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Abstract

We present four theory results that require no experimental input. First, at a single universal
anchor scale p, the mass-display map for each species collapses to a closed form in the charge
index Z and the golden ratio ¢,
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which yields two immediate consequences: (i) all members of an equal-Z family share the same
anchor display (equal-Z degeneracy), and (ii) anchor ratios within a family are pure powers
set by rung differences (¢>"). Second, we prove a meta-theorem: if the anchor is chosen by a
standard stationarity principle and the resulting fixed point depends smoothly and convexly
on shared kernel or policy parameters, then equal-Z families respond coherently to any shared
deformation at the anchor; any per-flavor tweak necessarily breaks equal-Z degeneracy. Hence,
per-flavor tuning at the anchor is forbidden.

Third, we derive a discrete charge—parity structure for leptons from writhe parity of the
neutral three-cycle: trivial writhe enforces a Dirac branch with an exactly vanishing neutrinoless
double-beta amplitude, while nontrivial writhe fixes a Majorana branch with maximal phase
0 = +7/2 and a narrow, computable interval for the effective double-beta mass. Finally, under
three austere neutral-sector locks—Dirac identity, zero neutral residue at the anchor, and neutral
transport shared with the charged sectors—the unique neutrino rung triplet admitted by the
constructor fails the oscillation-ratio acceptance test for both orderings. Because the ratio
depends only on rung differences, no adjustment of transport or scale can rescue it. This
constitutes a neutrino no-go within the single-anchor, no-tuning framework and cleanly identifies
the minimal relaxation sites for any future closure.

1 Orientation and Contributions

This paper is theory-only. It presents clean statements that follow from a fixed, finite construction
with no species-by-species tuning. The aim is to state what is held fixed, what is proved in this
document, and what is deliberately left to a follow-up.

What is fixed

Finite ledger and dictionary. Each particle is built from a finite motif dictionary. The
construction yields two integers: (i) a charge index Z that classifies species into equal-Z families,
and (ii) a rung index r that places each species on a discrete ladder. The landing is integer by
construction and obeys an eight-tick periodicity in r.



Golden-ratio ladder. The ladder is multiplicative in the golden ratio ¢ = (1 ++/5)/2. Differences
in rung index produce exact powers " that control anchor ratios within a family.

Universal anchor chosen by a standard stationarity principle. There is a single scale i (the
anchor) shared by all species. The anchor is selected so that the display map is stationary with
respect to shared kernel or policy deformations, in the sense of the Principle of Minimal Sensitivity
or the Brodsky—Lepage-Mackenzie prescription. At this special scale the otherwise complicated
dressing integral collapses to a closed form in the charge index.

No per-species knobs. The framework forbids species-specific tuning at the anchor. Only global,
coherent deformations of shared structures (the common kernel and transport within a sector) are
allowed. This design choice is later shown to be necessary: equal-Z families respond coherently to
shared deformations, so any per-species term would break equal-Z degeneracy at u.

What we prove

Boxed Result 1: Single-anchor identity. At the universal anchor u, the dimensionless display
of each species ¢ equals

ln(1+Zi/np)

e

a closed form in the charge index Z; and the golden ratio ¢. Two exact corollaries follow: (a)
equal-Z degeneracy of the anchor display across a family, and (b) pure-rung anchor ratios QAT
within a family.

Boxed Result 2: Coherent equal-Z response forbids per-flavor tuning. If the anchor y is
selected by a stationarity principle and the resulting fixed point depends smoothly and convexly on
shared parameters, then all members of an equal-Z family have identical response to any shared
deformation at the anchor. Any species-specific tweak would split the family and is therefore
forbidden.

Boxed Result 3: Discrete leptonic charge—parity from writhe. The neutral three-cycle
has a writhe parity that fixes the leptonic charge—parity structure. Trivial parity enforces a Dirac
branch with an exactly vanishing neutrinoless double-beta amplitude. Nontrivial parity fixes a
Majorana branch with maximal phase 6 = £7/2 and a narrow, computable interval for the effective
double-beta mass.

Boxed Result 4: Transport-independent oscillation-ratio map. For any admissible neutrino
rung triplet (r1,r2,73), the ratio of mass-squared splittings
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depends only on rung differences. It is independent of transport details and independent of the
absolute scale.

No-go Theorem for the neutrino sector under austere neutral locks. Under three locks—
Dirac neutrinos, zero neutral residue at the anchor, and neutral transport shared with the charged
sectors—the constructor admits a unique neutrino rung triplet. That triplet fails the oscillation-ratio
acceptance window for both orderings. Because the ratio is transport- and scale-independent, no
adjustment can rescue it. This is a structural impossibility under the stated locks.



What we do not do here

We do not select a neutrino relaxation branch. We do not publish “must-hit” numerics for the
neutrino sector (the two splittings, the total mass, the beta-endpoint mass, the effective double-beta
mass, and the charge-parity phase). Those numbers depend on a single yardstick once a minimal
relaxation is chosen and will be presented in a follow-up that adopts exactly one relaxation and
applies the same acceptance pipeline.

2 Axioms and Setup (minimal and explicit)

This section fixes the objects and assumptions used throughout. All statements below are theory-only
and self-contained. Symbols are introduced locally and used consistently in the remainder of the

paper.

Standing notation

e ¢ = (1++/5)/2 is the golden ratio.

e S denotes the finite set of massive Standard Model species considered in this work.

e Foreachi € S, Z; € Z>( is the charge index and r; € Z is the rung index.

o 1 > 01is an energy scale; p~g is the universal anchor (to be fixed by a stationarity prescription).
o 0 € 0 is a vector of shared kernel/policy parameters (common to all ¢ within a sector).

o Fi(p;0) is the dimensionless display map for species i at scale p under shared setting 6.

Axioms

A1l (Finite constructor and integer landing). There exists a finite motif dictionary and a
deterministic constructor that assigns to each i € S a pair of integers

(Zi,ri) S ZZO X Z,

with the following properties:

1. Integer landing: the assignment is integral by construction (no real-valued interpolation).
2. FEight-tick periodicity: rung indices are defined modulo 8 in the sense that for any k € Z,
r; ~ 1;+ 8k,

and any quantity declared rung-difference dependent is invariant under r — r + 8 shifts of all
members of the same family.



A2 (Universal anchor and stationarity). There exists a single, species-independent scale g~
(the universal anchor) selected by a standard stationarity principle (Principle of Minimal Sensitivity
or Brodsky—Lepage—Mackenzie). Formally, for each equal-Z family 7, ={i € S : Z; = Z} and for
every shared direction u € THO,

M@ € =0.
i 7 3, Pl

This choice fixes 1 once and for all; it is common to all species and all equal-Z families.

A3 (Smoothness and convexity). For each i € S, the map (u,6) — F;(u;0) is C? in a
neighborhood of (u ) and, along any straight line 6(t) = 6 + tu with u € Ty©, the family average

Fy ('uf)( )f|;Z|ZZEfZ 3 (0 (1))

is a convex function of ¢ on some open interval containing ¢t = 0.

A4 (Shared transport within a sector). Unless explicitly declared otherwise, all species within
a given sector share the same transport/dressing structure at the anchor. Concretely, there exists a
sector-level kernel Kiec(-;0) such that any appearance of transport in Fj(u,g) uses Ksec(+; ) without
species-specific modifications at .

A5 (No per-flavor adjustments). No species-specific tuning terms are introduced at the anchor.
That is, F;(j1,9) contains no parameter that acts on i alone. This assumption is taken as an axiom
here and is later recovered as a consequence of A2-A4 (the coherent equal-Z response meta-theorem).

Remark (Citation discipline for assumptions)

Each theorem and corollary below lists precisely which axioms (A1-A5) it uses. No result relies on
any assumption not stated in this section.

3 Single-Anchor Mass Identity (Boxed Theorem and Corollaries)

Throughout this section we keep the notation of the setup: ¢ = (1 + /5)/2 is the golden ratio;
1o is the universal anchor; Z; and r; are the charge and rung indices from the finite constructor;
F;(p; 0) is the display map for species i under shared settings 6. For brevity we write

fi (:u,mz) = Fl'(,LL;e)’

suppressing 6 because it is the shared sector parameter at the anchor.



Boxed Theorem 1 (Single-Anchor Mass Identity). (Uses A1, A2, A4.) At the universal
anchor pu,

filu
,mi)im with  k=p, A=Ine.

In particular, f;(p,,) depends only on the charge index Z; and not on any species-specific
parameter.

Proof (sketch). Stationarity collapse (A2). By construction, u is chosen so that the family-
averaged display is stationary under any shared deformation of the sector kernel/policy. At such a
stationary point, scheme-dependent terms that would otherwise carry species labels reduce to a
common, family-level constant when evaluated with a shared transport (A4). This collapses the
dressing functional for each i to a universal form that can depend on the species only through
discrete constructor data.

Integer landing (A1). The finite motif dictionary assigns to ¢ an integral pair (Z;,7;). At p the
only species label that survives the collapse is the charge index Z;; rung data r; relocate the species
along the ladder but do not enter the anchor display itself (that dependence reappears as anchor
ratios, addressed below).

Normalization. The remaining freedom is a two-constant reparameterization of the display scale;
fixing the canonical normalization of the ladder determines kK = ¢ and A = In @, giving the stated
closed form. No species-dependent parameters are introduced at any step. O

Corollary 1 (Equal-Z degeneracy). (Uses A1 and Boxed Theorem 1.)
For any i, j with Z; = Zj,

fi(”:mi) = fi(1,mj).

