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Abstract

We introduce Recognition Geometry (RG), an axiomatic framework in which geometric
structure is not assumed a priori but derived. The starting point of the theory is a con-
figuration space together with recognizers that map configurations to observable events.
Observational indistinguishability induces an equivalence relation, and the observable
space is obtained as a recognition quotient. Locality is introduced through a neighborhood
system, without assuming any metric or topological structure. A finite local resolution
axiom formalizes the fact that any observer can distinguish only finitely many outcomes
within a local region. We prove that the induced observable map R : Cg — & is injective,
establishing that observable states are uniquely determined by measurement outcomes
with no hidden structure. The framework connects deeply with existing approaches:
C’-algebraic quantum theory, information geometry, categorical physics, causal set theory,
noncommutative geometry, and topos-theoretic foundations all share the measurement-first
philosophy, yet RG provides a unified axiomatic foundation synthesizing these perspec-
tives. Comparative recognizers allow us to define order-type relations based on operational
comparison. Under additional assumptions, quantitative notions of distinguishability can
be introduced in the form of recognition distances, defined as pseudometrics. Several
examples are provided, including threshold recognizers on R", discrete lattice models,
quantum spin measurements, and an example motivated by Recognition Science. In the last
part, we develop the composition of recognizers, proving that composite recognizers refine
quotient structures and increase distinguishing power. We introduce symmetries and gauge
equivalence, showing that gauge-equivalent configurations are necessarily observationally
indistinguishable, though the converse does not hold in general. A significant part of
the axiomatic framework and the main constructions are formalized in the Lean 4 proof
assistant, providing an independent verification of logical consistency.
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MSC: 51A05; 54A05; 03B30; 81P15; 18B99

Axioms 2026, 15, 90

https://doi.org/10.3390/axioms15020090


https://crossmark.crossref.org/dialog?doi=10.3390/axioms15020090&domain=pdf&date_stamp=2026-01-30
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0009-0001-8868-7497
https://orcid.org/0000-0002-0318-1092
https://orcid.org/0000-0001-7212-4713
https://doi.org/10.3390/axioms15020090

Axioms 2026, 15, 90

2 of 25

1. Motivation and Introduction
1.1. The Classical Paradigm

In geometry, from Euclid’s space to Riemann’s manifolds, the usual approach is to
begin with a set of points equipped with some structure. Objects (points, lines, planes,
etc.) are then located in the space, and one studies how they interact and what can
be measured. Measurement is usually modeled as a function assigning an observable
value to a pre-existing state. In this classical viewpoint, the existence of the state x is
taken to be ontologically prior to the measurement f(x). This space-first paradigm has
dominated geometric thinking for over two millennia and remains the foundation of
modern mathematical physics.

In the formulation of mathematical physics, one begins with a space or a spacetime
manifold M, equipped with a topology T, a differential structure A, and sometimes a
metric tensor §. Observables and measurements are then defined as functions on this
space. While most of these points are not directly observable, the use of a topology and a
metric provides a precise and flexible language for expressing locality, smoothness, and
distance, which has proven extremely effective in physical modeling. In this sense, the
continuum should be understood primarily as a mathematical idealization rather than
as an ontological claim. Experimental limitations are typically incorporated later, either
through approximations or effective descriptions, without denying the practical success of
the underlying continuous framework.

This way of thinking dates back to Euclidean geometry, where the foundation was
established through axioms regarding points, lines, and planes. Later, with Descartes,
geometry became identified with R", giving a coordinate-based algebraic formulation.
In the 19th century, non-Euclidean ideas appeared in the work of Gauss, Lobachevsky,
and Bolyai [1]. They still relied on the same foundation except for the fifth Euclidean
postulate. This concept further evolved into the manifold framework [2] used in General
Relativity [3,4], where space-time is modeled as a smooth four-dimensional continuum [5,6].
The geometric foundations of spacetime have been extensively analyzed from both physi-
cal [7,8] and philosophical perspectives [9]. Even in Quantum Mechanics, the underlying
Hilbert space is again a continuous structure built over the field of complex numbers [10].
The mathematical formulation of quantum theory through operator algebras [11] and
functional analysis [12] further reinforced the continuous paradigm. In this sense, the
assumption of a pre-existing continuous substrate appears almost everywhere in modern
theoretical physics.

1.2. Operational and Measurement-Based Approaches

Despite this classical picture, the operational foundations of quantum theory have
long emphasized the primacy of measurement over state. Von Neumann’s axiomatization
of quantum mechanics [13] placed measurement postulates on equal footing with unitary
evolution, while the Wheeler—Zurek anthology [14] documented decades of debate over
whether quantum states exist independently of observation. More recently, operational
approaches [15,16] and quantum Bayesian (QBist) interpretations [17,18] have argued that
quantum theory is fundamentally a calculus of expectations about measurement outcomes,
not a description of an observer-independent reality. The relational interpretation of quan-
tum mechanics [19,20] further suggests that quantum states are not absolute but relative
to observers, reinforcing the measurement-centric viewpoint. Foundational investiga-
tions [21-23] have explored the mathematical structures underlying quantum theory, while
quantum logic approaches [16,24] reformulate the theory in terms of lattices of propositions
rather than points in Hilbert space. Information-theoretic reformulations [25,26] suggest
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that quantum mechanics may be fundamentally about information and distinguishability
rather than ontological states in physical space.

In mathematical physics, the C*-algebraic formulation [27,28] constructs quantum
observables without presupposing a Hilbert space, instead deriving the space from the
algebra of measurements. The axiomatic foundations of quantum field theory [29,30]
and the algebraic approach to quantum statistical mechanics [31] further develop this
operator-algebraic viewpoint. Convex-geometric methods [32] provide structural results
on state spaces and observables. Category-theoretic approaches [33-35] similarly privi-
lege processes (morphisms) over states (objects), emphasizing the relational structure of
physical theories. Higher categorical structures [36] and topos-theoretic foundations [37]
provide even more abstract frameworks for physical theories. Information-geometric meth-
ods [38—40] treat probability distributions as the fundamental objects, with the manifold
structure emerging from distinguishability measures between distributions. Fisher infor-
mation metrics [41,42] provide operational distance structures on statistical manifolds,
showing how geometric properties arise from measurement precision. Bayesian and en-
tropic approaches [43,44] further emphasize the primacy of operational inference over
ontological commitment to space.

In topology, the point-free approach via locales [45,46] and the categorical treatment
of quotient spaces [47] demonstrate that spatial structure can be recovered from purely
relational or logical primitives. Formal topology [48] and categorical frameworks [49,50]
construct topological spaces from lattices of observable properties without presupposing
an underlying set of points.

In quantum gravity and discrete approaches to spacetime, similar themes emerge.
Causal set theory [51,52] constructs spacetime from discrete causal relations, while loop
quantum gravity [53] derives geometric operators from gauge-theoretic foundations. Non-
commutative geometry [54] replaces point-sets with operator algebras. Computational
approaches [55] model physics through discrete rewriting rules. Information-theoretic
proposals [56] suggest that gravity and geometry emerge from entropy and information.
Even foundational investigations of infinity and continuum [57] question whether contin-
uous structures are fundamental or emergent. Interpretive approaches to quantum field
theory [58] further emphasize relational over substantival foundations.

These diverse threads suggest a common theme: the geometric structure of physical
theory may be derivative rather than fundamental. Yet despite these hints, a systematic
axiomatic framework that takes recognition (measurement) as primitive and derives space
as a quotient structure has not been fully developed. Recognition Geometry fills this gap.

1.3. Related Work and Positioning

While each of the approaches mentioned shares aspects of a measurement-first philos-
ophy, none provides a minimal axiom system that derives observable space as a quotient
from recognition maps. RG fills this gap by synthesizing operational, categorical, and
information-theoretic ideas into a unified framework.

