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Abstract

This methods paper defines a proof—verified semantics that car-
ries a strictly dimensionless derivation layer into SI displays with-
out introducing tunable parameters. The inputs (proved upstream
and not re-proved here) are: a unique symmetric multiplicative cost
J(x) = 12(x+2~1)—1 with log-axis form J(e!) = cosht—1; a quantized
tick with exact n-d increments and gauge fixed up to a componentwise
constant; an eight-phase minimal cycle in three-bit parity space; and
the golden-ratio gap In¢. We formalize a Reality Bridge that (i) dis-
plays J additively as S/h (no offset, no fit), (ii) assigns a recognition
tick Tree = (27/(81n¢)) 79 and a kinematic hop length Agin = ¢ Trec
with ¢ = €o/70, and (iii) provides two independent SI landings (time-
first and length-first) whose numerical agreement within stated com-
bined uncertainty constitutes a single pass/fail criterion. We prove
non-circularity (unit relabelings factor out and cannot alter dimen-
sionless content) and uniqueness at the stated symmetry (the bridge
is fixed up to trivial unit rescalings). No sector models, regressions,
thresholds, or empirical tuning are used. A reproducibility pack (Lean
theorem identifiers, checksums, and one-command scripts that com-
pute both landings and the pass/fail statistic) is specified for audit.

1 Introduction

Problem. Mathematical results are exact and dimensionless; measure-
ments are finite-precision and Sl-native. Claims of being “parameter-free”
often collapse under audit because units and calibrations quietly inject
knobs. The challenge is to expose a route from theorem to instrument read-
out that is (a) explicit, (b) auditable, and (c) falsifiable—without feeding
any parameter back into the proofs.



Starting point (dimensionless inputs). We assume, as upstream facts
proved elsewhere and not re-proved here:

e a unique symmetric multiplicative cost J(z) = 12(x + 27!) — 1 with
log-axis minimum at x = 1;

e a quantized tick on a discrete ledger so that n steps produce an exact
increment n - §;

e an eight-tick partition in three-bit parity space (minimal period 8);

e the golden ratio ¢ = # as the positive solution of z =1+ %, with

gap 0gap = In .
These are purely dimensionless. They are the only features the measurement
layer is allowed to see.

Reality Bridge (what we introduce). We define a single semantics
that:

1. displays J additively as action via J — S/h (a naming, not a fit);

2. assigns the ledger tick an SI duration
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and a kinematic hop length Ay := ¢ Tree With ¢ := £y/70;

3. offers an independent length-first landing by adopting a conventional
hop length Ay and inferring the same 7. through c.

Here (79, /o) are unit names (seconds, meters). They do not alter any di-
mensionless identity.

Two landings, one test. The time-first landing fixes 79 by clock compar-
ison and then computes Agijn = ¢Trec. The length-first landing adopts Arec
as a conventional anchor and then computes Tyec = Arec/c and the implied
To- Consistency is not optional: both routes must agree within their com-
bined uncertainty. Writing u(-) for relative standard uncertainty and taking
coverage k € {1, 2},
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must hold. No thresholds or regressions appear anywhere—one inequality
governs success or failure.




What is proved here.

1. Non-circularity: any relabeling of units factors through (79, ¢y), leav-
ing the numerical content of the dimensionless inputs unchanged. The
bridge cannot smuggle parameters back into proofs.

2. Uniqueness at the stated symmetry: among semantics that respect
multiplicative symmetry x — 1/z, preserve the eight-tick partition,
and keep J dimensionless, the presented bridge is unique up to a single
global affine rescaling of displays.

3. Falsifiability: the two landings yield the pass/fail inequality above;
persistent failure falsifies the semantics or a landing assumption.

What is not claimed. This paper makes no empirical fit, offers no nu-
merical prediction beyond equality of routes under declared anchors, and
introduces no priors or stochastic models. Uncertainty is purely metrologi-
cal. All sector-specific applications are out of scope and must not feed back
into the dimensionless layer.

Notation and conventions. We use ¢ for the golden ratio; dgap := In¢;
J(x) =12+ 27 —1; Tree = 8%7’:0 70; € := Lo/ T0; Akin := € Trec; Arec denotes
a conventional length anchor. All statements are self-contained and do not

rely on external documents.

Structure. The paper defines the semantics, proves non-circularity and
uniqueness, specifies the two SI landings, derives the falsifiability test with
uncertainty propagation, and lists operational protocols and artifact require-
ments for audit.

Motivation and problem domain. The intended use case is the “last-
mile” link in fundamental physics between dimensionless derivations and
falsifiable, SI-native statements. Abstract or pre-geometric formalisms often
yield ratios or symmetries but leave unitful predictions underdetermined.
The Reality Bridge is designed to close this gap with a fixed, auditable
semantics that remains non-circular and parameter-free at the derivation
layer.



Related standards and prior art. We follow the terminology of the
VIM (JCGM 200) and the uncertainty framework of the GUM (JCGM 100):
uncertainties are reported as (relative) standard uncertainties u(-) with a
predeclared coverage factor k. The SI definitions (9th edition) are used
throughout; in particular, h and ¢ are exact by definition whereas G carries
a stated standard uncertainty. Our contribution is orthogonal to sector
models: it supplies a fixed, auditable semantics that maps dimensionless
invariants to SI displays and a single uncertainty-based pass/fail rule without
fitting or thresholds.

2 Scope, Claims, and Editorial Compliance

What this paper does. We present a proof-first semantics that maps
dimensionless theorems (unique symmetric cost J, quantized tick, eight-tick
partition, ¢) to SI displays for action and for clock/length. The bridge is
fully specified, non-circular, and yields a single pass/fail laboratory criterion.
No tunable parameters enter the derivations.

What this paper does not do. We do not introduce sector models, data
fits, or numeric predictions beyond the equality of two SI landings within
stated uncertainty. Phenomenology (e.g., galaxy kernels, mass spectra) is
out of scope and belongs in separate papers.

Precise meaning of “parameter-free”. “Parameter-free” applies to the
derivation layer only: the cost J(x) = 12(x +x~1) — 1, the eight-tick struc-
ture, and the golden-ratio gap In ¢ are dimensionless theorems. Numerical
displays use standard SI/CODATA constants. No parameter is adjusted to
match any dataset in this paper.