Proof. With Z; = Z;, the right-hand side of Boxed Theorem 1 is identical for ¢ and j, hence the
anchor displays are equal. ]

Corollary 2 (Rung ratios). (Uses A1 and Boxed Theorem 1.)

Within a fixed equal-Z family, anchor mass ratios are exact powers of the golden ratio:

mi(p)
mj(py = @

Proof. By Corollary 1, members of a fixed-Z family share the same anchor display value. The
rung index 7 records discrete steps on the ladder determined by the constructor (Al). By definition
of that ladder, one rung step rescales the anchor mass by a factor ; therefore, between any two
members 7, j of the same family,

my; _
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for some family reference rung ro and anchor scale mz () common to the family. Taking the ratio
cancels mz(py and yields "5, O

Remarks

e Dependence on assumptions. Boxed Theorem 1 uses A2 to enforce the collapse at v, A4 to
ensure shared transport at the anchor, and Al to restrict species labels to discrete constructor
data. Corollary 1 uses only the theorem and the existence of Z. Corollary 2 uses the same
theorem plus the ladder property encoded by the rung index in Al.

e No hidden knobs. The constants kK = ¢ and A = In ¢ are fixed numbers, not tunable parameters.
No per-species adjustments (A5) are invoked or required; later we prove they are in fact
forbidden by coherent equal-Z response.

o Role of r. The rung index does not enter the value of the anchor display (which depends only
on Z) but does control where a species sits on its family ladder, hence the anchor mass ratios.

4 Robustness and Ablations (what breaks what)

This section records two kinds of checks. First, we show that the single-anchor identity and
its equal-Z consequences are robust under any small, shared change of kernel/policy (within the
same sector and at the same universal anchor). Second, we perform specificity ablations of the
constructor—surgical edits to the charge-index map—and state precisely what fails in each case.

4.1 Robustness under shared deformations

[Stability of the identity and coherent response] (Uses A1-A4.) Let 6 — 0 + eu be any shared
deformation (same for all species in a sector), with e small and w fixed. If the universal anchor p is
chosen by the stationarity prescription of A2 and the regularity conditions of A3 hold, then:

1. The single-anchor identity of Boxed Theorem 1 remains ezact at u for all species:

fi (,u mi)= In(1+Z;/¢)

) In )
with the same constants kK = ¢ and A = In .

2. Equal-Z degeneracy is preserved: if Z; = Z;, then fi(ﬂ,mi)zfj (toom. for all € in a neighborhood
)
of 0.

3. Coherent first-order response holds family-wise:

d d S
— fi(tmy) = —fi(lm,) for all 4, j with Z; = Z;.
de de _

e=0



Proof (sketch). By A2 the anchor is a stationary point of the shared deformation; by A4 all
species in a sector use the same transport at the anchor; hence the scheme-dependent terms that
would otherwise distinguish species collapse identically across an equal-Z family. The identity is
structural (Boxed Theorem 1) and depends only on Z, which is discrete and unaffected by a shared
continuous deformation. Smoothness and convexity (A3) ensure the first-order family-average slope
is zero and that coherent response extends across the family. O

Consequence. Shared kernel/policy shifts move equal-Z families coherently. The form of the identity
is stable (no renormalization of k or \), and equal-Z degeneracy persists within the allowed policy
band.

4.2 Specificity ablations (what breaks what)

We now consider deliberate edits to the charge-index map (“specificity ablations”) and record which
assumption or conclusion fails. We write @ := n Q for a fixed integer n used to clear denominators
of the electric charge Q.

Baseline (for reference). The unablated map is
Zgare = 4+ (6Q)* +(6Q)%,  Zw = (6Q)*+(6Q)", 2, =0,

with @ € {+2/3,—1/3,—1,0} for up-type quarks, down-type quarks, charged leptons, and light
neutrinos, respectively. This yields

Zyet =276, Zasp =24, Zeur=1332, Zy, 1,0, =0.

These integers underpin Boxed Theorem 1 and its corollaries.

Ablation A (replace 6Q by 5Q). Define Q := 5Q and set Zgark = 4+ (5Q)? + (5Q)*,
1= (5Q)% + (5Q)*.

Failure: Integer landing (A1) fails. For Q = +£2/3 or QQ = £1/3, one has 5Q € {£10/3,£5/3},

so (5Q)% and (5Q)* are not integers and hence Z' ¢ Z. The constructor no longer yields

(Z,r) € Z>o X Z, violating Al and voiding Boxed Theorem 1 at the outset.

Ablation B (drop the quartic term (6Q)*). Define
cllluark = 4+ (6Q)2a Zélﬂ: = (6Q)2a Z:// =0.

Failure: Equal-Z degeneracy certificate fails at the anchor. Without the quartic term, the map
Q — Z" is merely quadratic in Q and loses the strict convex separation between charge classes.
Concretely, within a sector the family-average display remains stationary at u (A2), but the
family spread produced by the shared transport is no longer annihilated uniformly across equal-Z
classes, producing species-dependent residuals at p.* Thus the conclusion of Corollary 1 fails for
Z" even though A2-A4 are retained.

“Operationally: evaluating the anchor certificate with Z” while keeping A2-A4 fixed yields nonzero, species-
dependent deviations in f;(u m(14+2'" /) beyond numerical tolerance, breaking equal-Z degeneracy.
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Ablation C (drop the quark offset +4 only for quarks). Define

cjuark = (GQ)2 + (GQ)4¢ Zzi = (GQ)Z + (GQ)47 Zﬁ = O>

i.e., remove the +4 term in the quark map but leave leptons unchanged.

Failure: Universal anchor (A2) ceases to exist across sectors. The additive offset contributes
a sector-specific constant to the family-averaged display that is crucial to simultaneity of the
stationarity condition at a single pu. Removing 44 in quarks alone shifts the quark-family
stationary condition relative to the lepton-family condition. As a result, there is no single pu
at which both sector averages are stationary under the same shared deformation, violating the
“single, species-independent” anchor requirement in A2. Equivalently, enforcing stationarity in
one sector moves the other sector off-stationary by an O(1) amount.

Summary of ablations.
o Replacing 6Q by any n@ with n ¢ 37Z breaks integer landing (A1). The minimal integer that
clears denominators for {0, 41, j:%, —1}isn=6.

« Dropping (6Q)* collapses the convex separation in Z and fails the equal-Z degeneracy certificate
at v (Corollary 1).

e Dropping the +4 in quarks alone desynchronizes the stationarity equations across sectors,
destroying the universal anchor (A2).

4.3 Scope and policy band

All robustness statements above remain within standard QCD/QED running and threshold policies;
no beyond—-Standard Model dynamics is invoked. The only allowed deformations are shared
kernel/policy shifts (A4) taken within conventional scheme/scale bands, under which Proposition 4
applies. Specificity ablations modify the constructor or sector maps themselves and are therefore
outside the permitted policy band; their failures are structural rather than numerical.

5 Meta-Theorem: Coherent Equal-Z Response = No Per-Flavor
Tuning

We analyze how equal-Z families react to shared changes of kernel/policy parameters at the universal
anchor p. Let 6 € © be the shared setting and consider any straight-line deformation

0(t) = 0+ tu, u € TyO, t € R small,

and define g;(t) := F;(j1,9(¢))- By A2 (stationarity at 11), A3 (smoothness/convexity), and A4 (shared
transport), the maps ¢ — g;(t) are C? near t = 0.



Boxed Theorem 2 (Coherent equal-Z response; no per-flavor tuning). (Uses A2-A4.)
For any equal-Z family Fz = {i € S : Z; = Z} and any shared deformation direction u € TypO:

1. (Coherent response) There exists a linear functional az : Ty© — R such that

d
— Fi(1.94¢ ) = az(u) for all i € Fz.
dt ’ =0

In words: all members of an equal-Z family have identical first-order response to any shared
deformation at the anchor.

2. (No per-flavor tuning) If one augments the display by a species-specific knob k; acting at

W, i.e.
(+)
F 7 () = Fi(10) 4 w; G;(0),

with some nontrivial Gj;, then for any equal-Z pair 7, j with x; # k; there exists a shared
direction u such that

d ()
_ (FZ (M;9+tu)—F].(+) (M 7é 0.

;0+tu)
t=0

Hence equal-Z degeneracy cannot be preserved under species-specific knobs at the anchor.

Proof. (1) Coherent response. By A4, all §-dependence of Fj(u.4) enters through a shared sector
kernel Kgec(+;0). By A3, the Gateaux derivative w.r.t. 6 exists and, at fixed p, we can write for

each ¢
d

dt F, i(M;9+t w)

t=0 N <DKFZ'(M;KSCC) s Do Ksec(0)[u] >

where Dy F; is the functional derivative with respect to the shared kernel and (-, ) is the induced
pairing. At the stationary anchor (A2), the family-averaged display is stationary for every u, which
fixes D F; up to family-symmetric terms that do not distinguish labels within Fz. Since Kgec
and DpKgec(0)[u] are shared (A4), the right-hand side is independent of ¢ within Fz. Denote this
common value by az(u); linearity in u follows from the linearity of the Gateaux derivative. This
proves the first claim.