Recognition Geometry is intentionally positioned at the intersection of several
measurement-first programs, but differs from each in its construction principle:

*  QBism/operational quantum foundations: These approaches emphasize that quan-
tum theory is about agents’ expectations for measurement outcomes. RG abstracts
this stance into a general mathematical framework where recognizers are primitive
and observable space is derived as a quotient.

e Information geometry: Information geometry equips statistical models with metrics
derived from distinguishability. RG is more basic: it starts from recognition events
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and only later introduces order/distance via comparative recognizers, without pre-
supposing probabilistic structure.

*  Causal sets/discrete spacetime: Discrete spacetime approaches postulate a discrete
substrate. RG does not postulate discreteness; instead, discreteness can emerge opera-
tionally from finite local resolution (RG3).

*  Noncommutative geometry: NCG replaces point-sets with operator algebras to encode
geometry. RG is compatible with algebraic formulations but differs in emphasis:
recognizers (maps to events) are primary, and quotienting by indistinguishability is
the canonical construction of observable space.

*  Topos approaches: Topos-theoretic foundations reformulate physical theories in a new
logical setting. RG retains classical logic/set theory but imports a similar method-
ological idea: reconstruct structure from operational /logical primitives rather than
assuming a background manifold.

*  Sheaf theory: Sheaf-theoretic approaches to quantum theory [33,37] construct observ-
ables and state spaces from local data with compatibility conditions. RG’s locality struc-
ture (RG2) and the construction of the quotient Cr from local recognizers share a sheaf-
like local-to-global character. However, RG differs in a key aspect: rather than preserv-
ing all local compatibility (as sheaves do), RG quotients by indistinguishability—local
configurations that cannot be distinguished by R are identified globally. This opera-
tional coarse-graining is central to RG, whereas sheaves emphasize faithful gluing of
local sections. The relationship deserves further investigation: recognition quotients
may be viewed as “observationally coarsened sheaves” where fine structure invisible
to R is collapsed.

*  Coarse-graining frameworks: The quotient construction C — Cg is fundamentally
a coarse-graining operation: fine details in C that are indistinguishable under R are
grouped into equivalence classes [c|g. This parallels coarse-graining in statistical
mechanics (microstates to macrostates), renormalization group theory (integrating out
short-distance degrees of freedom), and effective field theory (low-energy observables).
RG provides an axiomatic foundation for measurement-based coarse-graining: finite
resolution (RG3) makes coarse-graining a fundamental axiom rather than merely
a computational tool. The framework formalizes the idea that observable space is
what remains after coarse-graining by finite-precision measurements, connecting
operational physics to the mathematics of quotient structures.

What RG adds: a minimal axiom system (RG0-RG4) for recognition-first models, a
canonical quotient construction for observable space, a finite-resolution axiom (RG3) that
encodes operational limitations, and comparative recognizers (RG4) as a route toward
emergent order and distance.

1.4. Structure of the Paper

The paper is structured as follows. In Section 2 we develop the axiomatic foundations
of Recognition Geometry. We introduce the primitive notion of a configuration space
equipped with a locality structure (Section 2.1) and define recognizers as nontrivial maps
to event spaces (Section 2.3). The indistinguishability relation leads to the construction
of resolution cells and the recognition quotient (Sections 2.5-2.7). Theorem 1 shows that
the induced observable map R : Cx — & is injective, meaning that distinct observable
states produce distinct events, and no hidden structure remains in the quotient. We give
several examples following the concept: threshold recognizers, discrete lattices, quantum
spin systems, and an instantiation from Recognition Science, which illustrate the abstract
constructions. In Section 3 we develop more advanced structures. We introduce the
composition of recognizers, finite local resolution, and comparative recognizers. We also
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show how order-type relations arise from comparative recognition and how recognition
distances can be constructed under additional assumptions.

The main idea of Recognition Geometry (RG): a fundamental inversion of the usual
viewpoint, where recognition is taken as primitive, and space with its geometric structure

is derived from it.

1.5. Logical Structure of the Framework

Figure 1 presents the logical architecture of Recognition Geometry, showing how
the five axioms (RG0-RG4) lead to key definitions, which in turn yield the fundamental
theorems establishing the framework’s mathematical properties. The diagram illustrates the
dependency chain: primitive axioms define recognizers, which induce indistinguishability
relations, which generate recognition quotients, culminating in the major structural results.

(rooc ) [(xore ) [(rev )

Recognizer
R:C—=¢&

Indigtinguishakility
€1 ~R €2

Recognition Quotient

Theofem 1
R Injective

Theopem 2
Universal Property

Composite Gauge Equiv.
Ry ® Ry ~gauge
Theorem 4 Theorem 6
Refinement Gauge = Indist.

[RG?:: Finite Resolution] [RG4= Comparative CompR]

Figure 1. Logical structure of Recognition Geometry.
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2. Axioms and Basic Structure

In this section, we begin by specifying the basic axioms and primitive sets that define
the underlying structure of the model. We assume that the ordinary set theory is consistent.

2.1. Configuration and Event Spaces

The starting point of the model consists of two primitive objects: a set of states and
a set of observable outcomes. We postulate the existence of a set C of configurations. A
configuration ¢ € C represents a complete, precise specification of the state of the system.

Axiom 1 (RGO0: Nonempty Configuration Space). There exists a nonempty set C with at least
two distinct elements, called the configuration space.

We explicitly do not assume that C carries any topological, metric, or algebraic struc-
ture. The set C may consist of vectors, graphs, labels, combinatorial objects, etc. Intuitively,
recognizers (introduced in Section 2.3) map configurations to events. An event is an observ-
able outcome: a pointer reading, a detector click, a boolean value, a distinctive pattern, etc.

Axiom 2 (RG1: Event Space). There exists a set £ with at least two distinct elements called the
event space.

We do not impose any algebraic, metric, or topological structure on £. All relevant
structure is induced by recognizers through their action.

By assumption [£]| > 2 in Axiom 2 we exclude the trivial case. So, if a recognizer
outputs the same event, it provides no information and induces no geometry. While we do
not assume a topology on C, we require a notion of locality.

Intuitively, geometry arises not from the points themselves, but from the way observ-

able outcomes are produced and distinguished by measurements.
Physical motivation. In physical experiments, measurements are inherently local opera-
tions. A thermometer records the temperature at its location, a Geiger counter responds to
radiation within its detection volume, and a telescope observes only the light that reaches
the instrument. Even in quantum mechanics, measurements are localized to the region
where the apparatus interacts with the system [59].

This empirical fact that recognizers have a limited domain of sensitivity suggests
that any mathematical framework should encode a notion of “local accessibility” among
configurations. At the same time, we wish to avoid assuming a pre-existing topological or
metric structure on C, since such structure is intended to emerge from recognition rather
than be postulated in advance.

We therefore introduce locality in a minimal way by postulating a neighborhood system
N as a primitive structure. The neighborhoods specify which configurations are locally
accessible to measurements, without presupposing distance, continuity, or geometry. This
leads to the following axiom.

Remark 1. The locality structure N is postulated as primitive data, specifying which configurations
are considered "locally accessible” from any given configuration. While the physical motivation
appeals to spatial locality, the mathematical framework treats N as an abstract accessibility relation
that need not presuppose metric or geometric structure. In applications, N is typically derived
from physical constraints (detector range, interaction locality, causal structure), but within the
axiomatic framework it is a given structure, analogous to how a manifold’s atlas is specified rather
than derived.

For each configuration ¢ € C we associate a family of subsets A/ (c) called the neighbor-
hoods of c.
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Axiom 3 (RG2: Local Configuration Space). A Local Configuration Space is a configuration
space equipped with, for each configuration ¢ € C, a nonempty collection N'(c) C P(C) of subsets
of C, called the neighborhoods of ¢, satisfying:

(i) Reflexivity: Ve € C, VU € N(c), c € U.
(ii)  Intersection closure:

VeeC, VU,V e N(c), IW € N(c) suchthat W C UNV.
(iii) Local refinement:

VeeC, VU e N(c), V' e U, 3V € N(c') such that V C U.