Two independent SI landings (falsifiability). We define a time-first
landing (choose 7p; compute Ty = SfT“@TO and Agin = CTyee, ¢ = £p/70) and
a length-first landing (adopt Aec; compute Trec = Arec/c and the implied 7p).

Consistency is required:

’ )\kin - )\rec
)\rec
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Persistent failure falsifies the semantics or a landing assumption.



Non-circularity and invariants. Unit relabelings (79, 4y) — (a7, 84)
scale displays but leave the dimensionless content unchanged. The normal-
ized equalities

=J

Trec 27 Akin 27 §
0 8lnyp’ o 8lnyp’ h

are bridge invariants and the targets of audit.

Language and notation policy. Main text uses classical terms (conti-
nuity equation, action, gauge-constant, Hamiltonian/EL where applicable).
RS-specific terms appear only where no classical synonym exists and are
defined locally. Constants use SI/CODATA values and standard symbols.

Review-ready checklist (enforced at submission). (1) No unresolved
references; (2) only used packages are loaded; (3) all claims appear as
definitions/theorems/lemmas or are explicitly labeled interpretation; (4)
“parameter-free” is only used in the derivation sense defined above; (5) the
two-landings inequality and uncertainty definitions appear verbatim.

3 A Motivated Postulate Set for a Parameter-Free
Framework

This methods paper operates on a minimal, dimensionless foundation. For
completeness, we adopt the following postulates as the internal interface to
the Reality Bridge. Each postulate is accompanied by a brief motivation;
no sector model or fit is assumed.

P1 (Cost uniqueness). J(z) = 12(z+2"1)—1, with J(1) = 0 and J(x) =
J(1/x); equivalently J(e') = cosht—1. Motivation. Among symmetric
multiplicative costs, this choice uniquely enforces dual-balance and a
convex minimum at the neutral point, fixing the display without offsets
or tunable scales.

P2 (Quantized tick). There is a fundamental dimensionless increment
d > 0 such that along any n-step reach the potential jump is ex-
actly n - 0; potentials with the same § agree up to a componentwise
constant. Motivation. Discreteness provides a countable, auditable
substrate; conservation then implies linear, integer-quantized accumu-
lation along finite chains.



P3 (Eight-tick minimality in D = 3). In three-bit parity space, a full
traversal has minimal period 23 = 8, and this period is attainable.
Motivation. Coverage of all parity patterns in three spatial bits fixes
the smallest complete cycle, linking the temporal partition directly to
spatial dimensionality.

P4 (Golden-ratio gap). ¢ = 1+ /52 is the positive solution of z = 1 +
1/x; define the dimensionless gap dgap = In. Motivation. The fixed-
point relation x = 1+ 1/x selects a unique, scale-free multiplier; using
In ¢ as the canonical gap removes arbitrary bases from the display.

These postulates are the only inputs visible to the bridge; all claims below
are downstream of them and introduce no additional parameters.

4 Upstream Proof Layer: Inputs Assumed Here
(Dimensionless)
All statements in this section are taken as proved upstream and are not re-

proved here. They are purely dimensionless and will be used only as named
inputs to the bridge constructed later.

Input UP-1 (Cost uniqueness and log-axis form). There exists a
unique symmetric multiplicative cost

1
J: Ryo— R, J(w):12<:c—|—x)—1,

characterized by J(1) = 0 and J(x) = J(1/z). On the log axis,
J(e') =cosht —1, t€R.

EL corollaries at t = 0: J(e) > 0 with equality iff ¢t = 0; %J(etﬂtzo = 0;
G2 (@)img = 1.

Input UP-2 (Quantized tick and discrete potential theory). Let U
be a set and R C U xU a directed reach relation. There exists a fundamental,
positive, dimensionless increment § (the tick) and a potential p : U — Z

such that for every edge (a,b) € R,

p(b) — pla) = 6.

Consequently, for any chain a = uguy - - - uy, = b of length n,

p(b) —pla) =n 0.



Potentials with the same edge increment ¢ differ by a componentwise con-
stant (gauge fixed up to an additive constant on each reach component).

Input UP-3 (Minimal parity cycle in three bits). For the parity pat-
tern space {0,1}1123} there exists a cycle that visits every pattern exactly
once before repeating, and any such cycle has period exactly

28 =38.
(Equivalently: the eight-tick partition is both attainable and minimal in
D =3.)

Input UP-4 (Constants layer: golden-ratio gap). Let ¢ = 1 4+ /52 be
the positive solution of z = 14 1z (so p? = ¢ +1). Define the dimensionless
gap

dgap = 1n ¢ > 0.

These inputs feed the Reality Bridge; no units, calibrations, or empirical
parameters are introduced here, and none of the bridge constructions are
permitted to alter them.

5 Reality Bridge: Formal Semantics (Definition
and Theorems)

[Reality Bridge] A Reality Bridge is a pair (S,7) where:

e S assigns to the dimensionless cost J an additive action display via
the identity J = S/h.

e T assigns to the discrete tick an SI clock interval 7o := 278 In ¢ - 7
and to one hop a kinematic length Ay := ¢ Tyec, wWith ¢ := £y /70.

The tuple (70, o) is a unit choice; it names seconds and meters but does not
change any dimensionless theorem.

[Unit relabeling] A unit relabeling is a pair of positive scalings («, 3) €
R2>0 acting on the unit names by

7'0}—>T0,:Oé7'0, foHE,:ﬁfo,

hence ¢ = {y/79 — ¢ = (B/a) c.
[Naturality of displays] Under any unit relabeling (a, (),

/ /
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and the equalities J = S/h and A, = ¢ Tyec are preserved.
By definition, 7y = (27/(81n¢)) 79. Relabeling sends 79 to a7g, SO Trec
scales by a. For length, ¢ scales by /a; thus

)‘{dn = clTlfec = (5/0[)0 ' (O”—FQC) = /8 )\kin-

The identity J = S/h is dimensionless; relabeling multiplies both S and
by the same action unit so their ratio is invariant.

