) = cos(at) for all t ∈ R, or
there exists a > 0 such that f (t) = cosh(at) for all t ∈ R.

Proof. This classification is classical; see Aczél ([15], Ch. 2) or Kuczma ([16], Ch. 13).

Proof of Proposition 2. Let J satisfy Definition 1. Define

C(x) := 1 + J(x) (x > 0).

Then (2) is equivalent to the multiplicative identity

C(xy) + C(x/y) = 2C(x)C(y) (x, y > 0). (A1)

Define f : R → R by f (t) := C(et). By Lemma A2, f is continuous. Substituting x = et and
y = es into (A1) yields d’Alembert’s functional equation

f (t + s) + f (t − s) = 2 f (t) f (s) (t, s ∈ R). (A2)

Moreover, f (0) = C(1) = 1 and f (t) ≥ 1 for all t since J ≥ 0.
By Lemma A3, the continuous solutions of (A2) with f (0) = 1 are f ≡ 1, f (t) =

cos(at), or f (t) = cosh(at) (for some a > 0, with the constant solution corresponding to
a = 0). The constraint f (t) ≥ 1 rules out the cosine family unless a = 0, and strict convexity
rules out the constant solution. Hence, there exists a > 0 such that f (t) = cosh(at) for all t.

Undoing the change of variables gives

C(x) = f (log x) = cosh(a log x), x > 0,

and therefore

J(x) = C(x)− 1 = cosh(a log x)− 1 = 1
2
(
xa + x−a)− 1.

Finally, note that

cosh(a log(ιS/ιO))− 1 = cosh
(

log((ιS)a/(ιO)a)
)
− 1,
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so replacing ιS, ιO by ι̃S := ιaS and ι̃O := ιaO absorbs the parameter a into the scale maps and
produces the normalized choice a = 1 at the level of ratio-induced reference costs.
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