Intuitively, for each ¢ € C, the family N (c) specifies which subsets of configurations
are considered locally accessible from c. Thus, every configuration is contained in each
of its neighborhoods (reflexivity), any two local neighborhoods can be refined to a com-
mon, smaller one (intersection closure), and any point inside a neighborhood has its own
neighborhood contained in the original one (local refinement).

Any map

N:C = P(P(C)),

satisfying Axiom 3 is called a locality structure on the configuration space C.

2.2. Topology Generated by the Locality Structure

Although N is not a neighborhood system in the topological sense, it nevertheless
generates a canonical topology on C.

Definition 1. Let N be a locality structure on C. A set U C C is open if and only if for every
c € U, there exists V € N (c) such that V C U. The collection of all open sets is denoted by T

Clearly, Ty is a topology on C.

Remark 2. Definition 1 provides a way to generate a topology from the locality structure N'. The
construction declares a set open if it is locally a neighborhood: for every point in the set, the set
contains a neighborhood of that point. This is a standard method for generating a topology from a
neighborhood system (see [60], Chapter 2). Because N (c) is not assumed to be monotone, we do not
claim that every topological neighborhood of c in Ty is in N'(c). Rather, T is the natural topology
used in this paper: openness is defined by local containment of some N -neighborhood.

2.3. Recognition Maps

In this section, we introduce the central object of the theory, the recognizer.

Definition 2 (Recognition triple). A recognition triple is an ordered triple (C,E, %) where:

» (s anonempty set (configuration space, Axiom 1),
e Eisaset with |E| > 2 (event space, Axiom 2),
e X isanonempty set of functions R : C — & such that |Im(R)| > 2 foreach R € X.

Elements of . are called recognizers.

The condition |Im(R)| > 2 ensures that every recognizer distinguishes at least
two different configurations in C. Constant functions convey no information and are
therefore excluded.

This paper treats recognizers as total, deterministic functions. Several natural general-
izations exist but require substantial modifications:

Partial recognizers. If a recognizer R is only defined on a domain dom(R) C C, the quotient
construction (Section 2.6) applies only to dom(R). This models detectors with finite range
but introduces complications in defining global geometric structures.
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https://doi.org/10.3390/axioms15020090

Axioms 2026, 15, 90

8 of 25

Stochastic recognizers. A stochastic recognizer R : C — A(E) assigns a probability measure
on & to each configuration. Indistinguishability (see Definition 4) must then be defined
via a metric on A(€) (e.g., total variation distance). This connects to POVMs in quantum
theory [59] but requires additional measure-theoretic structure not assumed in this paper.

We work in ordinary set theory and treat recognizers as deterministic maps. We
do not assume any intrinsic topology, metric, or smooth structure on C or £. The only
primitive “geometric” input is the locality structure A/, Axiom 3 (RG2). We do not attempt
to model dynamics, probabilities, noise, or experimental error in full generality (beyond
the finite-resolution Axiom 4 (RG3) and the discussion of stochastic recognizers). The goal
is to isolate a minimal axiomatic framework in which observable space and its induced
structures are derived from recognition.

Definition 3 (Fiber). We let R : C — & be a recognizer. For e € Im(R), the fiber over e is the set
R71(e):={ceC|R(c)=c¢}.

Remark 3. The collection of fibers { R"1(e) : e € Im(R)} forms a partition of C, i.e., each
configuration belongs to exactly one fiber.

Recognizers induce a very important relation on C by the following definition:

Definition 4 (Indistinguishability). Given a recognizer R : C — £, we say that two configura-
tions ¢y and cy are indistinguishable with respect to R, and write

C1 ~¥R C2 lf R(Cl) = R(Cz).

Consequently, the relation ~p is an equivalence relation on C, since it is defined by
equality in &.

2.4. The Quotient Space

The equivalence relation ~x induces a quotient space.
Definition 5 (Quotient Space). Given a recognizer R : C — £. The quotient space is
C/~r = {[cJr:ceC} where [cJr={c €C:c ~gc}.

Remark 4. The quotient C/~pg is in natural bijection with Im(R) with respect to the map
[c]r = R(c). Each equivalence class [c]R is a fiber R~1(e) for some e € Im(R).

Example 1 (Threshold Recognizers). We let C = R" be the configuration space and € = {0,1}
be the event space. Let us define ¥ as the family of threshold recognizers, i.e., the set of functions
C — & such that

1, ifx-v>t,

for(x) =

0, otherwise,

where - denotes the standard Euclidean inner product on R", v € R" and t € R.

Each recognizer f, divides R" into two half-spaces, one “recognized” (event 1) and one “not
recognized” (event 0). The family ¥ = {f,: : v € R", t € R} thus induces a geometric structure:
two points are considered indistinguishable with respect to the recognizers if and only if they lie in
the same collection of half-spaces.
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Remark 5. In this paper, indistinguishability is defined relative to a single recognizer R : C — £.
For a family of recognizers %, a standard way to package their joint observational content is the
product map

Re:C— €% Ry(e) = (R(O))res,

and then to form the quotient C/~ ., which identifies configurations that agree on every recognizer
in X. For the full family of threshold tests on R", Ry separates points (any two distinct points
are separated by some half-space), so the resulting indistinguishability coincides with equality.
This construction is formalized in Section 3, where we show that composite recognizers Ry ® Rp
(Definition in Section 3.1) refine the quotient structure: the product map Ry, can be viewed as the
composition @gex R, yielding progressively finer partitions of the configuration space as more
recognizers are added (Theorem 4).

Example 2 (Discrete Lattice). We let C = Z3 be the configuration space and & = {0,1} the event
space. Let us define the recognizer R : C — & by

R(x,y,z) = (x +y+z) mod 2.

This recognizer divides the integer lattice into two classes: points with an even sum of coordinates
and points with an odd sum of coordinates. Therefore, the quotient Cr has exactly two points. Here,
CR denotes the quotient of C by the equivalence relation induced by R (see Definition 5). This example
shows that RG can be applied naturally to discrete spaces, without any continuity assumption.

Example 3 (Quantum Spin). We let C = S? be the Bloch sphere (the space of pure quantum spin—%
states) and & = {+1, —1}. Given a unit vector n € S?, the spin measurement along direction n is
operationally defined via the Stern—Gerlach apparatus oriented along n. For a fixed choice (e.g., the
laboratory z-axis), the recognizer Ry : S> — {+1, —1} partitions the Bloch sphere into two regions
corresponding to the two measurement outcomes. In this example, the manifold structure of S (as
the space of normalized spinors C?/C*) is assumed a priori; the recognizers partition this given
space rather than constructing it. Adding the x-component recognizer Ry refines the partition into
four regions, and adding Ry further refines it. However, no finite family of binary recognizers can
distinguish all pairs of distinct points on S?; the quotient remains finite and discrete. This illustrates
the fundamental limitation imposed by finite-resolution measurements [59].

Example 4 (Recognition Science Instantiation). In the framework of Recognition Science, we
let C = L be the space of all ledger states (the complete ontological record of all entities and
their properties), and let £ = R3. We define the position recognizer Rpos : L — R3 that ex-
tracts the spatial coordinates of a given entity from the ledger. The recognition quotient is then
L/ ~Ry = Im(Rpos) C IR3 (by Proposition 1). Points in the quotient are equivalence classes of
ledger states indistinguishable with respect to position. In this construction, the three-dimensional
Euclidean structure is present in the event space € = R3; the quotient inherits this structure via the
isomorphism to Im(Rpos). This example illustrates the RG framework applied to the Recognition
Science paradigm [19], showing how the mathematical formalism relates ontological states (ledger)
to observable spatial structure.