(2) No per-flavor tuning. Let Fi(+) (10)=F( with k; acting only on species ¢. Differentiating

) _ )=Fill0)+5; G (0)
at t = 0 along a shared direction u gives

d .t d

= F )(M;e+tu) = az(u) + K Bi(u), Bi(u) == —Gi(0 +tu)| .
dt t=0 dt t=0

For an equal-Z pair 4, j, the difference of slopes is (k; 8;(u) — K; Bj(u)). If k; # K; and G; is
nontrivial, there exists a shared direction u with f;(u) or §;(u) nonzero, producing a nonvanishing
slope difference. Thus the equal-Z response ceases to be coherent, and equal-Z degeneracy cannot
be maintained under arbitrary shared deformations. ([l

The previous argument is first-order in t. Convexity (A3) strengthens it:

[All-orders lock near the anchor| (Uses A2-A4.) Let i, j € Fz and define Ai;(t) := Fif,0-1tu)—F; (4,94 v
If Ajj(0) = 0 and A;(0) = 0 for all shared directions u, then for every such u either A;;(t) =0

9



in a neighborhood of 0 or A;;(¢) departs from zero at order t* with a definite sign determined by
the second variation. Any species-specific addition x; G; with k; # x; forces a nonzero quadratic
departure for some u.

Proof (sketch). By A3, each ¢+ Ay;(t) is convex near t = 0. If A;;(0) = A;(0) =0 and A;; is
not identically zero, convexity implies A;;(t) > ct? or A;(t) < —ct? for small ¢t with some ¢ > 0
along appropriate directions u. A species-specific term produces a nonzero second variation for some
shared u, hence the quadratic split. O

Consequences

o No per-flavor “improvements” at the anchor. Any species-specific knob at p (even
infinitesimal) breaks coherent equal-Z response and therefore destroys equal-Z degeneracy
under shared deformations. In the framework of this paper, such knobs are forbidden.

e Only global, coherent changes survive. Allowed deformations are those implemented
through the shared sector kernel/policy (A4). These move the entire equal-Z family coherently
and preserve the single-anchor identity established earlier.

e Scope. The result is local in the policy band around p and relies only on stationarity
(A2), smoothness/convexity (A3), and sharedness (A4). When combined with the equal-Z
degeneracy at p (Corollary 1), the theorem elevates the “no tuning” ethos from a design choice
to a logical consequence of the anchor construction.

6 Discrete Leptonic Charge—Parity from Writhe Parity (Dirac/Majorana
branches)

We formalize the neutral-sector topological input and derive a discrete dichotomy for charge—parity
in the lepton sector. The only structural ingredient beyond the axioms is that the neutral three-cycle
associated with the light neutrinos carries a writhe parity

we {+1,—-1},

the parity of crossings in the neutral loop. The case w = +1 is called trivial writhe (even parity)
and w = —1 is nontrivial writhe (odd parity). This parity is a discrete invariant of the constructor
and is part of the finite ledger (A1).

Setup and basic objects

Let U be the lepton mixing matrix and (mj,me, ms) the light-neutrino masses produced by the
constructor. Define the effective neutrinoless double-beta amplitude in the standard way,

mpp = |Umi + Umy + UZms|.

If neutrinos are Dirac, lepton number is conserved and the process is forbidden, so mgg = 0. If they
are Majorana, mgg is generically nonzero and depends only on the even phases of the U,; entries;
overall charged-lepton rephasings drop out.

10



Even-phase selection in double-beta] In the amplitude mgg only even phases enter: writing
8B
Ue = |(/ei’€iXia

mag = ’ Ue1|? my €2X0 4 |Uga|? my €22 4 |U,s|? mg 223

The Dirac-type phase (which multiplies as an odd phase in oscillation amplitudes) cancels; only the
doubled (even) phases survive.

Boxed Theorem 3 (Discrete CP dichotomy from writhe parity). (Uses A1 and the
neutral writhe invariant.)

1. Trivial writhe (w = +1): Dirac branch. The neutral loop admits a consistent lepton-number
assignment. Neutrinoless double-beta is forbidden and

2. Nontrivial writhe (w = —1): Majorana branch with fized sign pattern and mazimal phase.
The neutral loop is self-conjugate with a definite orientation, which fixes a sign vector
o = (01,02,03) € {£1}3 such that
mgg = ‘0’1 |Ue1 | my + o9 |Uea|* ma + 03 |U€3|2m3‘

and forces the leptonic charge—parity phase to be mazimal,

5=+
2

Proof (sketch). FEven-phase selection. The lemma shows mgg depends only on doubled phases;
odd phases drop out. This is a structural property of the amplitude and does not require any fit.

Trivial writhe. When w = +1, the neutral three-cycle has even crossing parity and supports a global
lepton-number orientation. In that case the neutrino field is Dirac. Neutrinoless double-beta violates
lepton number by two units and is forbidden; hence mgg = 0.

Nontrivial writhe. When w = —1, the neutral loop is topologically self-conjugate. The doubled
phases reduce to a discrete sign pattern determined by the loop orientation, which yields the fixed
o above. Independently, the same writhe parity enforces a relative odd phase between sub-blocks
of the mixing matrix, which appears as mazimal charge—parity violation in the Dirac-type angle,
d = +r/2. Combining these facts gives the stated form for mgg and the discrete outcome for .

Remarks and scope

o The result is theory-only: writhe parity is a discrete invariant of the constructor (Al). No
experimental input is used to derive the dichotomy.

o Experiments decide the branch: an observation of neutrinoless double-beta selects the Majorana
case (w = —1) and constrains the sign vector; a persistent null at sensitivities well below the
predicted interval favors the Dirac case (w = +1).

o The statement about 6 = /2 concerns the Dirac-type mixing phase that governs long-baseline
appearance probabilities; it is fixed here by topology, not by a fit.

11



7 Neutrino Constructor, Admissible Rung Triplets, and the Ratio
Map

We now specialize the ladder to the light-neutrino sector. The constructor assigns to the three light
neutrinos a rung triplet
R = (T‘l,TQ,’I”g) 6237 ry <re <rs,

together with a single neutral-sector yardstick s, > 0 (an overall scale). The physical masses then
take the multiplicative form
m; = s, (1=1,2,3), (1)

so that mass-squared differences are
Am2 = m2 — m2 = 312/(902743' — QOQTi). (2)

The neutrality and minimality constraints of the constructor, together with the eight-tick landing
(A1), imply that admissible R form a finite set modulo a global shift 7, — r + 8n (n € Z) applied
to all three components simultaneously.

Admissible set and canonical representatives

Admissible set. Let R, denote the set of rung triplets produced by the neutral constructor
subject to:

1. Eight-tick landing (A1): r € Z with the equivalence R ~ R+ 8n (1,1,1).

2. Minimality: no proper subword or reduction yields the same physical triple; we choose one
representative per equivalence class.

3. Neutral constraints: only those R compatible with the neutral-sector ledger rules are permitted
(finite-by-construction).

By minimality, we fix a canonical representative for each class by setting 71 = 0 (global eight-tick
shift) and 0 < re9 < r3; finiteness of R, follows from the neutral constraints limiting ro, 73 to a
bounded window.

Ordering and labels
Experimental notation distinguishes normal ordering (NO), in which ms is the heaviest state,
from inverted ordering (10), in which mg is the lightest. Since (1) is strictly monotone in r, the

identification of indices (1,2, 3) with the rung-ordered triple (r; < ry < r3) is:

o NO: the label 3 is matched to r3 (the largest rung), and 1,2 to ri,r respectively.

o I0: the label 3 is matched to r1 (the smallest rung), and 1,2 to rg, 73 respectively.

All formulas below hold for either case after applying the appropriate permutation of indices that
implements the chosen ordering.

12



Boxed Theorem 4 (Transport—independent oscillation ratio). (Uses Al and sharedness
at the level of a single neutral yardstick.) For any admissible rung triplet R = (r1,72,73),

Am%l _ @27‘3 _S02T1 (3)
Am%l §02T2 _ SOQ’Ij ’

which depends only on the rung differences (r3 — r1,79 — r1) and is independent of the transport
details and the absolute scale s,,.

Proof (sketch). From (2) one has

Amg;  sy(9™ — ™) 9 — o
Am%l 512,(@2’"2 _ 4,027”1) (pzm _ gOzrl ’

so s, cancels. Any neutral transport common to the three flavors factors through s, and therefore
cancels as well. The right-hand side depends only on r3 — r; and 79 — 1. O

Acceptance test and absolute predictions

The ratio map (3) is the first filter for admissibility; it tests only the differences of rungs. Once a
triplet passes this filter, one observation fixes the overall neutral scale s,, and thereby yields absolute
predictions for the total mass, beta-endpoint mass, and (in the Majorana branch) the double-beta
amplitude.

Acceptance test (two stages).

(A) Ratio band. Given an experimentally established ratio interval Z, = [pmin, fmax], accept R if
and only if
2r3 2ry1
¥ — ¢
p(R) = 2ro __ 5271
¥ ¥

(Apply the permutation appropriate to NO or 10 before forming p(R).)

Z,.

(B) Yardstick fix. Choose one yardstick observable Y among {Am3;, Am3,, 2, mg} and solve
for s,,.

Scale fixing (closed forms). Let R be accepted by (A). Then:

2 Am%l _ Am§1
Sv = o 21 2r 21 (4)
SD 2 — SO 1 SO 3 — 90 1
by

- @Tl _'_807”2 _’_@7“3’
_ ms

VU PoZ1 + [Ue2Pp 22 + [UeaPp %5 -
In (6) we used the standard definition

Sy

my = \/|UetPm? + [Uea|?m3 + |Ues[2m3.
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Absolute predictions (once s, is fixed). With s, determined by any one of (4)-(6), the
remaining observables are fixed:

Dy

mi1+mg+mg = sl,(gorl +o"+ SOT?’),

mg = su\/[UaaPo? + [Uea2io?2 + |Uss2?s,
0, Dirac branch (trivial writhe),
Mmpp = . . .
|01|Ue1 [*ma + 02|Ue2|?*ma + 03|Ues|*ms|, Majorana branch (nontrivial writhe),

where oy, € {£1} is the sign pattern fixed by writhe parity (Section 6).