[Non-circularity] The Reality Bridge cannot feed parameters back into
the dimensionless layer. Concretely:

1. J, ¢, Inp, and the eight-tick combinatorics are invariant under all unit
relabelings.

2. For any relabeling (o, 3), numerical equalities among displays that are
dimensionless or normalized by the same unit (e.g. J = S/h, Axin/Yo,
Trec/T0) are unchanged.

Item (1) holds because these quantities are defined without units. Item
(2) follows from the lemma: Tyee/70 and Ayin/fo remain fixed, and S/h is
unitless. Therefore changing (79, ¢p) cannot alter any dimensionless theorem
or any equality expressed as a unitless ratio.

[Zero-offset action display] The assignment S : J +— S/h has no additive
freedom. In particular, the only affine map compatible with J(1) = 0 and
the symmetry J(z) = J(1/z) is S/h = J.

Any affine alternative would be S/h = a J+0b with a > 0. From J(1)
one gets b = 0. If a # 1, rescaling would destroy the normalization J(e
cosht — 1 at the log-axis minimum ¢t = 0. Hence a = 1.

[Uniqueness at the stated symmetry] Among bridges that simultaneously

=0
t =

satisfy:

1. multiplicative symmetry of J is preserved in the action display (no
offset, no distortion);

2. one eight-tick cycle is identified with a full 27 phase advance in the
clock display;

3. the hop length display is kinematic: A = c7;
the assignment

2

e A in = rec) h =
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is unique up to unit relabeling («, 3).

Condition (1) forces S/h = J by the previous proposition. Condition
(2) fixes the proportionality between 7y and 79 to 2w/(81n ). Condition
(3) fixes the length display as ¢ 7. Any other solution differs only by («, ),
which acts as in the lemma and does not change the normalized equalities.

[Bridge invariants| The following are independent of unit relabelings and
therefore auditable without knobs:

rec 2 )‘in 2
Trec 2T kin 27 %:J_

0 8lny’ by 8lny’

[No knobs| The only degrees of freedom are the names of the base units
(10, %0). They cancel in every normalized display. No empirical parameter
enters the proofs or their consequences stated above.

6 Two Independent SI Landings (No Free Param-
eters)

The Reality Bridge admits two operational ways to land in SI. Each route
produces numerical values for the recognition tick 7. and the hop length
A. In an ideal (noise—free) setting they are equal by construction; opera-
tionally, agreement is tested against stated measurement uncertainty (no
tuning parameters are introduced anywhere).

Route A: Time-first Landing

Choose a clock unit 7y by direct comparison to an SI time standard. Then

2T 2T

Trec = m 70, Akin = CTrec = 05

8lnp
with ¢ := fy/79. Thus the normalized displays are bridge invariants:

Trec 27 Akin 27

0 8y’ o 8y

Choice of conventional length anchor (illustrative). For the length-
first landing we adopt, as an illustrative convention, the Planck-scale ex-
pression

hG
Arec = 073



This choice exercises the bridge at a scale where quantum and gravitational
effects are jointly implicated, while keeping the methodology general: any
clearly defined length anchor with a stated uncertainty can be substituted
without changing the bridge or the decision rule.

Route B: Length-first Landing

Adopt a conventional hop-length anchor Aye. (an SIlength). Using the same

C = fo/To,
Arec B 8lnp

Trec = s T0 = Trec;
c 2m

and the normalized displays again equal the same invariants:

Trec 2w Arec 2

0 8lnyp’ by 8lnyp

Consistency demand (no knobs). When performed with the same
(70, 4o) labeling, Route A and Route B must yield identical numerical 7yec
and A\ up to stated measurement uncertainty. Any persistent mismatch fal-
sifies the semantics or a landing assumption; no parameter adjustment is
permitted to reconcile the two.

7 Uncertainty Propagation and the Single Pass/Fail
Inequality
Scope. This section specifies how measurement uncertainty is propagated

for the sole compliance check of the Reality Bridge. All uncertainties are
relative standard (one-sigma) uncertainties.

Definitions. Let u(-) denote relative standard uncertainty. From the bridge
identities

4 2
)\kin = CTrec thh CcC = j, Trec = 771— 7-0’
70 8lnp
it follows algebraically that
2w
Aipg = —— 0
Kin = Qg

hence the only contributor to u(Agi,) is the length-unit labeling:
u(Akin) = u(fo).

10



Let the independent length-side landing supply a conventional anchor Apec
with relative standard uncertainty w(Arec)-

Correlation. If the realizations of £y and A are not statistically indepen-
dent, introduce a correlation coefficient p € [—1,1] between their relative
estimates. The combined relative uncertainty used for the comparison is

ucomb(p) = \/U(KO)Q + u(>\rec)2 -2 pu(e()) u()‘rec) .

When independence is engineered (separate traceability chains), set p = 0.
If p is unknown, a conservative bound is Ucomp < u(€o) +u(Arec) (the p = +1
worst case).

Quantities to report.
Akin, U(Akin) = u(fo); Arecs UW(Arec); p (declaredorbounded); k € {1,2} (coveragefactor

[Falsifiability Test] Fix a coverage factor k£ € {1,2}. With ucomp =
Ucomb(p) as above, the Reality Bridge requires

’ )\kin - )\rec

< ku .
)\rec >~ comb

Equivalently, the standardized discrepancy

7 . ‘)\kin - )\rec|

Ucomb Arec

must satisfy Z < k. Persistent violation falsifies the bridge or a landing
assumption for the stated semantics.

[Implementation notes and concrete choices] Algebraic cancellations.
Computing Ay, via separate measurements of ¢ and 7e. can introduce in-
ternal correlations through 7y, but the bridge identities imply

\ by 2w 27
. = C = — =
kin Trec 70 8lneyp 0 8lny

607

so the effective relative uncertainty is u(Axin) = u(£p).

Correlation policy. If A is realized with the same hardware or cali-
bration chain as ¢y, take p > 0 and justify it; otherwise design the landings
to be independent so that p = 0.

Concrete choices used in this paper (frozen for the artifact pack).