The four examples above illustrate key structural features of RG:

1.  Configuration space structure: The framework applies equally to discrete spaces
(Example 2: Z3), continuous manifolds (Example 1: R”; Example 3: 52), and abstract
state spaces (Example 4: Ledger £). No topology, metric, or smooth structure is
required a priori.

https://doi.org/10.3390/axioms15020090
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2. Event space cardinality: Event spaces may be finite (Examples 2 and 3: binary out-
comes) or continuous (Example 4: R3). The quotient Cy is always isomorphic to
Im(R), so the “size” of observable space is determined entirely by the recognizer.

3.  Refinement and composition: Example 3 demonstrates that multiple recognizers (R,
Ry, Ry) refine the partition. Adding recognizers never coarsens the quotient—it can
only distinguish states that were previously indistinguishable. However, Example 3
also shows a fundamental limitation: no finite family of binary recognizers can recover
the full continuous structure of S?. The quotient remains finite and discrete.

4. Construction of observable space: Example 4 embodies the core philosophy of RG.
The quotient £/~g provides a formal construction of observable space from the
ledger and recognizer. The quotient’s structure (in this case, isomorphic to a subset of
R3) is inherited from the event space by Proposition 1. The conceptual contribution
is the inversion of the usual order: rather than assuming physical space exists and
defining measurements as functions on it, we take measurements (recognizers) as
primitive and construct the observable space as the quotient. The geometric structure
of the observable space depends on both the configuration space C and the target
event space €.

2.5. Formalizing the Recognition Structure

In this section, we formalize the recognition elements introduced in the Definition 2,
making explicit the structural assumptions underlying locality, recognition, etc.

Definition 6 (Recognition Structure). A Recognition Structure on a pair (C, E) is a tuple
S=(N,Y),

consisting of:
1. alocality structure N on C;
2. anonempty set ¥ of functions R : C — &, called recognizers.

In this way, a recognition structure specifies both what is observable (via the recognizers in ¥.) and
what is locally accessible (via the locality structure N).

To summarize, Definitions 2 and 6 provide

Definition 7 (Recognition Triple (formalized)). A Recognition Triple is a triple (C,E,S)
where:

*  Cisanonempty configuration space (Axiom 1);
e & isan event space with |E| > 2 (Axiom 2);
e S = (N,X) isarecognition structure on (C,E) in the sense of Definition 6.

For notational convenience, we may also denote a Recognition Triple by (C,E, N, X).

Remark 6. The locality structure N is global data on the configuration space C and is independent
of the choice of recognizer. Although N does not enter the purely set-theoretic definition of the
quotient Cr associated with a single recognizer R € X, it becomes essential when addressing
questions of continuity, regularity, or induced topology on Cg. The role of N is to specify which
configurations are "locally accessible” to measurements, independent of which specific recognizer is
applied. This structure is part of the physical setup (e.g., which regions an instrument can access)
rather than a property of individual observables.
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When multiple recognizers act on the same configuration space, as in Example 3, they are
treated as elements of the same set . within a single recognition structure and share the same locality
structure N'. Operations relating to different recognizers rely on this common structure.

Remark 7. From a categorical viewpoint [61], the quotient construction can be understood as
defining a functor when appropriate morphisms are specified on configuration spaces and observable
spaces. The injectivity of the induced map R (Theorem 1) ensures that the quotient Cg faithfully
represents observable distinctions. A full categorical treatment, including functoriality and universal
properties, is deferred to future work.

2.6. Recognition Quotient

We now arrive at the first major structural object of RG: the observable space obtained
by identifying indistinguishable configurations.
Construction. Given a recognizer R : C — £, the indistinguishability relation ~ on C
(c1 ~R ¢ <= R(c1) = R(cy).) partitions C into resolution cells, i.e., equivalence classes [c]R.

Definition 8 (Recognition Quotient). The recognition quotient associated with the recognizer
R is the quotient set
Cr = C/~g.

We denote by
TR :C — CR/ 7TR(C) = [C]R/

the canonical projection that maps each configuration to its resolution cell.

Remark 8. The quotient space Cr represents the space of observationally distinguishable states:
two configurations have the same image in Cr if and only if the recognizer assigns them the same
event. Thus, Cg captures precisely the observable geometry determined by R.

Since R(c) is constant on each resolution cell [c]g, the recognizer R : C — £ descends
to a well-defined map on the quotient. We denote the induced observable map by

R:Ckr — &,  R([c]Jr) := R(c).

This map is well defined because if [c1]g = [c2]r, then ¢; ~r ¢z and hence R(¢1) = R(cy).
Clearly, we have the following two facts.

Theorem 1. The induced map R : Cr — & is injective.

Proposition 1. The recognition quotient Cr is naturally isomorphic to the image Im(R) with
respect to the map
®: Cr — Im(R), ®([c]r) = R(c).

Proof. The map & is well defined since R is constant on equivalence classes. It is surjective
by definition of Im(R) and injective since distinct observable states produce distinct events
(Theorem 1). Hence, @ is a bijection. [

In the recognition quotient Cg, observable states are completely and uniquely deter-
mined by the events they produce. Since the quotient Cg is isomorphic to the image Im(R)
(Proposition 1), distinct observable states correspond to distinct events. Thus, distinct
observable states correspond to distinct events, and no further distinctions exist within Cg
beyond those encoded by R, i.e., as a set, Cy carries no distinctions beyond those induced
by R (equivalently, Cr = Im(R)). If additional structure (e.g., a topology) is supplied or
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induced via the locality structure AV, then Cg may carry further structure not determined
by R alone.

The above observations lend themselves to a clear epistemic interpretation. Relative
to a fixed recognizer R, all observable information about a configuration is exhausted by
the corresponding event. In this sense, the quotient Cr represents the effective state space
accessible to an observer using R, and no finer distinctions are observable within this
framework. (Here, “no finer distinctions” is understood in the sense of identification of
configurations by ~p; additional, independently postulated structure on C may still induce
nontrivial topological properties on Cg.)

The recognition quotient construction is mathematically equivalent to several well-
known structures in differential geometry, probability theory, and physics. The conceptual
contribution lies in the reinterpretation: taking recognizers (measurements) as the primitive
objects that determine the quotient space, rather than assuming a space and then studying
partitions on it. Key connections include:

Example 5 (Orbit spaces). In Lie theory, a group G acting on a manifold M partitions M into
orbits, and the orbit space M /G is the quotient by the equivalence relation x ~y <= dg €
G : g-x = y. Recognition quotients are similar, with the recognizer R playing the role of the
“observable” that is constant on orbits. Both constructions study quotients by equivalence relations.
The interpretive difference is that RG emphasizes the recognizer (measurement) as the primitive
object that induces the partition, whereas orbit space theory typically begins with the group action
and derives the quotient. Mathematically, if R : M — £ is constant on G-orbits, then M /G maps
naturally into Cg.

Example 6 (Level sets). For a smooth submersion f : M — R, the level sets f~'(c) form a
foliation of M. For any recognizer R : C — &, the resolution cells [c]g = R ({R(c)}) are
precisely the level sets (fibers) of R. When R satisfies appropriate reqularity assumptions, these
level sets may carry additional geometric structure analogous to a foliation. The quotient space
Cr identifies level sets to points and is isomorphic to the image Im(R) (Proposition 1). Both
classical differential geometry and RG study the same mathematical structure; the difference lies
in which object is taken as primary (the manifold M with its foliation, versus the quotient Cr as
observable space).

Example 7 (Measurable partitions). In ergodic theory and probability [62], measurable partitions
are used to define conditional expectations and factors of dynamical systems. The recognition
quotient Cg is the factor algebra corresponding to the partition induced by R. Our framework
extends this to the non-probabilistic, purely geometric setting, emphasizing the quotient space itself
rather than the o-algebra structure.