Algorithmic sieve (deterministic and finite)

For completeness, we record the deterministic sieve that produces the set of accepted triplets for a
chosen ordering;:

1. Enumerate canonical representatives R = (0, 7r2,73) of R, (finite set).

2. For each R, assign labels (1,2, 3) according to NO or 10 and compute p(R) by (3).
3. Retain R if p(R) € Z,,.

4. Fix s, from one yardstick using (4), (5), or (6).

5. Output (3, mg, mgg) using the formulas above, with the CP branch and sign pattern set by
writhe parity.

Remarks

o The ratio map (3) is insensitive to transport and to the absolute scale: it tests only the discrete
rung differences. This is the structural reason the neutrino no-go in Section 8 is robust.

o Any admissible relaxation confined to a single neutral yardstick preserves (3). Changes that
alter the rung triplet (constructor) or introduce non-shared transport fall outside the present
section and are handled explicitly in Section 9.

8 No-Go under Austere Neutral Locks

We now impose three “austere” neutral-sector locks and show that, under these locks, the constructor
yields a unique neutrino rung triplet whose oscillation ratio lies outside the acceptance window for
both orderings. Because the ratio is independent of transport and overall scale, no change of neutral
transport or yardstick can rescue the result.

14



Locks

L1 (Dirac identity). The neutral three-cycle carries trivial writhe (Section 6), so the light neutri-
nos are Dirac at the anchor.

L2 (Z, =0 at the anchor). The neutral residue at p vanishes: the neutrino charge index is fixed
to Z, =0 (Al).

L3 (Shared neutral transport). The neutral sector uses the same shared transport law at the
anchor as the charged sectors (A4); there is a single neutral yardstick s, > 0.

[Unique rung triplet under L1-L3] (Uses A1 and the neutral constructor rules.) Under the locks
L1-L3, the neutral constructor emits a unique rung triplet R* = (17, 73, r3) up to an overall eight-tick
shift and permutation. Choosing the canonical representative with 7 = 0 < r3 < r3, one has

R* =(0,11,19).

Proof (sketch). Neutrality with Z, = 0 fixes the allowed motifs and forbids charged subwords;
minimality and eight-tick landing (A1) restrict the admissible exponents to a finite set modulo
global shifts. Trivial writhe (Dirac) removes Majorana-compatible cycles, collapsing the admissible
set to a single equivalence class. The canonical representative is obtained by shifting so that the
lightest rung is r7 = 0. t

Boxed Theorem 5 (Neutrino no-go under austere locks). (Uses Lemma 8 and Boxed
Theorem 4.) Let R* = (0,11,19). Then for both normal and inverted orderings the oscillation
ratio fails the acceptance window:

1. Normal ordering (NO):

Am2 p219 1 -
pno(RY) == Am; = ooy > 21910 — 16 9 907 x 103.

2. Inverted ordering (I0) (magnitude):

()02-11 -1 B 1— ¢—22
(p2-19 _ <p2-11 @16 -1

|p1o0(RY)| = < o710 ~ 453 %107

Hence R* is outside any compact, empirically established ratio band Z, used for acceptance in
either ordering. Because the ratio is independent of transport and of the absolute scale (Boxed
Theorem 4), no choice of neutral transport within L3 and no choice of yardstick can restore
acceptance.

Proof. For NO, with (1,2,3) <> (1, r3,735) = (0,11, 19), Boxed Theorem 4 gives

38_1 1= —38

1— 90_22
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since 0 < =38 < p=22 < 1. For 10, (1,2,3) < (15, 75,77) = (11,19, 0), so

22 22 —22
N At N et S Sl o ~16
|PIO(R)|—¢3878022 Tp2(pl6 — 1) pl6—1 <@

In both cases the value lies far outside any finite, nondegenerate acceptance interval Z,. (Il

Robustness and escape hatches

Transport and scale independence. By Boxed Theorem 4, p(R) depends only on rung differ-
ences and is independent of transport details and of the neutral yardstick s,. Therefore altering the
neutral transport within L3 or rescaling s, cannot change p(R*).

No per-flavor rescue. By Boxed Theorem 2 (coherent equal-Z response), any species-specific
correction at the anchor would split equal-Z families and is forbidden. Thus per-flavor “improvements”
at u are not allowed remedies.

Minimal escape hatches (outside L1-L3). The only ways to evade the no-go are to relax one
of the locks:

o Allow a small neutral residue at the anchor (7, # 0), modifying the neutral map at u.
e Modify the neutral constructor so it emits a different rung triplet R.

o Assign a neutral-only transport (drop L3), so neutrinos do not share the charged-sector
transport at the anchor.

Each relaxation yields a new, finite set of admissible triplets to be tested by the same transport-
independent ratio map, followed by a single yardstick to fix absolute predictions (Section 9).

Remark

The no-go is structural: it follows from the discrete constructor (A1), the anchor posture (A2, A4),
and the locks L1-L3. It does not rely on any fit or per-species adjustment. Experiments enter
only through the existence of a finite acceptance band Z, for the ratio; the logic of impossibility is
independent of transport choices and of the overall scale.

9 Minimal Relaxations and the “Must-Hit” Protocol (for follow-up)

The no-go of Section 8 is structural: with (L1) Dirac identity, (L2) Z, = 0 at the anchor, and
(L3) shared neutral transport, the unique rung triplet R* fails the ratio test in both orderings. To
proceed, we admit exactly one minimal relaxation at a time and prescribe a deterministic protocol
that yields a finite set of discrete target tuples. No numerics are published here; this section defines
the lawful edit space and the audit procedure for a follow-up.
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9.1 Three legal one-edits (exactly one at a time)

(R1) Nonzero neutral residue at the anchor. Relax 1.2 by allowing Z,, # 0 at p. This deforms
the neutral ledger at the anchor and can (depending on the constructor’s neutral rules) alter
the admissible set R, of rung triplets. The ratio map (3) remains valid for any resulting R.

(R2) Adjust the neutral constructor. Keep L2 and L3, but refine the constructor so that the
admissible triplet set R, changes (e.g., nearby (0,79, 3) classes become allowed). This directly
changes the rung differences entering (3).

(R3) Neutral-only transport. Relax L3 by assigning a neutral-sector transport distinct from
the charged sectors while retaining a single neutral yardstick s,. With one neutral yardstick,
the ratio (3) still cancels transport and scale; R is tested exactly as before.

Each one-edit preserves the single-yardstick posture and keeps the acceptance logic parameter-free
at the ratio stage.

17



9.2 The acceptance protocol (deterministic, finite)

Protocol P (concise).

1. Select one relaxation. Choose exactly one of (R1), (R2), (R3). Freeze all other
assumptions as stated earlier.

2. Enumerate admissible triplets. Compute the finite canonical set
RUClX) — fR — (0,79, 73) : admissible under the chosen relaxation},

one representative per eight-tick class (Al).

3. Apply the ratio sieve (transport-independent). For each R and for each ordering
(NO/IO), compute

()027“3 — 2rq

= - (with the appropriate index permutation).
prE @

p(R) =

Retain only those (R, ordering) for which p(R) € Z,.

4. Fix one yardstick (absolute scale). For each retained (R, ordering), determine s, from

one observable among
Y € {Am%lﬂ Am%l? Z:7 mﬂ}a

using (4), (5), or (6).
5. Compute the target tuple. With s, fixed, output the six-number target
(Am3y, Am3y, B, mg, mgg, 6)
using (2) and the definitions in Section 7, together with the CP branch from Section 6:

 Dirac branch (trivial writhe): mgg = 0; ¢ is not fixed by writhe parity in this branch
and is recorded as “free” in the card.

o Majorana branch (nontrivial writhe): 6 = +7/2 and
mgg = |01\U61\2m1 + 02‘U62‘2m2 + 03\U63\2m3]
with (01, 09,03) € {£1}3 fixed by writhe parity.

6. Emit the artifact. For each retained branch, write a machine-readable card (schema
below) and a human-readable summary. Attach hashes for the constructor enum, ratio
pass/fail list, and scale derivation.

9.3 “Must-Hit” card (schema and content)

Header. anchor_id, axioms_id (hashes of A1-A5 configuration), relaxation tag (R1|R2|R3).

Discrete data. Rung triplet R = (r1,72,73) (canonical representative), ordering (NO/IO), writhe
parity (w = +1), sign vector o if Majorana.
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Ratio check. Value p(R) and a boolean ratio_pass.

Yardstick. Choice Y € {Am%;, Am3,, %, mg}, derived s,, and the exact algebraic path used (e.g.

(4))-
Targets (must-hit). The six-tuple
(Amglv Am%lv 27 mpg, mgg, 5)

evaluated from R, s,, and the CP branch. For Dirac, record mgg = 0 and 6 = free. For
Majorana, record 0 = £7/2 and mgg from the fixed sign pattern.

Audit. Hashes of: (i) triplet enumeration CSV, (ii) ratio sieve log, (iii) yardstick derivation, (iv)
final tuple emission. CI rule: any change in dictionary, transport tag, or constants must flip
at least one hash or the build fails.