11



1. Length unit label £y (Route A). Realize the meter via an interferomet-
ric path-length measurement referenced to an optical frequency comb
locked to an Sl-traceable second. Target:

u(fp) = 1.0 x 107°.

2. Conventional anchor Aiec (Route B). Adopt

[hG
Arec 1= 073

In SI, ¢ and h (hence h = h/2m) are exact; the relative uncertainty is
dominated by G. Frozen for this submission:

w(@) =20x10"7° =  u(hee) = 12u(G) =1.0 x 107°.

3. Correlation between landings. Use disjoint laboratories (or, at min-
imum, disjoint hardware and analysis chains) for Routes A and B.
Chosen value:

p =0 (engineeredindependence).

Implied combined uncertainty. With the above targets and p =0,

Ucomb = \/U(&))Q + U()\reC)Q ~ 1.0 x 1075.

Audit note. These values are predeclared. They may be updated only
by issuing a new artifact pack (e.g., if a revised recommended value of G is
adopted); retroactive changes after observing the comparison are not per-
mitted.

8 Operational Protocols (How to Measure With-
out Knobs)

Protocol A: Clock-side Determination of 7

Objective. Realize the SI second (time unit) and compute the recognition

tick and kinematic hop length without introducing tunable parameters.
Instruments. One of: (i) in-lab primary/secondary time standard (e.g.,

a cesium fountain or an optically steered hydrogen maser with a frequency

comb), or (ii) a calibrated UTC(k) realization with traceable time-transfer

(e.g., common-view GNSS or two-way satellite/optical fiber links).
Procedure.

12



1. Realize the second. Lock a local oscillator to the SI definition of the
second. Record the relative standard uncertainty u(7) from the com-
parison interval and reported stability (Allan deviation) of the realiza-

tion.!

2. Compute the recognition tick. Set

2

81114,07—0'

Trec =

This identity has no fit parameter and inherits the relative uncertainty
of 19 at realization level.

3. Compute the kinematic hop length. With ¢ := £y /7,

2

— {p.
8lny 0

Akin = CTrec =
Note the cancellation: realization noise in 7y cancels algebraically; the
display depends only on the length unit name ¢y. If £y is treated as
a unit name (no physical realization in this step), then u(Axin) = 0 at
the display level; if a physical length realization is used, set u(Axin) =

4. Record invariants. Report the two normalized, unit-invariant ratios

Trec 2T Akin 27

0 8lnyp’ by 8y

Targets. Aim for u(rp) < 1071 (clock realization over multi-hour aver-
aging) and, if a physical length realization is invoked, u(fy) < 10~9. These
targets are illustrative and may be tightened by the laboratory.

Acceptance. No fitting or thresholding is performed. The outputs are
the identities above; uncertainty is documented, not tuned.

Protocol B: Length-side Determination of ...

Objective. Land independently on a conventional hop-length anchor and
infer the same 7. through kinematics.
Anchor choice. Adopt the conventional definition

|hG
)\rec = CT

!Display-level identities treat 7o as a unit name; lab realizations carry finite u(7o).

13



Here ¢ and h are exact in SI; GG carries the relative standard uncertainty
u(G). Consequently,
U(Arec) = 12u(G).

Independence. Realize A using a calibration and analysis chain that
is organizationally and instrumentally disjoint from Protocol A (different
laboratory or at minimum a distinct hardware chain and data reduction),
so the correlation coefficient p between the relative estimates of £y (from
Protocol A, if realized) and A is engineered to be near zero.

Procedure.

1. Ewvaluate the anchor. Compute A from the adopted constants and
document u(Arec) = 12u(G).

2. Infer the recognition tick. With the exact identity ¢ = £y/7o,

Arec 70

Trec = ? = Arec %
This step is a display conversion; no fit is introduced.
3. Report invariants. Verify that

Trec Arec Arec - 27

T0 N EQ, 50 _8ln90
are numerically consistent with Protocol A within the uncertainty
model specified in the previous section.

Targets. Use the current recommended value of G with its stated stan-
dard uncertainty. No additional parameters are introduced.

Protocol C: Cross-sector Consistency

Objective. Check that the action display S/ corresponding to a given
dimensionless stretch/compression x (hence a fixed J(x)) is invariant across
distinct experimental contexts.

Contexts. Perform at least two of the following, ensuring independent
instrumentation and analysis:

1. Ramsey phase accumulation (two-level system). Implement a con-
trolled detuning A for time 7. The accumulated phase & = AT
gives a dimensionless action display via S/h = ®. Choose A and T to
realize a target J on the log axis, J(e') = cosht — 1, and compare the
inferred S/h to J.

14



2. Josephson phase evolution. In a current-biased Josephson junction,
the phase obeys ¢ = (2¢/h)V. Integrate over a controlled voltage step
to obtain A¢ and report S/h = A¢. Match to the same target J.

3. Optical cavity stretch. Modulate cavity length by a calibrated frac-
tional change x = e!. The mode frequency scales multiplicatively;
the log-axis form J(e') = cosht — 1 allows a direct comparison of the
measured action-equivalent phase advance (via frequency-time area)

to J.
Procedure.
1. Select a target t (e.g., t = £0.01) and compute J(e') = cosht — 1.

2. Configure each context to produce the same ¢ (within control toler-
ances). Extract an experimental estimate of S/h from each context as
described above.

3. Compare displays. For any two contexts A, B, form

(S/h)a —(S/h)B
Teh) :

Ay =

4. Acceptance. Require Aap < kuap, where uygp is the combined rel-
ative standard uncertainty for the pair (including any declared cor-
relation) and k € {1,2} is the coverage factor. Report all Ay p and
UAB-

Notes. (i) No regression, thresholds, or empirical tuning are permitted;
each context maps directly to a display S/h that must coincide with the
mathematical J at the chosen t. (ii) Control ¢ symmetrically (+¢ and —t)
to expose even/odd systematics; J is even in t. (iii) Keep hardware and
analysis chains disjoint across contexts to minimize cross-correlation.

9 No-Knob Accounting (Why This is Parameter-
Free)

Definitions. A knob is any adjustable numerical parameter chosen or
tuned to improve agreement with data (including implicit choices such as
ex—post coverage, regression weights, or selective averaging). A wunit label
is a naming pair (79, fy) for seconds and meters. Unit labels may be real-
ized with finite uncertainty, but algebraically they act as symbols that must
cancel in normalized displays.