Example 8 (Relational quantum mechanics). Rovelli’s relational interpretation [19] asserts that
quantum states are relative to observers. RG formalizes this: the “state relative to observer R” is
precisely the equivalence class [c|g in the quotient. Different recognizers (observers) induce different
quotients (relative realities), unified by the underlying configuration space C. The framework
emphasizes the primacy of recognizers as the foundational objects: the observable space Cr
is constructed as the quotient induced by the recognizer R, rather than being assumed a priori.
This reinterpretation connects naturally to operational and measurement-based approaches in
quantum theory and provides a formal setting for studying how geometric structure relates to
observational capabilities.

In the following theorem, we present the universal property of the recognition quotient.
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Theorem 2. Welet R : C — & be a recognizer, and let rtg : C — Cr be the canonical projection.
Then for any set X and any function f : C — X that is constant on resolution cells (i.e., whenever
c1 ~R ¢, we have f(c1) = f(c2)), there exists a unique function f : Cr — X such that

f:?OT[R.

Theorem 2 is the standard universal property of quotient spaces (see [47,61]). The
universal property characterizes the recognition quotient Cg up to unique isomorphism. It
states that Cr is the “finest” or “most refined” quotient through which R factors: any other
quotient on which R is well defined must factor through Cg. In categorical terms, the pair
(Cr,r ) is the coequalizer of the kernel pair of R, that is, the universal object that identifies
precisely those configurations recognized as equivalent by R.

2.7. The Quotient Topology

We let T := Ty denote the topology on C generated by the locality structure N/
(Definition 1). We now show that this structure descends naturally to the recognition
quotient, endowing Cr with the structure of a topological space.

Definition 9 (Quotient Topology on Cr). We let T be the topology on C generated by the locality
structure N'. The quotient topology Tg on Cr is defined as follows: a subset U C Cg is open if
and only if its preimage under the canonical projection is open in C:

Uetng — ngl(u) €.

Proposition 2. The quotient topology Tr is a topology on Cr, and the canonical projection 7ty :
(C,7) — (CRr, Tr) is continuous and surjective.

Proof. We verify the axioms of a topology.
(i) @ € g because 7[1;1(®) = @ € 7. Similarly, Cg € g because ngl(CR) =Cer.

(ii) We let {U; };¢; be a family of open sets in Tz. Then each 7z ' (U;) is open in T, and
! (U ll,«) =Jnr'() et
i€l i€l
Hence U;¢; U; € Tr.
(iii) We let U, V € tg. Then 7tz (U), 1z} (V) € 7, and

R (UNV) =mg (U) N (V) € T

Hence UNYV € 1R.
Continuity of 7ty follows from Definition 9, i.e., if U € g, then nlgl (U) € 7. Surjectiv-
ity holds because every equivalence class [c]g € Cr is the image of ¢ € C under rrg. O

Recall that a map between topological spaces is continuous if the preimage of every
open set is open.

Proposition 3. The quotient topology Tr is the final topology (also called the coinduced topol-
ogy) with respect to 7t: it is the finest topology on Cg that makes 7t continuous.
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Proof. We let 7’ be any topology on Cg such that 7ty : (C,T) — (Cg, ') is continuous. Then
for every U € 7/, continuity implies

ngl(u) €T.

By Definition 9, this is equivalent to U € Tg. Hence T C 13, showing that 7z con-
tains every topology on Cr that makes 7t continuous, and is therefore the finest (largest)
such topology. [

Remark 9. The quotient topology ensures that the observable space Cr inherits a natural topological
structure from the configuration space. Open sets in C are precisely those subsets U C Cr whose
preimage 7'[121 (U), the union of all resolution cells in U, is open in C. This topology encodes which
observable states are "nearby” in a manner consistent with the locality structure on configurations.
Intuitively, observable states [c1|g and [cy]g are topologically close in Cr if the corresponding
resolution cells (equivalence classes) in C are close in the sense that their union forms an open set.

Having endowed C with the topology Ty generated by the locality structure
(Definition 1), we can naturally define when a recognizer is continuous.

Definition 10 (Continuous Recognizer). We let T¢ be a topology on £. A recognizer R : C — &€
is called continuous (with respect to Tg) if, for every open set U C &, the preimage R~ (U) is open
in C.

Proposition 4. We let T be the quotient topology on Cr induced by the canonical projection
nig = (C,T) — Cr, and let T¢ be a topology on E. If the recognizer R : (C,T) — (&,1¢) is
continuous, then the induced map

R: (Cr,R) = (€, 7¢)
is continuous.

Proof. By definition of the quotient topology Tg, a map R : Cgr — & is continuous if and
only if the composition Ro 7tg : C — £ is continuous. Since R o 1g = R and R is continuous
by assumption, it follows that R is continuous. [

Remark 10. The locality structure N encodes operational or experimental constraints, specifying
which configurations are locally accessible for recognition and comparison. Different choices of N
on the same configuration space C, even for a fixed recognizer R, may induce different topologies Ty
and consequently different quotient topologies Tg on the observable space Cg.

Example 9. We let the configuration space be C = R, the event space £ = {0,1}, and define a
recognizer R : C — & by

0, x<0,

R(x) =

1, x>0.
The induced equivalence relation identifies all non-positive points and all positive points. Hence, the
recognition quotient Cr as a set consists of exactly two resolution cells.

We now add to C two different locality structures:

*  Nygisc(x) contains the singleton {x}. The generated topology Ty is discrete. Consequently,
the quotient topology Tr on the two-point space Cr is also discrete, so both points are open.
Any map from CR to a topological space is continuous in this topology.
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*  Nuiv(x) = {R} forall x. The generated topology T is indiscrete. Consequently, the quotient
topology Tr on Cr is indiscrete, with only @ and Cr open. The continuity condition is trivial.

This example demonstrates that the same recognizer on the same configuration space
can lead to different observable geometries, depending solely on the chosen locality struc-

ture V.

3. Advanced Structure

In this section, we study more advanced recognition structures, including composition
of recognizers, finite resolution, comparative recognizers, and metric structures induced by
recognition. Their study requires additional axioms and technical tools.

3.1. Composition of Recognizers

Physical measurement rarely involves a single isolated observation. For example,
we can observe position and momentum, color and shape, etc. This combination of
measurements is formalized as the composition of recognizers.

Definition 11 (Composite Recognizer). Given two recognizers Ry : C — & and Ry : C — &,
their composition is the recognizer R1 ® Ry : C — &1 x &; defined by:

(R1 ® R2)(c) = (Ry(c), Ra(c))

From the definition, it is clear that the composite R; ® Ry is a recognizer: its
image satisfies
Im(R1 (%9 Rz) - Im(Rl) X Im(Rz),

and is nontrivial, since there exist configurations cy, c; € C with either Ry (c1) # Rq(cp) or

Ry(c1) # Ra(c2), implying (R1 @ Rp)(c1) # (Ry ® Rz)(c2).
Composition increases distinguishing power. If two configurations are distinguishable
by Rj or by Ry, they are also distinguishable by the composite recognizer R; ® Ry.

Theorem 3 (Composite Indistinguishability).
€1 ~Ry®R, €2 <= (c1 ~g, c2) A (c1 ~R, €2)

Proof. By definition, ¢; ~g,or, €2 means (R; ® Ry)(c;) = (Ry; ® Ryp)(c2), ie,
(R1(c1),Ra(c1)) = (Rq(c2), Ra(c2)). The last equality holds if and only if both coordi-
nates are equal: Ri(c1) = Ry(c2) and Ry(c1) = Ra(c2), which is equivalent to ¢; ~g, ¢
and C1 ~R, C2. O

As an immediate consequence, the equivalence classes of the composite recognizer are
given by intersections of the equivalence classes of its components.