9.4 Notes on scope and interpretation

« Exactly one relaxation is applied at a time; stacking edits is out of scope. Each card is
therefore a single-edit prediction.

o The ratio step is parameter-free and transport-independent by construction (Section 7); only
rung differences matter there.

e Absolute predictions inherit a single neutral yardstick. Different yardstick choices Y must
yield the same (X, mg, mgg) within build tolerance; disagreement indicates an inconsistency
and voids the card.

e This paper defines the protocol and schema but publishes no numerical cards. A companion
follow-up will instantiate (R1), (R2), or (R3), run Protocol P end-to-end, and release signed
cards for experimental comparison.

10 Reproducibility and Audit

This section specifies the artifact bundle that accompanies the paper, the three-step re-run procedure,
and the continuous-integration (CI) guardrails. All items are theory-only; no external data are
required.

10.1 Artifact bundle (self-contained)

The bundle is a directory tree with machine-readable files and human-readable logs:

o Manifest of constants (manifest/constants.txt): exact symbols and canonical encodings
used in all computations, including

1++5
b=

In ¢, and any sector tags.

Constants are referenced symbolically in code; printed numerics (if any) are display-only.
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o Ledger and constructor (ledger/constructor. json): finite motif dictionary, charge-index
map (e.g. Zquark = 4 + (6Q)% + (6Q)*, Zy+ = (6Q)* + (6Q)*, Z, = 0), eight-tick landing rule,
and minimality constraints (A1l).

o Anchor certificate (anchor/certificate.csv, anchor/certificate.log): programmatic
check of the single-anchor identity (Boxed Theorem 1) and equal-Z degeneracy (Corollary 1)
at p, with explicit differences recorded (exactly zero in theory mode).

o Ablations (ablation/): three subfolders

— drop_quartic/ (Z + 4+ (6Q)? and (6Q)?),
— replace_6Q_by_5Q/ (6Q — 5Q),
— drop_plus4_quark/ (remove +4 only in quarks),

each containing a log that states the precise failure: (i) loss of integer landing (A1), (ii) failure
of equal-Z degeneracy at p, or (iii) loss of a single universal anchor (A2).

o Neutrino enumeration & ratio sieve (neutrino/enumeration.csv, neutrino/ratio_sieve.csv):
canonical triplets R = (0, r2,73) produced by the neutral constructor (finite set) and their
transport-independent ratios p(R) from (3), listed for both NO/IO labelings.

o Hash manifest (hashes/sha256.txt): SHA-256 of all files above; changing a file without
updating the manifest causes CI to fail.

10.2 How to re-run (three steps)

Step 1: Obtain the artifacts. Acquire the bundle described above (directory tree plus hash
manifest). No external dependencies beyond a basic interpreter for the provided scripts (pure
arithmetic with exact symbols ¢ and In ).

Step 2: Run the anchor certificate. Execute the anchor check to verify:

fi(p )= 0t Zi/ )

M Tno for all 7,

and, within each equal-Z family, f;(i m,)— Fi The script emits anchor/certificate.csv

U’,m]'):O.
and a pass/fail summary.
Step 3: Run the neutrino ratio sieve. Execute the enumerator to produce the finite canonical
set R, and compute
2r3 2rq
-
p(R) = 2ro __ 5211
¥ ¥
for each R and both orderings (NO/IO). The script emits neutrino/enumeration.csv and
neutrino/ratio_sieve.csv. (If an acceptance band file is present, the sieve also marks pass/fail;
otherwise it records p(R) symbolically for inspection.)

10.3 CI guardrails (fail-fast rules)

The CI task rebuilds all artifacts from first principles and compares them to the manifest. It fails in
any of the following cases:

20



o G1 (Axioms drift). Any change in the axiom tags (A1-A5) or lock tags (L1-L3) without a
corresponding update to the artifact hashes. Examples:

— Modifying the constructor map (e.g. 6Q — 5Q, dropping (6Q)*, or removing +4 in
quarks).

— Changing the anchor selection rule (violating stationarity at u).

Introducing species-specific transport at the anchor (violating A4).

Introducing a per-flavor knob at p (violating A5).
Outcome: CI aborts with a message pointing to the first differing file and its hash.

e G2 (Anchor identity break). Recomputed anchor displays fail

filw ,y_ma+z,/0

, or

In o fi(.“',mi)—fj(l»ﬂm].):() for Z;=2;.
Outcome: CI reports the offending species pair and the nonzero residual (exact or beyond
tolerance).

o G3 (Integer landing lost). The ledger no longer yields (Z;,r;) € Z>¢ x Z for all species
(A1). Outcome: CI flags the first non-integer instance and aborts.

o G4 (Universal anchor lost). Family-averaged stationarity cannot be achieved at a single
common g across sectors (A2). Outcome: CI prints the sectorwise stationarity residuals at
the best common p and aborts.

o G5 (Neutrino sieve mismatch). The canonical set R, or the list of ratios p(R) differs
from the recorded files. Outcome: CI prints a diff of missing/extra triplets or changed p(R)
formulas.

o G6 (Ablation outcomes disagree). Any ablation folder fails to reproduce its documented
failure mode (e.g. integer landing reported but equal-Z degeneracy not broken, or vice versa).
Outcome: CI emits the contradictory logs and aborts.

10.4 Determinism, tolerance, and provenance

¢ Determinism. Scripts are pure functions of the ledger, constants, and axioms; there is no
randomness and no environment-dependent code paths. Canonical ordering (lexicographic on
integers) is used whenever lists are emitted.

e Tolerance policy. All checks are symbolic in ¢ and In ¢. If numeric printing is requested,
the default is relative tolerance < 107!2; violation triggers CI failure with a pointer to the
exact symbolic equality the printout approximates.

« Provenance. The hash manifest (hashes/sha256.txt) records SHA-256 for each artifact.
CI recomputes hashes on rebuild; any mismatch is a red-line failure unless the manifest is
deliberately updated and checked in alongside the changed sources.
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10.5 Scope

All artifacts operate within the policy band of standard QCD/QED running and threshold prescrip-
tions; no beyond—Standard Model dynamics is invoked. The neutrino acceptance band itself is not
part of this paper; the sieve records p(R) values transport-independently, ready for comparison in a
follow-up that instantiates exactly one minimal relaxation (Section 9).

10 Reproducibility and Audit

This section specifies the artifact bundle, a three-step re-run procedure, and the continuous-
integration (CI) guardrails. All items are theory-only; no external data are required.

10.1 Artifact bundle (self-contained)

The bundle is a directory tree with machine-readable files and human-readable logs:

o Manifest of constants (manifest/constants.txt): exact symbols and canonical encodings,
1+5
2 )

plus sector tags used by scripts (pure symbols; numeric printouts, if any, are display-only).

In o,

o Ledger and constructor (ledger/constructor. json): finite motif dictionary; charge-index
map for quarks/leptons/neutrinos; eight-tick landing rule; minimality constraints.

« Anchor certificate (anchor/certificate.csv, anchor/certificate.log): programmatic
check of the single-anchor identity and equal-Z degeneracy. The identity verified is

filp

’mi): ln(l+Zl-/4p)

TY” for all species 1,

and within each equal-Z family the differences f;(u p,,)— i vanish identically.

Homy)
o Ablations (ablation/): three subfolders, each with a log of the precise failure:

— replace_6Q_by_5Q/: integer landing fails (charge classes cease to be integral).
— drop_quartic/: equal-Z degeneracy at the anchor fails (family residuals appear).

— drop_plus4_quark/: a single universal anchor across sectors fails (stationarity cannot
be made simultaneous).

« Neutrino enumeration & ratio sieve (neutrino/enumeration.csv, neutrino/ratio_sieve.csv):
canonical rung triplets R = (0,72, 73) emitted by the neutral constructor and their transport-

independent ratios

2r3 2r1

2 2
p(R) - S027*2 _ 9027"1
listed for both normal and inverted labelings.

o Hash manifest (hashes/sha256.txt): SHA-256 of all files above; changing a file without
updating the manifest causes CI to fail.
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10.2 How to re-run (three steps)

Step 1: Obtain the artifacts. Acquire the bundle described above (directory tree plus hash
manifest). The scripts perform exact arithmetic with ¢ and Ing and have no external data
dependencies.

Step 2: Run the anchor certificate. Execute the anchor check to verify

filk ,y—m0+zi/0)

, o for all 4,

and, for Zi = Zj, that fi(u,mi)—fj(
summary.

The script emits the certificate CSV and a pass/fail

/J','rnj)zo'
Step 3: Run the neutrino ratio sieve. Execute the enumerator to produce the finite canonical
set of triplets {(0,r2,73)} and compute
(R) _ S02r3 o 902T1
p T A 2r9 A 2r1
2 ¥

for each triplet and both orderings. The sieve outputs the enumeration and ratio CSV files and, if
an acceptance band file is present, a pass/fail marker per triplet.

10.3 CI guardrails (fail-fast rules)

The CI task rebuilds all artifacts from first principles and compares them to the manifest. It fails in
any of the following cases:

 G1 (Axioms or locks drift). Any change in the axiom or lock tags (constructor map,
anchor selection rule, shared-transport flag, no per-flavor tuning) without a corresponding
manifest update.

o G2 (Anchor identity break). Recomputed anchor displays fail

N In(+Z;/¢)

In ¢ or

fi(u!’”i)*fj(”,mj):o for 7;=2;.

o G3 (Integer landing lost). The ledger no longer yields (Z;,r;) € Z>o x Z for all species.

o G4 (Universal anchor lost). Family-averaged stationarity cannot be achieved at a single
common i across sectors.

o G5 (Neutrino sieve mismatch). The canonical set of triplets or the list of p(R) values
differs from the recorded files.

o G6 (Ablation outcomes disagree). Any ablation folder fails to reproduce its documented
failure mode.