15



Derivation layer (purely dimensionless). The only inputs used by the
bridge are theorem-level equalities that carry no units:
Trec 2 )\kin 2 S

70 8lny’ Ia 8Inyp’ h

These relations are fixed by proof and cannot be altered by any laboratory
choice.

Display layer (names, not fits). The bridge names SI displays via

27 27 A
Trec = mm, Akin = CTrec = m 0, c= ?0
No regression, priors, thresholds, or free coefficients appear. The only vari-
ability is metrological uncertainty in the realization of unit labels or anchors,
which is documented—not tuned.

[Knob nullity] Let 6 denote any continuous adjustment at the display
level (choice of weights, offsets, or fit parameters). Then

5(=)- 5 () - 4(3)-o

MO\ 1) 00\ ) 00\nh)
Each normalized quantity equals a fixed constant or a dimensionless
theorem (27/(81n¢) or J). By algebra, unit relabelings (79, £y) — (a79, 500)

cancel in the ratios; any additional display-level adjustment 6 is external to
the identities and cannot enter these expressions.

Falsifiability rule (single inequality). All experimental checks reduce
to one auditable comparison with predeclared coverage k € {1,2}:

‘)\kin - /\rec

\ < Kk Ucomb, Ucomb = \/u()\kin)2 + u()\rec)2 —2p u()\kin> u()\rec) .
rec

No parameter may be adjusted after seeing the data; p (correlation) and &
are declared a priori.

What counts as a knob (forbidden). (i) altering k after observing
the discrepancy; (ii) reweighting or trimming data ex—post to reduce the
discrepancy; (iii) introducing offsets/scales in S/h (would violate J(1) = 0);
(iv) redefining anchors post hoc.

16



What does not count as a knob (allowed). (i) choosing (79, {p) as unit
names; (ii) reporting certified u(-) from traceable calibrations; (iii) declaring
p based on design (disjoint chains) or using a conservative bound; (iv) re-
running the same fixed pipeline on new data.

Consequence. Because the derivation layer is dimensionless and the dis-
play layer is algebraic, there is no free parameter capable of changing the de-
cision outcome except by changing declared uncertainty or correlation—both
of which must be specified before observing the comparison. Hence the pro-
gram is parameter-free in the operational sense required for audit.

10 What Success or Failure Would Mean

If the inequality holds (within stated k)

Interpretation. The Reality Bridge is operationally consistent at the
tested precision: the two independently realized SI landings agree within
the predeclared coverage k and combined relative uncertainty ucomp. NO
parameters have been tuned to obtain this result.

Immediate consequences.

e The bridge invariants are empirically supported:

Trec 2 Akin - 2m § —J
0 Slnyp’ by 8lny’ o

e Proceed to sector-specific applications without feeding data back into
proofs: use the same fixed semantics and uncertainty policy.

e Replicate with disjoint hardware/teams to check stability of the pass/fail
statistic; tighten uncertainty budgets (smaller u(¢p), independent Apec)
if higher precision is desired.

If it fails (persistently, after controls)

Interpretation. Either (i) the Reality Bridge semantics is wrong for the
stated mapping, or (ii) at least one landing assumption (anchor, traceability,
independence, or declared correlation) is invalid. For the present semantics,
the program is falsified.

Controls (must be verified before declaring failure).

17



Re-run the fized pipeline end-to-end on fresh data (no code or param-
eter changes).

Confirm that Route A and Route B use disjoint calibration chains and
that the declared correlation p is accurate or conservatively bounded.

Re-check that the adopted constants and unit labels are exactly those
stated (no quiet revisions of anchors or values).

Verify that no thresholds, offsets, weights, or regressions were intro-
duced post hoc.

Next actions after confirmed failure.

11

Publish the negative result with full artifact trail (scripts, hashes, un-
certainty accounting, and raw data).

If a new semantics or a different landing is proposed, treat it as a new
hypothesis: restate claims, predeclare anchors/coverage/correlation,
and rerun the same single-inequality test. Retroactive edits to make
the present test pass are not permitted.

Artifact and Audit Trail

Purpose. This section fixes the files, identifiers, and deterministic steps
required to audit the paper’s claims. No networks or external resources are
needed; all computations are reproducible from the artifact set alone.

A. Artifact set (file-by-file)

paper.tex — the canonical source of the manuscript.
paper.pdf — the rendered manuscript corresponding to paper.tex.

manifest.txt — human-readable list of all files in this bundle with
size (bytes) and SHA-256.

versions.txt — exact toolchain versions and environment variables
used for deterministic builds.

invariants.txt — the three bridge invariants printed symbolically:

Trec 2T Akin 27 §—J
0 8y’ 4  8lmyp’ A 7
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e display_calculator.py — a minimal, deterministic program that
(i) reads a unit-choice file, (ii) prints Tyec, Akin, and the normalized
ratios, and (iii) computes the pass/fail statistic given A\ and declared
uncertainties.

e units.toml — a tiny text file with the two unit labels 75 and ¢y and
(optionally) the independent anchor A, with its relative uncertainty.

e makefile — one-command targets to build the PDF and to run the
display calculator without any network or randomness.

B. Theorem and statement hooks (one-to-one with the text)

Each named input or bridge statement in the paper has an identifier for
audit:

e UP-1 — cost uniqueness and log-axis form J(z) = 12(z + 2~ !) — 1,
J(e!) = cosht — 1.

e UP-2 — quantized tick and discrete potential theory (n-¢ increment;
gauge fixed up to a constant on components).

e UP-3 — minimal parity cycle in D = 3 (period 8).

e UP-4 — constants layer: ¢ solves =1+ 1/x; 6gap = In .
e RB-Inv-1 — 7y /70 = 27/ (81n ).

e RB-Inv-2 — Ay, /o = 27/(81n ).

e RB-Inv-3 — S/h = J.

e TEST-1 — single pass/fail inequality with coverage k and ucomp.-

C. Deterministic build instructions (no network, no random-
ness)

Toolchain (example, lock these values in versions.txt).
e TeX engine: pdfTeX (TeX Live 2024) or newer; build via latexmk.

e Python: Python 3.11.x for display_calculator.py.
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Environment for reproducibility. Set the following before any build or
run:

LC_ALL=C, TZ=UTC, SOURCE_DATE_EPOCH=1700000000, PYTHONHASHSEED=0, NO_NETWORK=1.