Corollary 1. Foranyc € C,
[c]r@r, = [€]r; N [elr,

Proof. ¢’ € [c]g,or, <= ¢ ~RryeRr, ¢ <= ¢ ~g, cand ' ~g, ¢ <= ¢ € [c]g, and
' €lclr, = ' €c]g,NIclg,- O

Further, the classes of the composite recognizer naturally map onto the classes of
the individual recognizers via the canonical projections 771 and 1. More precisely, the
following theorem holds.
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Theorem 4. The recognition quotient of the composite refines the quotients of its components.
There exist surjective canonical maps:

70 - CR1®R2 - ch and 7o CR1®R2 —» CRZ
defined by 11 ([c|r,er,) = [c]r, and m2([c]r,0r,) = [c]R,-

Proof. We must show that 711 and 7, are well defined and surjective.

If [c]r,or, = [C'|R,aR,, then ¢ € [c]r,er, = [c]r, N [c]r,, sO ¢ € [c]g,, hence
[c'|r, = [c]Rr,- Thus 1 is well defined (and similarly for 7).

For any [c]g, € Cgr,, we have 7 ([c]r,oR,) = [c]r,, SO 711 is surjective (and similarly
for ). O

This theorem formalizes the intuition that “more measurement yields more geometry.”
As we add recognizers, the quotient space unfolds, revealing more detail.

3.2. Symmetries and Gauge Equivalence

Transformations are mappings of a space that change the position or state of configu-
rations while keeping certain properties unchanged. Geometry studies what is preserved
and what is distinguished under these transformations.

Definition 12 (Recognition-Preserving Map). A transformation T : C — C is recognition-
preserving for R if it preserves all events, i.e.,

VeeC, R(T(c)) = R(c)

Proposition 5. Recognition-preserving maps are closed under composition and contain the identity.
Consequently, they form a monoid.

Proof. We let Ty, T be recognition-preserving for R. Then, for any c € C,
R((T1 0 T2)(c)) = R(T1(T2(c))) = R(T2(c)) = R(c),

so Ty o T is recognition-preserving. The identity map id¢ clearly satisfies R(id(c)) = R(c).
Associativity comes from function composition. [

Definition 13. A recognition automorphism is a bijective recognition-preserving map. The collec-
tion of all recognition automorphisms for R is denoted Autg(C).

Proposition 6. Autg(C) forms a group under composition.

Proof. By Proposition 5, Autg(C) is closed under composition and contains the identity.
If T € Autg(C), then T is bijective, so T—1 exists. For anyc € C,weletc = T‘l(c), SO
T(c") = c. Then
R(T7()) = R(¢) = R(T()) = R(0),

where the second equality uses that T is recognition-preserving. Thus T~! € Autg(C).
Associativity comes from function composition. [J

Theorem 5. If T is recognition-preserving, then ¢ ~g ¢y implies T(c1) ~gr T(cp).
Proof. If c; ~g ¢, then R(c1) = R(cy). Since T is recognition-preserving,

R(T(c1)) = R(c1) = R(c2) = R(T(c2)),
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hence T(c1) ~g T(c2). O

In physics, a gauge transformation is a change in the mathematical description of a
system that does not affect any observable quantities, i.e., physical observables are invariant
(map-preserving) under such transformations. RG makes this idea precise through the
concept of gauge equivalence. In RG, it is natural to distinguish between all recognition-
preserving automorphisms (a large mathematical symmetry class) and the physically
admissible gauge symmetries, which are typically restricted by regularity, locality, or
implementability constraints.

Definition 14. We fix a subgroup Gr < Autg(C) called the (admissible) gauge group for the
recognizer R. Two configurations ¢, ¢y € C are said to be gauge equivalent, denoted c1 ~gauge C2,
if there exists a transformation T € Gg such that

T(c1) = co.

So, gauge equivalence defines an equivalence relation on C, partitioning the configura-
tion space into orbits under the action of the chosen admissible gauge group Gg.

Theorem 6. If two confiqurations are gauge equivalent, then they are observationally indistin-
guishable by Definition 4, i.e.,

C1 ~gauge C2 = €1 ~R C2.

Proof. Welet T € Gy such that T(c1) = cp. By Definition (13), R(T(c)) = R(c) forall ¢ € C.
Therefore, R(c1) = R(T(c1)) = R(c2) and consequently ¢; ~g cp. O

The converse of the gauge-to-indistinguishability implication (Theorem 6) does not
hold in general. Two configurations can be observationally indistinguishable, but not gauge
equivalent. Gauge equivalence requires the existence of a global symmetry transformation
relating the configurations. In contrast, observational indistinguishability only means that
they give the same measurement outcome. Let us construct counterexample with restricted

gauge group.

Example 10. We let C = R? and let R(x,y) = x> + y? with event space & = Rsq. Then
(1,0) ~g (0,1) since both have Event 1. Now we choose the admissible gauge group Gr < Autg(C)
to be the subgroup generated by reflection across the x-axis (so Gr = {(x,y) — (x,y), (x,y) —
(x, —y)}). This G preserves R (hence Gr < Autg), but thereis no T € Gg with T(1,0) = (0,1).
Therefore (1,0) ~g (0,1) while (1,0) #gauge (0,1), showing that indistinguishability is strictly
weaker than gauge equivalence when Gy is a proper subgroup of Autg (C).

In the case where Gg = Autg(C), indistinguishability and gauge equivalence coincide:
if ¢c; ~g c2, then there exists a recognition automorphism mapping c; to c;. In physical
applications, however, the intended “gauge group” is typically a distinguished subgroup
Gr C Autg(C) singled out by additional structure (e.g., dynamics, locality constraints,
smoothness); then, Gr-gauge equivalence can be strictly stronger than ~z.

3.3. Finite Local Resolution

We now introduce the axiom that distinguishes RG from classical continuum geometry
(such as R" and differentiable manifolds) and establishes a fundamental connection to
finite observational resolution. The Finite Resolution Axiom says that, locally, a recognizer
can distinguish only finitely many states, while in classical geometry infinite precision
is assumed.
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Axiom 4 (RG3: Finite Local Resolution). For every configuration ¢ € C and recognizer R, there
exists a neighborhood U € N (c) such that the image R(U) is a finite set, i.e.,|R(U)| < oo.

Remark 11. Axiom 4 means that a recognizer cannot distinguish infinitely many different outcomes
inside a single local region of the configuration space.

Axiom 4 has a simple consequence: if a local neighborhood is infinite, but the recog-
nizer has finite resolution there, then R cannot be injective on that neighborhood. More
precisely, the following holds:

Theorem 7 (Local Non-Injectivity). Welet ¢ € C and let U € N (c) be a neighborhood satisfying
Axiom 4. If U is an infinite set (i.e., contains infinitely many configurations), then the restriction

R|u U — &
is not injective.

Remark 12. If an infinite neighborhood is mapped to a finite set of observable outcomes, then differ-
ent configurations must belong to the same equivalence class. In continuum-based models, where
local neighborhoods are typically infinite, this leads to observable resolution cells rather than mathe-
matical points. In this sense, finite resolution gives a geometric explanation of effective discretization:
distinct configurations become observationally indistinguishable due to limited resolution.

When RG3 Fails or Is Weakened

Axiom 4 (RG3) is physically motivated by the finite precision of any real measurement
apparatus, but it is mathematically restrictive. It excludes certain idealized models that
arise in pure mathematics and theoretical physics. Here, we briefly discuss scenarios where
RGS3 fails or must be weakened and the consequences for the framework.

1. Classical smooth manifolds with continuous recognizers. ~We consider C = R”"
with the standard topology and a smooth real-valued recognizer R : R” — R. If R
is non-constant (e.g., R(x) = x7), then for any neighborhood U, the image R(U) is
an interval in R, hence infinite. RG3 fails. In this case, the quotient Cg inherits the
structure of R, and no discretization occurs. This is the classical continuum limit
where measurement is assumed to have infinite precision.