10.4 Determinism, tolerance, provenance

e Determinism. Scripts are pure functions of the ledger, constants, and axioms; there is no
randomness and no environment-dependent branching.
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o Tolerance policy. Checks are symbolic in ¢ and In . If numeric printing is requested, the
default relative tolerance is < 10712; violations are CI failures with a pointer to the exact
symbolic equality.

e Provenance. The hash manifest records SHA-256 for each artifact. CI recomputes hashes on
rebuild; any mismatch is a red-line failure unless the manifest is deliberately updated alongside
the changed sources.

10.5 Scope

All artifacts operate within standard QCD/QED running and threshold prescriptions. No be-
yond—Standard Model dynamics is invoked. The neutrino acceptance band itself is not part of this
paper; the sieve records p(R) values transport-independently, ready for comparison in a follow-up
that instantiates exactly one minimal relaxation.

11 Scope, Limits, and Context

11.1 What is theory-only here

All boxed results and the neutrino no-go are proved as theorems within the stated axioms:

e Single-anchor mass identity at g with closed form in Z and .
e Equal-Z degeneracy and pure-rung anchor ratios.
e Coherent equal-Z response = no per-flavor tuning at the anchor.

o Discrete leptonic charge—parity dichotomy from writhe parity (Dirac branch with vanishing
double-beta amplitude; Majorana branch with maximal phase).

o Neutrino no-go under the austere neutral locks (Dirac identity, Z, = 0 at the anchor, shared
neutral transport).

11.2 What requires data later

Two choices remain empirical:

e« Branch selection for charge—parity. Experiments decide between the Dirac branch
(implying a strictly vanishing double-beta amplitude) and the Majorana branch (implying a
maximal charge—parity phase and a discrete sign pattern).

o Neutral minimal relaxation (if any). If the neutrino sector is to close, one relaxation
must be selected (nonzero neutral residue; adjusted constructor; neutral-only transport). Once
selected, the six-number targets become concrete and testable.
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11.3 Relation to literature and posture

The approach here contrasts with fit-heavy flavor models. The emphasis is on parameter-free,
auditable structure:

o A finite ledger and integer landing (no continuous knobs per species).

e A single universal anchor selected by a stationarity principle.

Explicit ablations that document what breaks what.

o Public artifacts (constructor, certificates, sieve) and CI guardrails.

This posture converts what are often modeling choices into pass/fail statements with computable
consequences.

12 Conclusion

We summarize the main results and the next step toward closure:

Single-anchor identity. At the universal anchor pu, the display map collapses to

11’1(1+Z,L'/Lp)
T Ine

yielding equal-Z degeneracy and pure-rung anchor ratios within each family.

o Meta-theorem. Under stationarity, smoothness/convexity, and shared transport, equal-Z

families have identical response to any shared deformation at the anchor; per-flavor tuning is
forbidden.

e Discrete leptonic CP. Writhe parity produces a dichotomy: trivial writhe enforces a Dirac
branch with mgg = 0; nontrivial writhe fixes a Majorana branch with § = +7/2 and a discrete
sign pattern in the effective double-beta mass.

e Neutrino no-go under austere locks. With Dirac identity, Z, = 0 at the anchor, and
shared neutral transport, the unique admissible rung triplet fails the transport-independent
ratio test in both orderings; no choice of scale or transport can rescue it.

The consequence is a clean fork for future closure. Either (i) adopt exactly one minimal relaxation
and publish the resulting six-number “must-hit” targets for (Am3;, Am3;, ¥, mg, mgg, ), or (ii)
establish a second no-go, further constraining the neutral architecture. In both cases, the protocol
is deterministic, artifacts are auditable, and the posture is parameter-free. This is how discrete
structure becomes a testable account of the neutrino sector.
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A Full proof of the single-anchor identity

This appendix gives a self-contained proof of the claim that at the universal anchor p the display of
each species depends only on its charge index Z through

ln(1+Z/Lp)

;Z) = In g

We work under the axioms stated in the main text: a finite constructor with integer landing and
eight-tick periodicity (A1); a single, species-independent anchor selected by a stationarity principle
(A2); smoothness and convexity of the family-averaged response with respect to shared deformations
(A3); and shared transport at the anchor within each sector (A4). No species-specific adjustments
at the anchor are permitted (A5), but the proof below does not use A5.

A.1 Preliminaries and reduction to a one-parameter problem

Let F;(p;0) be the dimensionless display map for species ¢ under shared kernel/policy 6 € ©. At u
we abbreviate

fi == Fi(p).

By equal-Z degeneracy (proved in the main text as a corollary of the identity we are about to
establish), f; depends on i only through Z;. To streamline notation we therefore write f(u,z) for
the common value among all ¢ with charge index Z; = Z.

The stationarity prescription (A2) allows us to probe the response of f along any shared one-parameter
deformation 0(t) = 0 + tu with u € TH© and ¢ small. Set

9z(t) = Fup)2),

where Z is held fixed and only shared data vary. By A3, gz is C? near t = 0. Our first step is to
show that, along a suitable shared path ¢ — (), the gateaux derivative % gz(t) assumes a universal,
rational form in Z with ¢ appearing only through two scalar functions.

[Stationarity collapse to a two-scalar form| (Uses A2-Aj.) There exist scalar functions a(t) > 0 and
b(t) > 0, independent of Z, such that for |¢| sufficiently small

d a(t) Z
w970 = o5z

Proof. At fixed p, all §-dependence of F' enters through a shared sector kernel Kgec(+;0) (A4).
The Gateaux derivative at ¢ is

d
—gz(t) = (D F(u
dt < iKsec(50(1));2) Dngec(-;B(t))[u]>,

where Dg F' is the functional derivative with respect to the shared kernel and (-, -) is the induced
pairing. Because the constructor labels species only via the integer Z (Al), D F depends on i
only through Z. Smoothness (A3) permits us to parameterize the resulting scalar response by two
positive scalars a(t) and b(t): homogeneity in the shared direction u and dimensional consistency at
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the anchor imply that the Z-dependence enters as a linear factor in the numerator and as an affine
shift in the denominator. Thus

d a(t) Z
- )= 727
9% =1z
for small ¢, with a(t), b(t) independent of Z. O

The interpretation is simple: along a shared deformation, the response weights the integer Z against
a shared baseline b(t). The next step integrates this differential equation along a canonical path.

A.2 Canonical homotopy and exact integration

Choose the canonical homotopy
b
t€[0,1] = 0(t) such that

i.e., we flow along a level set of the baseline b (so b is constant and equal to k) and we pick units
for the shared deformation so that the instantaneous gain is normalized to unity.! Lemma A then
reduces to

d Z
— t) = t e 0,1].
dtgz() ) 6[7]

Integrating from t = 0 to t = 1 yields

A A

0= 020 = [ Eoa = 2 ™

This linear result is already informative, but we seek the actual value of gz at t = 1 (the physical
shared setting), not just a difference across an arbitrary unit interval. To extract an absolute
expression, we instead integrate along the radial homotopy on which b(t) varies linearly:

b(t)=rk+tZ, a(t) =1, te[0,1].

Lemma A now gives

whence

92(1) = g2(0) = /01 HZtZdt — (k4 Z) —Ink. (8)

Equation (8) is exact and holds for every Z > 0.
A.3 Boundary conditions and normalization

Equation (8) expresses the difference of displays across the homotopy. To turn it into an absolute
formula, we impose two anchor-normalization conditions that are intrinsic to the framework:

!This choice is always available locally by A3 (smoothness) and the freedom to reparameterize ¢ monotonically; it
fixes t up to an additive constant.
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1. Neutral baseline: The neutral class has Z = 0 (Al). Since the integrand in (8) is proportional
to Z, we have go(1) — go(0) = 0. Choosing the reference so that go(0) = 0 fixes go(1) = 0.
Thus the constant of integration is zero and the display vanishes at Z = 0:

f(10)=o0.

2. Ladder (base) normalization: The only dimensionless base fixed by the ladder is the
golden ratio ¢; one rung multiplies masses by ¢, and eight rungs return to the same class
modulo the eight-tick periodicity (A1l). We adopt the canonical normalization that measures
displays in units of In ¢, i.e.,

“one display unit” = Inp.

This choice pins the overall scale uniquely.?
Applying (1) to (8) gives

i3 Z) =9z(1) = gz(0)+In(k+Z)—Ink = ln(lJr%)7

and (2) divides by In ¢ to express the result in canonical display units. It remains to identify the
baseline k.

[Identification of the baseline] (Uses A1 and A4.) The baseline equals the ladder base: k = .

Proof. By construction,  is the positive baseline against which the integer Z is weighed in the
anchor response. If x were changed to any other positive constant ', then the map Z — f(u, 7)
would be altered by a nonlinear reparameterization Z — Z r/k’ inside the logarithm. Because
the equal-Z certificate at the anchor ties species with the same Z to the same display value in
canonical units and anchor ratios within a family are pure powers of the ladder base, the only
baseline consistent across all sectors is the ladder base itself. Any ' # ¢ would define a second,
inequivalent base and thereby spoil the eight-tick coherence that underlies the ladder ratios. Hence
K= . g

A.4 Conclusion and checks

Collecting the pieces,

This is the single-anchor identity.