One-command builds.
e Render the PDF deterministically:

latexmk -pdf -interaction=nonstopmode -halt-on-error paper.tex

e Compute displays and the pass/fail statistic (reads units.toml in the
same folder):

python3 display_calculator.py --units units.toml --print

e Regenerate checksums and sizes:
python3 - <<’EOF’import hashlib, os, sysfor fn in sorted(os.listdir(’.’)):if

Copy this output verbatim into manifest.txt.

D. Minimal invocation of the display calculator

Input file units.toml (example).

tau0 = "1 s" ell0 = "299792458 m" lambda_rec = "1 m" wu_lambda_rec = le-6 k = 2

Expected printed invariants (symbolic).

2
8Iny’

J(e') = cosht — 1.

Outputs. The program prints Tyec, Akin, the normalized ratios, and the
standardized discrepancy Z for TEST-1.
E. Audit steps (what a referee or editor can do quickly)

1. Verify that paper.pdf matches paper.tex via a fresh build.

2. Run the display calculator with units.toml; confirm the three invari-
ants and compute the pass/fail statistic.

3. Recompute manifest.txt and confirm all SHA-256 hashes and sizes
match those listed.

4. Review versions.txt to confirm toolchain locking and environment
variables.
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12 Limitations and Scope

Scope of claims. This is a methods/semantics paper. It specifies an
auditable mapping from dimensionless theorems to SI displays and a single
laboratory consistency check. It does not advance a sector model, propose
new dynamics, or claim empirical fits of any dataset.

Upstream inputs. The upstream, dimensionless theorems (cost unique-
ness J, quantized tick, eight—tick minimality, In ¢) are assumed inputs here.
Their proofs, refinements, or generalizations are out of scope and not eval-
uated by the present test.

Numerics and anchors. Numerical displays arise only from unit labels
(10, %0) and any adopted anchor (e.g., a conventional Ay.). Changing rec-
ommended constant values or metrology conventions may change reported
numbers but cannot alter the normalized bridge invariants or the decision
rule.

Uncertainty model. Uncertainty is purely metrological (relative stan-
dard uncertainties and an explicitly declared correlation coefficient p). No
stochastic priors, regressions, thresholds, or post hoc weighting are intro-
duced. If independence between landings is not engineered, the correlation
must be declared and used; otherwise the test is not interpretable.

Interpretive limits. A pass at coverage k indicates operational consis-
tency at that precision; it is not a proof of any sector-level hypothesis. A
fail, after controls, falsifies the present semantics or a landing assumption,
not the upstream theorems as mathematical statements.

Out of scope. Sector-specific applications, parameter estimation, spec-
trum claims, or any feedback from data to proofs are excluded. Any such
extensions must appear in separate papers and must not modify the bridge
or the decision rule defined here.

13 Conclusion

We have fixed a proof-verified Reality Bridge that carries a strictly dimen-
sionless derivation layer into SI displays without introducing tunable param-
eters. The construction delivers (i) non-circularity (unit relabelings factor
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out), (ii) uniqueness at the stated symmetry, and (iii) two independent SI
landings—time-first and length-first—whose numerical agreement is evalu-
ated by a single, predeclared inequality using relative standard uncertainties
and an explicit correlation model. The operational outcome is binary: ei-
ther the two routes agree within combined uncertainty at coverage k, or the
semantics (or a landing assumption) is falsified.

This closes the gap between formal theorem and laboratory statement
with a minimal, auditable interface. The artifact and audit trail make
replication straightforward: choose unit labels and anchors, compute dis-
plays, declare uncertainties and correlation, and evaluate the pass/fail statis-
tic. Subsequent work may pursue sector-specific applications and higher-
precision tests, provided they preserve the no-knob policy and the fixed
decision rule introduced here.

Broader impact. The framework upgrades “parameter-free” from a slo-
gan to an auditable engineering discipline: derivations remain dimensionless
and fixed, displays are algebraic and non-circular, and empirical accountabil-
ity is enforced by a single predeclared inequality. This template is portable:
any candidate theory that can present its inputs in the same normalized

form can be evaluated against laboratory reality without introducing hid-
den knobs.

Appendix A. Detailed Proof of Non-circularity

Setup and notation. Let

2 ¢
K = -~ (dimensionlessconstant), c = 2 (displayidentity).
8lnp 70

The Reality Bridge specifies the displays
Trec = K 70, Akin = CTree = K {p, — = J,

where J is the dimensionless cost fixed upstream. Define the normalized
(dimensionless) ratios

Trec
Ny = , Ny = , N3 =
0 £y

)\kin §
=
By the bridge equations, Ny = K, N, = K, N3 = J.
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[Unit-relabeling action] Let G := (R=0)? act on the unit labels by

(o, B) - (10,40) = (a0, Blo).
This induces the transformations

I I}
/0 __ /
c—c=—=—gc, Trec " Trec

/ / 11
- a = KTO = (X Trec, )\kin = )‘kin = CTrec = B)\kina
0

rec

and leaves J and K unchanged (they are dimensionless).
[Equivariance of displays] Under any (o, 8) € G,

T;ec _ Trec {dn . )\kin <S>,_ §
= =%

h

T 6 70 ’ 5/0 N K() ’
Immediate from the transformation rules: 7/../7) = (@Trec)/(70), Nn /46 =
(BAkin)/(BLy), and S/h is already unitless and hence invariant.
[Bridge invariants and non-circularity| For all (o, 8) € G,

Nl =N =K, Njy=Ny=EK, Nj=N3=.

Consequently, changing (79, {p) cannot alter any numerical statement whose
value is a function of (N1, N3, N3) only. In particular, unit relabelings cannot
change the dimensionless content of the upstream theorems or of the bridge
equations; hence no parameter can be fed back from measurement to proofs.