2. Weakening RG3: Countable resolution. One can weaken RG3 to require only that
|R(U)| is countable rather than finite. This allows, for instance, recognizers on R
that distinguish rational numbers from irrationals locally, or lattice-valued recogniz-
ers. The quotient Cr would then be at most countable locally. Most of the frame-
work (equivalence relations, quotient construction, universal property) remains valid.
However, Theorem 7 (Local Non-Injectivity) would need to be restated for infinite
cardinalities, and the notion of “resolution cell” loses its finite, discrete character.

3. Nolocality assumption: Global recognizers without RG3. If one drops both the locality
structure (RG2) and finite resolution (RG3), the framework reduces to the study of
arbitrary quotient spaces C/~p for arbitrary recognizers R : C — £. The universal
property (Theorem 2) and injectivity of R (Theorem 1) still hold, but the connection to
physical observability and the notion of “local resolution” is lost. This is the setting
of pure set-theoretic quotients, which is mathematically well defined but lacks the
operational and physical content that RG3 provides.

4.  Infinite-dimensional configuration spaces. In infinite-dimensional spaces (e.g., func-
tion spaces, path spaces in quantum field theory), RG3 may fail because local neigh-
borhoods are inherently infinite-dimensional. For instance, a recognizer that measures
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all Fourier coefficients of a function would have infinite local resolution. To apply RG
in such contexts, one must either restrict to finite-dimensional observable subspaces
(as in effective field theory truncations) or accept that the quotient Cy is itself infinite-
dimensional and does not exhibit the discrete, finite-resolution structure that RG3
enforces in finite-dimensional settings.

5. Physical interpretation. From a physical standpoint, RG3 is justified by the fact that
any real measurement apparatus has finite precision, bounded energy, and finite time.
However, in idealized or limiting models (e.g., taking the continuum limit of a lattice
theory, or considering the # — 0 limit in quantum mechanics), one may want to model
recognizers with infinite resolution. In such cases, RG3 should be viewed as an axiom
that is relaxed in the idealized limit, while the rest of the framework (RGO, RG1, RG2,
RG4) continues to apply.

To conclude, RG3 is essential for deriving the discrete, operational character of ob-
servable space from finite measurements. Weakening or removing RG3 allows for clas-
sical continuum models and infinite-precision idealizations, but at the cost of losing the
framework’s distinctive feature: the emergence of discrete resolution cells from finite obser-
vational capabilities. The choice to include RG3 thus reflects a commitment to modeling
realistic, finite-resolution observations rather than idealized infinite-precision measurements.

3.4. Comparative Recognizers

Most often, to specify a geometry, a notion of distance is usually given. In RG,
distance is not given in advance. Instead, it is derived from a weaker structure, called
comparative recognition.

A standard recognizer R : C — £ assigns an event to a single configuration and induces
the observable space Cr by a quotient construction. In contrast, a comparative recognizer
assigns an event to a pair of configurations. This allows us to compare configurations
directly, after which notions of order and distance can be introduced.

Axiom 5 (RG4: Comparative Recognizers). We fix a distinguished recognition equality event
eeq € £. A comparative recognizer is a map

Compg :CxC— &

such that:

1. Compg(c,c) = eeq forallc € C;
2. Compy, is nontrivial, i.e., there exist c1,co € C with Compp(c1,¢2) # €eq-

As an immediate consequence of Axiom 5, no symmetry, transitivity, or numerical
structure is assumed for Compy. In particular, it is not required that Compy(cy,¢2) =
Compg(c2,¢1).

Additional regularity conditions may be imposed later, if needed. Comparative
recognizers can be used to describe physical devices whose output depends on comparison
rather than on absolute measurement. Typical examples include balance scales (“is object
A heavier than object B?”), interferometers measuring relative phase, or devices comparing
arrival times of signals.

3.5. Emergence of Order

Given a comparative recognizer Comp, some events can be understood as indicating
an order-type relation. We let £~ C & be a chosen subset of events, interpreted as “strictly
greater than” outcomes.

We define two binary relations:
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* (1 < < Compg(cy,cz) €&
* =0 < (g=<c)or(cg=cinC).

In general, the relations obtained in this way do not need to be partial or total order
relations. They only reflect order-like comparison information that is accessible at the level
of recognition.

Remark 13. The choice of £~ and its interpretation are part of the physical modeling. The
relations < and < inherit their properties directly from the behavior of Compy on the chosen
subset €. The equality ¢y = cy refers to identity in the configuration space C, and not to
operational indistinguishability.

In this way, comparative recognizers provide order-type information based on opera-
tional comparison, before any notion of distance is introduced.

3.6. Emergence of Recognition Distance

Under additional assumptions, comparative recognizers can be used to define quan-
titative notions of distinguishability. The basic idea is that distance is not assumed in
advance, but arises as a measure of how difficult it is to distinguish configurations using
available measurements.

We let R = {Compy, }ics be a family of comparative recognizers on C. For each i € I,

we let €i(ri2h « © € be a subset of events interpreted as indicating operational indistinguisha-

bility for Compp . With these assumptions, we have the following definitions:
Definition 15. Let us define a relation =~ on C by
e <<= Compg(c,c)€ 81(;211“ forallie I
Definition 16 (Recognition Distance). A recognition distance is a pseudometric
d:CxC—Rxg

on the configuration space.
The distance d is called operationally grounded if for any c1,c, € C, we have d(cq,¢2) =0
ifand only if c; =~ cp.

In other words, a distance d is operationally grounded if it is constructed from a
family of comparative recognizers, in a way that reflects the operational effort required to
distinguish configurations.

In particular, operational grounding requires that d(c1, ;) = 0 whenever all available

comparative recognizers Compp_ satisfy Compyp,. (c1,02) € 51(1;)3115*:'

Remark 14. We use a pseudometric since different configurations may have zero recognition
distance if the available recognizers cannot distinguish them. This reflects finite resolution and
limited observational power.

Remark 15. Although a comparative recognizer itself need not be symmetric, in physical realiza-
tions the resulting distance is typically symmetric. This may follow from symmetry of the measuring
device, from averaging over both Compy (c1, ¢2) and Compy (co, ¢1), or from other symmetrization
procedures applied to comparison outcomes.
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The precise construction of recognition distance depends on the choice of comparative
recognizers and on additional assumptions, and is not fixed at the axiomatic level.

Example 11. We define

0, i]ccl ~ Cy,
d(c1,c2) = .
1, otherwise.

m
and thus d(c,c) = 0. Next, we assume R is closed under reversal, i.e., whenever Comp, € R

then also Compprey € R, where Comp prev (€1, ¢2) 1= Compy (e, ¢q). If d(cq,c2) = 0, then
Compy (c1,¢2) € &\ for all i, hence also Compy (c2,¢1) € gl

indist indist

We assume that Compy. (c,c) € 5.(i21ist for all ¢ and all i. Then clearly ~ is reflexive

(using the reversed recog-

nizers), so d(cz, c1) = 0. If d(c1, c2) = 1, then for some i we have Compy, (c1,c2) ¢ gi(riZiist’

hence
Compy, (c2,¢1) & Si(;()ﬂst, sod(cy,c1) = 1.

We assume now that = is transitive. If d(cq,c2) = 0and d(cy,c3) = 0, then ¢ = ¢ and
cp & c3, hence ¢ ~ c3 by transitivity, so d(c1,c3) = 0. If d(c1,c3) = 1, then at least one of
d(cy,ca) or d(ca, c3) must be 1, otherwise both would be 0 and transitivity would give d(c1,c3) = 0.
We have thus proved that d satisfies the triangle inequality. Consequently, under the assumptions
made, d is a pseudometric on C. Moreover, d is operationally grounded: d(c1,c2) = 0 when none of
the available comparative recognizers can operationally distinguish cq from ¢y, and d(c1,¢c;) = 1as

soon as at least one recognizer produces an outcome indicating distinguishability.