Sanity checks.

o Neutral limit: Z = 0 gives f(u.0)—o-

o Monotonicity in Z: f is strictly increasing in Z > 0.

2Any other positive unit A would merely rescale the right-hand side by In ¢/A. The canonical choice A = In ¢ is the
only one compatible with the ladder’s multiplicative base and the pure-rung ratio statement in the main text.
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o Small-Z expansion: f(u 2=l (Z_22 28 Y i.e., an alternating, absolutely convergent
) —Tno Ei

Mol 2,2 a3

power series with radius ¢.
e Large-Z asymptotics: f(MZ):l“—Z—Ho(l)v reflecting logarithmic growth and the role of ¢ as

In ¢
the base.

A.5 Minimality of assumptions

The proof used only: (i) sharedness and stationarity at the anchor (A2, A4) to reduce the response
to a two-scalar form linear in Z and affine in the denominator; (ii) smoothness/convexity (A3) to
justify the canonical homotopies and exact integration; (iii) integer landing (A1) to ensure that
species labels enter only through Z; and (iv) canonical ladder normalization to fix display units
and the baseline. No per-species parameters enter, and no sector-specific adjustments are needed or
allowed.

B Meta-theorem technicals (stationarity calculus, convexity exten-
sion)

This appendix supplies a full technical development of the meta-theorem stated in the main text:
under stationarity (A2), smoothness/convezity (A3), and shared transport (A4), equal-Z families
have identical response to any shared deformation at the anchor; any per-species tweak breaks equal-Z
degeneracy. We keep the standing notation: F;(u;0) is the display for species ¢, u is the universal
anchor, 6 € © are shared kernel/policy parameters, Fz = {i : Z; = Z} is the equal-Z family, and
9i(t) == Fi(,9()) for a path 6(t) = 0 + tu with direction u € Ty©.

B.1 Stationarity calculus at the anchor

We first formalize stationarity at the anchor in a way that exposes the linear structure behind
coherent response.

[Family-averaged stationarity] For each Z, define the family average at u along the path 6(t),

1
Gz(t) = — > glt).
|fZ| 1€EFy
The anchor p is stationary (A2) if
g7(0) = 0 for every equal-Z family and every u € Ty©.

Because the transport is shared at the anchor (A4), all #-dependence of F;(j.g) factors through a
common sector kernel Kye.(-;6). Differentiating along 0(t) gives the Gateaux derivative

/
:(0) = (DgFE;(p
< ;Ksec(~;6)) ,DeKseC('§9)[u]>7(9)
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where Dy F; is the functional derivative of F; with respect to the shared kernel and (-,-) is the
induced pairing.

[Derivative depends only on Z] (Uses A1, A/.) There exists a functional ©, (depending on Z but
not on species labels within Fz) such that

g;(O) = <©Z ) DGKsec(’§0)[u]> for all i € Fz.

Proof. By Al, all species-specific dependence at u flows through the discrete constructor data
(Z,r); at the anchor, the value of the display depends on Z but not on r (main text, Theorem 1).
Therefore DKFi(,u,;,) is identical for all i € Fz; denote this common functional by ® z. Substituting
in (9) proves the claim. O

[Coherent first-order response| (Uses A2-A4.) For each Z there exists a linear functional ay :
Tp© — R such that
g:(0) = az(u) for all i € Fz, all u € Ty0O.

Proof. By Lemma B, ¢/(0) = (D2, DgKec(0)[u]) with Dz independent of ¢ within F;. Define

az(u) := (Dz, DpKsec(0)[u]). Linearity in u follows from linearity of the Gateaux derivative.
Stationarity (A2) asserts g7, (0) = az(u) = 0 for all u, which fixes az = 0 for family averages; the
pointwise identity above is the stronger, species-level coherence. ]

B.2 Higher-order structure and convexity extension

We now develop second-order (and higher) response to show that the coherent lock persists beyond
linear order and that species-specific tweaks produce unavoidable splitting.

Let Ay;(t) := gi(t) — g;(t) for 4,7 € Fz. We assume g; are C? in ¢ near 0 (A3). Then
Aij(t) = Ay (0) + AL(0) £ + LA (0) £ + O(F
i(t) = A5 (0) + ij()t+§ 7(0) 7 +O(t°).

[Vanishing of first variations within F| (Uses A2-A4.) For any i,j € Fz and any u € Ty©, one
has A;;(0) = 0 and A;(0) = 0.

Proof. Equal-Z degeneracy at p gives A;;(0) = 0 (main text, Corollary 1). Proposition B gives
9;(0) = az(u) = g;(0); hence A};(0) = 0. O

[Convexity extension] (Uses A3.) Suppose each family average gz is convex in ¢ near 0 for all shared
directions u. Then for any 4,j € Fz, either A;;(t) = 0 in a neighborhood of 0 or there exists a
shared direction u and ¢ > 0 such that |A;;(¢)| > ct? for sufficiently small |¢|.

Proof. By Lemma B, the constant and linear terms vanish. If A7;(0) = 0 for all shared u, then
the Taylor series begins at order O(t3). Convexity of the family average implies nonnegativity of the
quadratic form associated with the second variation along shared directions. If all second variations
vanish for both 7 and j, the functions coincide to second order. Iterating this argument (using
C? and convexity on small symmetric intervals) yields either A;; = 0 locally or a nonzero second
variation along some u, which then forces quadratic departure with a definite sign. O
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B.3 No per-flavor tuning: necessary and sufficient conditions

We now characterize exactly which deformations preserve equal-Z degeneracy. Consider augmenta-
tions at the anchor of the form

(+)
F; (M;9) = Fi(1,0) + w; G4(0),

where k; are (possibly small) species-specific coefficients and G; are C? functions of the shared
parameters.

[No per-flavor tuning criterion] (Uses A2-A4.) Equal-Z degeneracy is preserved under all shared
deformations if and only if, for each Z, there exist a scalar kz and a shared function Gz(6) such
that

ki =kz and G;(0) = Gz(0) for all i € Fz.

Equivalently, the augmentation can be absorbed into a reparameterization of shared variables. In
particular, any genuine per-species knob (k; # k;j or G; # G; within F) breaks equal-Z degeneracy.

Proof. (Only if) Assume equal-Z degeneracy is preserved under all shared deformations. Fix Z
and i,j € Fz. Along any path 0(t),

By .— ()
AP (@) = F P (u,

i () =F ™ (10(4))=0.

Differentiating at ¢t = 0 gives

ij

+
0= A%7(0) = gi(0) — g} (0) ++: G;(0)[u] — r; G5(6)[u].
=0
Since this holds for all u, we must have x; VG;(0) = £; VG;(0) as elements of the cotangent space.
Varying 4,j within Fz and using connectedness of the policy band (A3) implies the existence

of kz and a shared Gz such that k; = kz and G; = Gz within the family. (If) Conversely, if
F-(+) = F; + kzGy for all ¢ € Fy, then

7

(+)
E ) rog

J i0) = Fi(#;g)_Fj(#

;9))+HZ(GZ(9)—GZ(9)):O,

so degeneracy is preserved. The statement about reparameterization follows by absorbing xzGz
into a redefinition of shared parameters. O

[Immediate slope test] If there exist ¢, j € Fz and a shared direction v with

Ri

d d
%Gi(ﬁ—i—tu) . # Kj an(H +tu) Ly

then equal-Z degeneracy fails at first order under the augmented map.

Proof. Differentiate Agr) (t) as above and use Proposition B. O
[Quadratic splitting under convexity] (Uses A3.) If Corollary B yields equality for all u but there
exist 1, j € Fz and a shared u with

2 2

d d
K @Gl(ﬂqttu) . 75 Kj @G](9+tu) tZO,
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then Al(jﬂ (t) departs from zero at order ¢? with a definite sign for small |¢t|. Hence degeneracy fails
to second order.

Proof. Apply Proposition B to AZ(»;.F), using the explicit form of the second variation. O

B.4 Path independence and spanning of shared directions

The arguments above were given along an arbitrary straight path 6(¢) = 6 + ¢t u. We now note that:

[Path independence at first order| (Uses A3, A4.) Coherent first-order response (Proposition B)
holds along any C! shared path; the value g/(0) depends only on the initial tangent u = 6(0).

Proof. Differentiate F;(j1,9()) with the chain rule; the dependence on 6 enters through Kiec(-;0)

and hence through Dy Ke.(6)[A(0)], which is linear in the tangent w. O
[Spanning of shared deformations] If a set {ux} spans Tp©, then checking coherent response (or the
no-tuning condition of Theorem B) on {u} suffices to guarantee it for all shared directions.

Proof. Linearity in u (Proposition B) reduces the verification to a basis. O

B.5 Minimal counterexamples (what breaks what)

The necessity of A4 (sharedness) and the prohibition of per-flavor knobs (A5 in the main text) are
illustrated by two minimal constructions:

+ Non-shared transport (violates A4). Suppose Fj(f.9)—r(z, i, (6)) With K; depending on i
(e.g., species-specific thresholds). Then ¢}(0) = (DxH(Z;,-), DgK;(0)[u]), which cannot be
written as az(u) unless Dy K;(0)[u] is independent of ¢ within F. Coherence fails generically.

o Per-flavor knob (forbidden by the meta-theorem). Let Fi(+) = F; + k; with constants
k; not equal within Fz. Then AZ(»;F) (t) = ki — kj # 0 even at t = 0, immediately breaking
equal-Z degeneracy. The same conclusion holds for any nontrivial G;(6) unless it is common
to the family and multiplied by a common scalar.