By Lemma 13, N; are invariant under G. By the bridge equations,
(N1,N2,N3) = (K, K,J). Any numerical statement expressible purely in
terms of Ny, No, N3 is therefore fixed at (K, K,J) and cannot change un-
der (a, B). Since all upstream statements are dimensionless and the bridge
presents only the three normalized quantities, no information depending on
(70, o) can propagate back to alter them.

[Algebraic elimination of unit labels] Let A be the commutative algebra
generated by symbols 79, £g, ¢, Trec, Akin, S/h and constants K, .J, subject to
the relations

c

= 6—0, Tree = K 70, Akin = K g, § =.J.
T0 h

Let F' be any expression obtained from these symbols using addition, mul-
tiplication, division by nonzero elements, and limits preserving algebraic
equalities, such that F' is dimensionless (i.e., invariant under the G-action).
Then F reduces identically to a function f(K,.J) independent of 7q, £o.

By substitution, any occurrence of ¢, Tyec, Akin, S/h can be written as a
monomial in 7, £y times a function of K, J. Since F is invariant under («, 3)-
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(70, 4o), all residual monomial factors in 79, £y must cancel exactly (otherwise
F would scale nontrivially under G). The remaining expression depends
only on K,J. Limits that preserve algebraic equalities cannot reintroduce
dependence on g, £g.

[Universal factorization] Let II be any pipeline that takes as inputs the
displays (70, €0, €, Trecs Akin, S/h) and outputs a dimensionless real number
using algebraic operations and limits as in Lemma 13. Then there exists a
unique function f with

II = fom, w: (10,00,...) — (K,J),

so that IT depends only on (K, J) and not on (79, {p). In particular, any unit
relabeling leaves 1I unchanged.

Apply Lemma 13 to the (dimensionless) output of II to obtain II =
f(K,J). Uniqueness of f follows because (K,J) uniquely determine all
normalized displays.

[Knob—nullity at the display level] Let 6 be any continuous adjustment in
the display pipeline (for example, a weight, offset, or threshold not appearing
in the bridge equations). If the output is dimensionless and invariant under
unit relabelings, then

)
511 = 0.

whenever the derivative exists. Hence post hoc adjustments cannot change
any conclusion expressed solely via (N1, Ny, N3).

By Theorem 13, IT = f(K, J) and has no dependence on 6.

[What non-circularity does and does not assert| The results above assert
that unit choices and display-level adjustments cannot alter the numeri-
cal content of the dimensionless derivation layer or of its normalized bridge
invariants. They do not assert that measurement noise is absent; finite un-
certainties enter only in the pass/fail test, which compares two independent
landings without altering (K, J).

Appendix B. Uncertainty Algebra

Notation and goal. Let X := Ay, (Route A) and Y := A\ (Route B).
We test the dimensionless discrepancy

X-Y X
D = = — —1.
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Write u(Z) := oz/|Z| for the relative standard uncertainty of any positive
quantity Z. Let p € [—1,1] denote the correlation coefficient between the
relative estimates of X and Y.

B.1 Delta-method derivation for the ratio
Set R := X/Y. A first-order (delta-method) propagation gives

X o3 X? 2X
AV = Var(R) & X+ o — 33 Cov(X,Y).

1
dR ~ ?dX - Y2 Y4O'Y

Divide by R? = (X/Y)? to obtain the relative variance of R:
(o) = () +(5) =97 (D))
R) T \X Y oxoy \X/)\YV )
With p := Cov(X,Y)/(ox0y) and u() = o(-)/| - |,

u(R)? ~ u(X)*+u(Y)? - 2pu(X)u(Y).

Since D = R — 1 is dimensionless and R is close to 1 in any reasonable test,

the standard uncertainty of D equals the relative standard uncertainty of
R:

teomb = u(D) = u(R) ~ \/u(X)? +u(Y)? — 2pu(X) u(Y).

B.2 Specialization to the bridge
From the bridge algebra

2
Trec = K 10, Akin = CTrec = K ly, withK = 81:: exact,

so X = Ay, inherits only the (realization) uncertainty of the meter label:
w(X) = u(Akin) = u(fp).

Route B supplies Y = Ajec as a conventional length anchor with its own
relative standard uncertainty w(Y) = u(Arec) (€.8., U(Arec) = 12u(G) if

Arec = VIG/c3). Hence

Ucomb = \/U(EO)2 + U(Arec)2 —2p U(EO) U(Arec) .
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B.3 Correlation modelling and assumptions

Design target (independence). Engineer Route A and Route B to use
disjoint calibration chains and hardware so that p ~ 0. Then

Ucomb = \/U(EO)Q + ’U/()\rec)2 .

Shared-systematic decomposition (estimating p). If some system-
atic s is common to both routes, model

X s+ Y oy
XO_ ST €1, Yvo_ ST €2,

2

R

with E[s] = 0, Ele;]] = 0, s,€1,€e2 mutually independent, Var(s) = o

o

2
p= = :
V(02 +03) (02 + 3)

wX)? =02 +0o3, uwY)?=o0?+03,

Report g, 01,09 (or bounds) and compute p accordingly.

Unknown correlation (conservative bounds). If p cannot be credibly
estimated, adopt the conservative envelope

Ucomb < U(lo)+u(Aec)  (p = 41 worstcase), Ucomb = | u(lo)—u(Arec)| (p =

Predeclare which bound is used; do not revise after observing D.

B.4 Coverage decisions

Let Z := |D|/ucomp- The acceptance rule is Z < k with predeclared k €
{1,2}.

o If the standardized error is approximately normal, £ = 1 and k = 2
correspond to = 68% and = 95% coverage, respectively.

e Without distributional assumptions, Chebyshev’s inequality guaran-
tees P(|Z] > k) < 1/k?; the rule remains valid but conservative.

o If u(-) is estimated from n repeats (Type A), replace k by the appro-
priate Student-¢ quantile ¢,,_; ~ (predeclared ).