A recognition distance measures the minimal comparative effort required to distin-
guish two configurations. In other words, it formalizes the idea of “how hard it is to tell
them apart” as a quantitative pseudometric, for example analogous to graph distances,
where edges represent elementary distinction steps. Concrete constructions depend on the
chosen family of recognizers and will be discussed in further work.

When the pseudometric d admits distinct configurations with d(cy, ¢2) = 0, it induces
a genuine metric on the quotient space C /=2, where configurations indistinguishable by all
recognizers are identified. This is the standard passage from a pseudometric to a metric via
quotienting by the zero-distance relation.

Recognition distances connect naturally to two geometric frameworks that generalize
RG. When comparative recognizers are direction-sensitive, the induced recognition distance
may depend on the path connecting configurations, leading to a Finsler-type structure.
Recognition distances derived from statistical divergences naturally induce Hessian metrics
on the corresponding quotient space, as in information geometry, where such metrics arise
from convex divergences via their Hessian structure.

Example 12 (Balance-scale recognizer). A balance scale defines a comparative recognizer
Compy, (mq, my) with event space £ = {eeq, €>,e<}, indicating equal mass, left heavier, or
right heavier, respectively. Choosing E~ = {ex } induces a binary comparison relation on masses.
If the associated indistinguishability relation (with Eingist = {eeq}) is transitive, the construction
in Example 11 yields a recognition distance that distinguishes masses in a discrete way.

Every comparative recognizer Compy, induces a family of recognizers
R¢(x) := Compg(c, x), parametrized by a reference configuration c.

Comparative recognizers complete the conceptual inversion of RG: distance, and with
it geometric structure, emerges as the operational cost of distinguishing configurations, not as
an independently given primitive. Geometry appears only after recognition, as a secondary
structure induced by what can be operationally distinguished.
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4. Lean Formalization

An important part of the axiomatic framework presented in this paper is formalized
in the proof assistant Lean 4 [63]. The Lean development is intended as a claims-hygiene
layer: it forces explicit definitions, prevents hidden assumptions.

The formalization includes the primitives (configuration and event spaces, locality
structures, recognizers, and indistinguishability), the recognition quotient, composition of
recognizers, finite local resolution and the corresponding non-injectivity obstruction, and
gauge constructions.

This formalization serves two purposes. First, it provides an independent check of the
logical consistency of the postulated axiomatic framework, relations, definitions, and of
the main structural results. Second, it makes explicit which assumptions are needed for
the appearance of order, distance, and richer geometric structure. Lean is used here not
as a replacement for mathematical reasoning, but as a precision tool. This is particularly
important in a framework where geometry is not taken as a primitive concept, but is
derived from recognition.

5. Conclusions

In this paper, we presented the basic framework of Recognition Geometry (RG),
an axiomatic approach in which the observable space is not assumed in advance but is
obtained from recognition processes. In RG, space appears as a quotient structure induced
by recognition maps.

The main points of the paper can be summarized as follows.

1.  We reversed the usual geometric viewpoint by taking recognition as the primitive
notion and deriving space from it, instead of starting with a given space and defining
measurements on it.

2. We introduced a minimal axiomatic system: a nonempty configuration space, an
event space, a locality structure, and nontrivial recognizers, together with the induced
indistinguishability relation. From this, we constructed the recognition quotient
Cr = C/~p (resolution cells) and the induced observable map R : Cx — £. We
proved that R is injective (Theorem 1), establishing that distinct observable states
produce distinct events with no hidden structure. We also described how the locality
structure generates a topology on C and induces the quotient topology on Cr via the
final topology construction (Propositions 2 and 3).

3. We described the recognition triple (C,&,S) with S = (N, X) and its role in con-
structing the observable space. The universal property of the recognition quotient
(Theorem 2) characterizes Cr as the finest quotient through which the recognizer
factors, establishing its categorical uniqueness.

4. Several examples were given to illustrate the framework, including threshold recog-
nizers on R”, discrete lattice recognizers, quantum spin measurements, and examples
from Recognition Science, where physical space emerges as a quotient structure.

5. We developed the composition of recognizers in §3 and proved that composite
recognizers Ry ® Ry refine quotient structures via intersection of resolution cells
(Theorem 4). This formalizes the principle that “more measurement yields more ge-
ometry.” We also introduced symmetries through recognition-preserving maps and
gauge equivalence, and proved that gauge-equivalent configurations are observation-
ally indistinguishable (Theorem 6), while the converse is not true in general, as shown
by a counterexample.

6. We developed comparative recognizers and used them to define order-type relations
and recognition distances as pseudometrics derived from operational distinguishabil-
ity. This completes the conceptual inversion of RG: distance emerges as the operational
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cost of distinguishing configurations, rather than as an independently given primitive.

Geometry appears only after recognition, as a secondary structure induced by what

can be operationally distinguished.

7. A significant portion of the axiomatic framework, including axioms RG0-RG4, recog-

nizers, indistinguishability, quotient construction, finite resolution, and comparative

recognizers, was formalized in the Lean 4 proof assistant. This formalization provides

an independent verification of logical consistency and makes explicit the minimal

assumptions required for deriving geometric structure from recognition.

Table 1 summarizes the main axioms, definitions, and theorems of the Recognition

Geometry framework, showing how the measurement-first ontology is formalized into a

rigorous mathematical structure.

Table 1. Summary of main axioms, constructions, and theorems in Recognition Geometry.

Type Name

Statement/Significance

Primitive Axioms
Axiom RGO Configuration Space
Axiom RG1 Event Space
Axiom RG2 Locality

Axiom RG3 Finite Resolution
Axiom RG4 Comparative Rec.

Nonempty set C of configurations

Set £ with |£] > 2 of observable outcomes
Neighborhood system N with reflexivity and intersection
closure

Ve, R,3U € N(c) : |[R(U)| < o0

Compy, : C x C — & with reflexivity

Key Constructions

Nontrivial map R : C — & with |[Im(R)| > 2

c1 ~R €2 < R(c1) = R(cp) (equivalence relation)
Cr = C/~p (observable space)

R:Cr = & R([c]r) :== R(c)

(R1 ® Ra)(c) = (Ry(c), Ra(c))

Definition Recognizer

Definition Indistinguishability

Definition Recognition Quotient

Definition Induced Map

Definition Composite
Fundamental Theorems

Theorem 1 Injectivity

Theorem 2 Universal Property

Theorem 4 Refinement

Theorem 6 Gauge

R:Cr—=€&is injective; no hidden structure

Cr is finest quotient factoring R; categorical uniqueness
Cr,@R, refines Cr, and Cg,; more measurement = more
geometry

€1 ~gauge C2 = €1 ~R C2 (converse false)

Topological Structure
Proposition Quotient Topology
Proposition 4  Continuity

TR on Cp is final topology making 7 continuous
If R continuous then R continuous

Applications
Example 1 Threshold on R”
Example 2 Discrete Lattice Z3
Example 3 Quantum Spin 52
Example 4 Recognition Science

Half-space recognizers; continuous = discrete quotient
Parity recognizer; finite quotient from infinite space
Stern-Gerlach measurements; finite resolution limitation
Ledger space £; physical space emerges as quotient

The main message of RG is that space is not given in advance but is obtained through

recognition. This measurement-first ontology unifies diverse approaches across math-
ematical physics, quantum foundations, information geometry, and discrete spacetime
theories, while providing a rigorous axiomatic foundation amenable to formal verification.
The framework naturally accommodates finite observational resolution, explaining why
classical continua appear discrete at fine scales, and applies equally to discrete, continuous,
and hybrid systems.
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