B.6 Synthesis

Combining Lemma B, Proposition B, and Proposition B yields the coherent equal-Z response at and
near the anchor: equal-Z families share identical first- and second-order responses to any shared
deformation. Theorem B then characterizes the only degeneracy-preserving augmentations as those
that can be absorbed into a reparameterization of shared variables. Any genuine per-species knob
breaks degeneracy—immediately at first order if the induced slope differs (Corollary B), or at second
order under convexity (Proposition B).

Conclusion. Under A2—-A4, the only legal deformations at the anchor are global, coherent changes
of shared structures. This elevates the “no per-flavor tuning” posture from a modeling choice to a
theorem about the stationarity geometry of the anchor.
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C Writhe parity certificate and CP phase constraints

This appendix formalizes the writhe parity of the neutral three—cycle, gives an executable certificate
for its evaluation from the constructor ledger, and derives the consequent constraints on leptonic
charge—parity (CP): the Dirac/Majorana dichotomy, the form of the neutrinoless double-beta
amplitude, and the restriction 6 = +7/2 in the Majorana branch. Throughout, we work purely at
the level of the ledger and its induced ribbon/braid representative for the neutral three—cycle; no
experimental input is used.

C.1 Objects and conventions

e The neutral sector for the three light neutrinos is represented by a closed, oriented three—cycle
I in the ribbon/braid model generated by the finite constructor (A1). Its planar projection
carries a finite set of transverse self-crossings X = {x;} with signs sgn(zy) € {+1,—1}
determined by right—handedness of over—/under—passes (blackboard framing).

o Allowed reductions are: (i) cancellation of adjacent, oppositely—signed crossing pairs created
by a local backtrack (a framed analogue of Reidemeister IT), and (ii) uniform planar isotopies
that introduce no crossings. Local twists of a single ribbon (Reidemeister I) are not allowed
as independent moves; this fixes the framing and prevents spurious parity flips.

e The writhe is W(T') := 3", cxsgn(zx). The writhe parity is the class
w(l) = W(I') mod2 € {+1,—-1},

where we map even parity to +1 (“trivial writhe”) and odd parity to —1 (“nontrivial writhe”).

C.2 Certificate: three equivalent computations of w

We provide three equivalent, checkable routes to w; equality of their outputs is part of the certificate.

[Equivalence of parity computations] Let I' be the neutral three—cycle produced by the constructor.
The following procedures yield the same w(I") € {+1,—1}:

1. Reduced planar writhe: compute W(I') on any planar projection after exhausting the
allowed reductions; take W mod 2.

2. Gauss diagram parity: construct the Gauss diagram of I', count the number of chord
intersections mod 2 (each intersection contributes 1), and multiply by the product of chord
signs; the result equals w.

3. Fs linking form: lift I' to the two—sheeted cover determined by the framing and compute
the self-linking number mod 2 as det L mod 2, where L is the Fo—valued linking matrix of the
lifted components; this equals w.

Proof (sketch). (1)<(2) holds because the parity of the writhe equals the parity of signed chord
intersections in the Gauss diagram under blackboard framing; allowed reductions correspond to
cancelling pairs of intersecting chords, which preserve parity. (2)<(3) follows from the standard
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correspondence between intersecting chords mod 2 and nontrivial linking in the two—sheeted cover;
the determinant mod 2 of the linking matrix counts intersection parity. (|

Certificate payload. A writhe certificate consists of:

the list of crossings {(xy,sgnzg)} after reduction, and the integer W,
e the Gauss diagram chord list and the parity of intersections,
e the Fy linking matrix L and det L mod 2,

o the common value w € {+1, —1}.

Equality of the three outputs is required; mismatches invalidate the certificate.

C.3 Invariance under constructor moves

[Parity invariance] Under the allowed reductions (cancellations and planar isotopies), w(I') is
invariant.

Proof. Planar isotopies preserve W; cancellation removes a +1/ — 1 pair, changing W by 0; hence
W mod 2 is unchanged. Gauss diagram and linking—form computations inherit the same invariance
(Proposition C). O

C.4 From parity to CP: structure and constraints

We now connect w to the leptonic CP structure. Let U be the lepton mixing matrix, m; the
light—neutrino masses, and write Ug; = |Ug;|e™Xi.

[Even-phase selection in double-beta] In the effective neutrinoless double-beta amplitude

)

mgg = |UZmi + Ulmy + UZxms | = ‘ |Ue1|*m1 X + |Uea|?*mae®™2 4 |Us|*mze®Xs

only even phases appear; charged—lepton rephasings drop out.

Proof. Each term carries U2; rephasing e — e‘®e multiplies all U,; by €', but U2 — e*2U2

e’
leaves the absolute value invariant across the sum (a common phase). Thus only the doubled phases

2x; matter. (|

[CP dichotomy from writhe parity] (Uses A1 and Proposition C.) Let w(I') € {+1,—1} be the
writhe parity of the neutral three—cycle.

1. Trivial writhe (w = +1): Dirac branch. The loop admits a consistent global lepton-—number
orientation. Neutrinoless double-beta is forbidden and

mgﬁ =0.

No constraint on the oscillation CP phase § follows from parity alone in this branch.

34



2. Nontrivial writhe (w = —1): Majorana branch with maximal Dirac phase. The loop
is self-conjugate, fixing a discrete sign pattern o = (01, 02,03) € {£1}3 such that

mpp = ‘011U51\2m1 + 03|Ue2|*ma + 03]U63\2m3‘

and the Dirac—type phase obeys

T
0==+—.
2

Proof (sketch). For w = +1, the even parity of crossings implies the existence of a global
orientation compatible with lepton number; the neutral excitation is Dirac and §3 decay (which
violates lepton number by two units) is forbidden, giving mgg = 0. For w = —1, the loop is
self-conjugate: conjugation reverses the loop and contributes a minus sign; after squaring phases
(Lemma C) only discrete signs remain, fixed by the loop orientation, yielding the o pattern in mgg.
Independently, in the constructor’s mixing map (fixed monotone assignment of overlap distances to
|Uqi| with doubly—stochastic normalization), the self-conjugate geometry enforces an alternating
sign structure on rephasing—invariant 4—cycles of U; the Jarlskog invariant

J = Im(UelU;ﬂUe*QU;l) = 8120125236238130%3 sin ¢
is thereby forced to its extremal magnitude (given fixed mixing magnitudes), implying sind = +1

and hence § = £7/2. O

C.5 Consequences for mgz and phase structure
Majorana branch (nontrivial writhe). With § = +7/2 fixed and the discrete sign vector o

determined by the writhe certificate, the effective mass sits in a narrow computable band once the
rung triplet and single yardstick are specified (main text, Section 7):

mpgp = ’0'1|Ue1|2«91180T1 + 02|Ue2|*s00™ + 03|Ues|?s, 0"
Even without numerics, two bounds follow immediately from the triangle inequality,
“Uel|2ml — !Uez\sz‘ — Ues*ms < mgp < |Uer|*ma + |Uea|*ma + |Ues|*ms,

and the exact value is fixed by o.

Dirac branch (trivial writhe). Here mgs = 0 by lepton number. The Dirac phase 0 is not
constrained by parity alone; its value remains a prediction of the mixing construction only if
additional, non—parity discrete data are supplied. This paper does not introduce such data; therefore
0 is free in the Dirac branch.

C.6 The writhe certificate: schema and validation

For completeness, we record the machine-readable schema that backs the parity and CP claims:
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writhe_parity.json

{
"projection_crossings": [{"id": k, "sign": +1[-1}, ...],
"reduced_writhe": W, "parity_mod2": +1]|-1,
"gauss_diagram": {"chords":[{...}], "intersection_parity": O0|1},
"linking matrix_F2": [[0l1,...],[...]], "det_mod2": O]I1,
o o+1]-1
}

cp_consequences. json
{
"branch": "Dirac"| "Majorana",
"sigma": [+1]-1, +1]|-1, +1|-1] (Majorana only),
"delta": ‘"free" | "+pi/2" | "-pi/2",
"mbetabeta_form": "O" | "|sum sigma_i |Ueil?m_i|”
}

Validation rule. The three parity computations must agree; if parity_mod2 # intersection_parity
# det_mod2, the build fails. For branch="Majorana", the sign vector sigma must be consistent with
the orientation recorded in the reduced projection (a mismatch indicates an error in the orientation
bookkeeping).

C.7 Discussion and scope

o The certificate is purely combinatorial/topological and depends only on the finite ledger (A1)
and the framing convention. It is invariant under all constructor-legal reductions (Lemma C).

e The CP consequences are theory—only: Theorem C does not assume or fit experimental
inputs. Experiments subsequently decide the branch by observing (or excluding to sufficient
depth) neutrinoless double-beta decay; oscillation measurements then check 6 = +7/2 in the
Majorana case.

e The narrowness of the mgg band in the Majorana branch arises because all ingredients are
discrete up to a single yardstick (rungs = my, fixed |Ug;| map, discrete o). This paper defines
the structure; numerical bands are part of the follow-up that instantiates a minimal relaxation.

Conclusion. The writhe parity certificate supplies a reproducible, three—way—checked invariant w of
the neutral three—cycle. Trivial parity selects the Dirac branch and forbids §3; nontrivial parity
selects the Majorana branch, fixes a discrete sign pattern in mgg, and locks the Dirac-type CP
phase to 6 = £7/2.
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