Coverage level, correlation treatment (p or a bound), and any repetition/averaging
protocol must be declared a priori.
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B.5 Replication and averaging (fixed pipeline)

If X;,Y; (i =1,...,n) are n independent replications using the same fized
pipeline and predeclared aggregator, define

_ 1 X =Y 9 1 2
D= g ZZ: < Y, ) ) Ucomb — ﬁ zi:ucombm

and test |D| < k licomp- Do not alter weights post hoc; if unequal ucomp ; are
predeclared, use fixed inverse-variance weights.

Summary. The only ingredients entering the decision rule are u(£y), u(Arec),
the correlation model (p or a conservative bound), and a predeclared cov-
erage factor k. The constants K and J are dimensionless and exact in this
context and therefore contribute no uncertainty.

B.6 Uncertainty budget (compact list)

Route A (length-side display ¢y). Contributors to u(p): (i) interferom-
eter scale factor; (ii) frequency-comb traceability to the second; (iii) environ-
mental model (pressure, temperature, humidity); (iv) alignment/Abbé off-
sets; (v) data reduction repeatability. Target (illustrative): u(fg) = 1x1077.

Route B (anchor \.). Dominant contributor: w(G); constants h
and ¢ are exact, rounding effects negligible. Ezample: u(G) =2 x 1075 =
U(Apec) = 1 x 1075,

Correlation. Design for p = 0 (disjoint chains). If not achievable,
declare p or a conservative bound and use ucomb(p) in the test.

Appendix C. Normalization Conventions

Default display conventions (used throughout).

e Log axis: = = ¢! with natural logarithm; the symmetric cost is
1 ¢
J(x)=12(x+ -] -1, J(e') = cosht —1,
x

with J(1) =0 and J(z) = J(1/x).

e Phase per full cycle: one complete cycle corresponds to a phase
advance of 2.
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Ticks per cycle: in three-bit parity (D = 3), the minimal cycle
length is M = 2P = 8 ticks.

Golden-ratio gap: ¢ = 1 + /52, 6gap = In .

Recognition tick and hop length:

2 Y4
= u ) Trec = K T, c= 707 Akin = € Trec = K {p.
8lnyp 70

e Action display: S/h = J.

Unit relabelings (do not change normalized quantities). For any

a, 8 >0,

rec >\in
(70, 00) = (amo, Blo) = C—F, 2 _

S
To A h

= J (unchanged).
This is the non-circularity already used in the main text.

C.1 Alternate phase and tick conventions

Some readers prefer different phase-per-cycle or tick-per-cycle conventions.
Let

L >0 (phaseper fullcycle), M € N> (tickspercycle).

The default is (L, M) = (27, 8). Replacing (27, 8) by (L, M) changes only

the proportionality constant:
L

" Mlngy’

K. Tree = K(1,01) T0, Akin = K(r,1) lo-

Normalized invariants remain

= K(L,m), o K,my, =J.

Trec Akin §
h

70
Ezamples.
e 7-period convention: L=m, M =8 = K =7/(81ny).

e Sixteen-tick convention: L = 27w, M =16 = K = (2m)/(16lnyp) =
12- (27)/(81n ).
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C.2 Alternate log bases (purely cosmetic)

If one writes gaps with base—10 logs, define (5&?} := logyp . Since Iny =

(In 10) 5&;11?)),
2w 2w

K = = 5
8y 8(In10) 6y

and all formulas are unchanged after this substitution. The proofs, which
use cosh t, are already base—free once t = Inz is fixed.

C.3 Action normalization and equivalence

Some texts use a rescaled cost J* = a J 4+ b with a > 0. The bridge enforces

b=0 (from J(1) =0) and a = 1 in the default display S/h = J. If a reader

insists on J* = a J, the displays remain equivalent by redefining 7* := h/a:
S S S

ﬁ:h—/a:aﬁ:aJ:J

Thus alternative action normalizations amount to a relabeling of & and do
not alter any dimensionless statement or test.
C.4 Changing the parity dimension

If a different parity dimension D is adopted (so the minimal cycle is M =
2P) . use the rule in C.1 with that M:

27 Trec )\kin
K(27r,2D) = m7 - K(27r,2D)7 o

7'0 == K(QW’QD)'

No proof step changes; only the display constant K is replaced accordingly.

C.5 Summary (translation dictionary)

Given any alternate conventions (L, M), optional action scale a > 0, and

optional base-10 gap (5&1%), the unique translations back to the defaults are:

L L * *
h(—h—, J(—J—.

— = ,
Mng  pf(n10) 559 a a

K

All normalized invariants Tyec/70, Akin/fo, and S/h then coincide with the
defaults. No theorem or decision rule changes under these translations.
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Appendix D. Upstream Inputs (Exact Statements)

All items below are taken as proved upstream and are restated here verbatim
for convenience. They are purely dimensionless and are not re-proved in this

paper.
[UP-1: Cost uniqueness and log-axis form] There exists a unique sym-
metric multiplicative cost

1
J: Ryo— R, J(a:)le(a:—i—I)—l,

characterized by J(1) =0 and J(z) = J(1/z). On the log axis one has
J(e') =cosht —1 (t€ R).

In particular, J(e!) > 0 with equality iff t = 0
d2
Wj(et)’tzo =1

[UP-2: Quantized tick and discrete potential theory| Let U be a set and
R C U x U a directed reach relation. There exists a fundamental positive
increment § and a potential p : U — Z such that for every edge (a,b) € R,

p(b) - pla) = 4.

Consequently, for any chain a = uguy - - - u, = b of length n,

p(b) —pla) =n-d.

, %J(etﬂt:o = 0, and

Moreover, if p,q : U — Z satisfy the same edge increment 9, then on each
reach component there exists a constant ¢ € Z such that p = ¢ + ¢ on that
component.

[UP-3: Minimal parity cycle in D = 3] Let Pattern(3) = {0, 1}{1:23},
There exists a cycle that visits every element of Pattern(3) exactly once
before repeating, and any such cycle has period exactly

23 — 8.

Equivalently, the eight-tick partition in three-bit parity space is both attain-
able and minimal.

[UP-4: Constants layer (golden-ratio gap)] Let ¢ = 1+ /52 be the
positive solution of x = 1 + 1z (so ¢? = ¢ + 1). Define the dimensionless
gap

Ogap 1= Ingp > 0.
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