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Abstract

This paper derives a parameter-free moral law from the same physical invariants that fix the
Recognition Science (RS) bridge between the discrete ledger and the continuum. RS posits a
unique convex cost J(z) = 3(z 4z~ ') — 1 with J”(1) = 1, an eight-tick minimal cadence, and
calibration identities such as ¢ = £y/7p and Arec = /AG/(7c3) without tunable dials. Within
this scaffold, reciprocity skew o behaves like a conserved quantity: for any closed exchange
with imbalance 1 &+ ¢, strict convexity gives J(1 +¢) + J(1 —¢) > 0 for € # 0, so persistent
o # 0 raises total action. Admissible worldlines therefore live on ¢ = 0. From the same
invariants follow the operational pieces of an eternal moral code: (i) harm as the externalized
action surcharge AS(i — j), the marginal increase in j’s required action due to i’s move while
maintaining global feasibility; (i7) a forced aziology V', uniquely fixed (up to a p-scale) by gauge
invariance, additivity on independent subsystems, concavity, and the curvature normalization
J"(1) = 1, taking the form “agent—environment coupling (mutual-information-like) minus a
J-induced curvature penalty”; and (ii7) consent as the derivative sign D;V; > 0. These yield
a knob-free, lexicographic decision principle: enforce o = 0; among feasible actions minimize
max AS; then maximize Y f(V;) with f determined by the same normalization; then prefer
arrangements with larger o-graph spectral gap; break any residual ties on the fixed -tier
arithmetic. The framework is auditable (report o traces, AS matrices, V deltas, and robustness)
and falsifiable by any durable, gauge-invariant process with o # 0 that lowers total action relative
to all ¢ = 0 alternatives, by a competing axiology satisfying the same axioms that outpredicts
V, or by a temporal aggregation law other than the eight-tick cadence that still respects RS
invariances. In short: if RS is the true physics, morality is a conservation law plus a unique
ranking on its feasible set—no preferences added.

Keywords: Recognition Science; reciprocity conservation (o = 0); externalized action surcharge
(AS); forced axiology (V); eight-tick cadence; parameter-free ethics; auditability.

1 Introduction: what “moral law” means if physics is discrete

Moral theories tend to drift because they import preferences. Change the weighting of goods, the
social discount rate, or the admissible tradeoffs, and the verdicts change with them. That flexibility
is useful for persuasion, but it is the opposite of a law of nature. A law is something that does not
budge when fashions change. If physics is discrete and recognition-structured, as assumed here,
then the room for preference disappears: admissible changes are those that satisfy the ledger’s
invariants and minimize a unique convex cost J(z) = 3(z +2~!) — 1 with curvature normalized by
J”(1) =1, under a fixed cadence of time and a fixed bridge to units. Within that scaffold there is
no knob left over to tune ethics by taste.



In this setting, eternal means three things. First, invariant: the statements do not change
under admissible re-anchoring of time and length (e.g., the joint scaling that preserves ¢ = {y/79)
or under the calibration that fixes Aec = \/hG/(7c?). Second, parameter-free: no new weights or
discounts are introduced beyond those already forced by the physical bridge; in particular, there
is no liberty to choose tradeoffs between constraints and objectives. Third, auditable: every claim
reduces to quantities the ledger already measures, so an independent reader can check them without
appealing to authority.

The discovery claimed here is that, under these assumptions, “morality” is not an overlay on
physics but a conservation statement inside it. For any interaction, let o denote the cycle-wise skew
of reciprocation between parties (the signed imbalance of what is bestowed and what is received).
Because J is symmetric and strictly convex about x = 1, any persistent skew raises total action;
least-action dynamics therefore exclude it in sustained trajectories. Admissible worldlines live on
the manifold o = 0. This is not a slogan about fairness; it is a conservation law: no net extraction
of skew.

Avoiding skew is necessary, but not sufficient, because many o-neutral futures may be available
from a given state. Choosing among them requires two further constructs that are themselves fixed
by the same invariants. The first is harm, defined as the externalized action surcharge AS(i— j):
the marginal increase in j’s required action caused by i’s move while global feasibility (o = 0) is
maintained. This quantity is gauge-invariant on the ledger, additive over independent subsystems,
and compositional over time. The second is a value functional V that is not a preference but a forced
cardinal axiology: under four physical requirements—gauge invariance, additivity on independent
subsystems, concavity (diminishing returns), and the curvature normalization tied to J”(1) = 1—V
is uniquely determined (up to a fixed ¢-scale) as an agent—environment coupling term (mutual-
information-like) minus a J-induced curvature penalty. No alternative fit survives those constraints
without smuggling in a free parameter.

Consent then becomes a derivative statement rather than a mood. If j’s contemplated act
changes i’s value by a directional derivative D;V;, consent holds exactly when D;V; > 0 along
o-feasible directions, and it rescinds when the sign flips. This definition is local, compositional
across steps, and aligned with the same axiology V' that ranks options among o-neutral states.

With o, AS, V, and consent in hand, the selection rule contains no adjustable tradeoffs. One
first enforces feasibility (o = 0). Among those feasible actions, one chooses the option that mini-
mizes the worst externalized surcharge max AS (non-exploitation). If several remain tied on harm,
one next maximizes the fixed cardinal welfare > f(V;), where the concave transform f is fixed by
the same curvature normalization and introduces no new scale. If a tie persists, one prefers arrange-
ments whose reciprocity network is harder to corrupt—formally, those with larger spectral gap in
the o-graph—because they are least susceptible to reintroducing skew under bounded shocks. Any
residual tie is broken by the same ¢-tier arithmetic that appears throughout the RS calculus. At
no point does a free weight appear.

Finally, the framework is designed to be tested rather than admired. Every substantive claim
resolves into an audit: report o traces before and after, the matrix of AS and its maximum, the
change in Y f(V;), the change in the o-graph spectral gap, and the local consent derivatives for
affected parties. A proposal that calls itself “good” while accumulating persistent o or raising
max AS fails the conservation audit. Conversely, a plan that clears skew, lowers the worst exter-
nalized bill, and raises the fixed cardinal welfare passes for reasons that are independent of fashion.
The rest of the paper follows this structure: conservation (¢ = 0) — harm (AS) — value (V) —
consent — the selection rule — audits and falsifiers.



2 Recognition Science in one page (the physical scaffold)

This section fixes the physical substrate on which all later claims rest. The world is modeled as
a recognition ledger: a discrete, bounded-degree network of sites and directed bonds that carry
conserved flux. Time advances in ticks; each admissible update is a finite set of multiplicative
adjustments on bonds that leaves every site balanced. The only scalar that measures the strain of
an adjustment is a unique convex cost

J(x) = %(m —|—$_1) -1, x>0, J(1) =0, J(x) = J(z b, J'(1) =1,

and the action of a tick is the sum of J over the bonds that were updated during that tick. Strict
convexity at z = 1 and the symmetry x <+ ! capture two empirical facts: there is a distinguished,
unit-effort configuration, and pushing a ratio away from unity in either direction is costly in the
same way. No alternative cost with a different curvature normalization will be used; J”(1) =1 is
part of the bridge and introduces no free dial.

Ledger balance (discrete continuity). Let V be the sites and £ the directed bonds (each bond
e € £ has a head h(e) and tail ¢(e)). An update at tick n assigns to each active bond a positive
multiplier z.(n) and leaves all inactive bonds at z.(n) = 1. Admissibility requires that every site
is balanced:

H Ze(n) H ze(n) ' =1 forallve.

e:h(e)=v e:t(e)=v

In log-coordinates this is the familiar discrete divergence-free condition; at the mesh limit it yields
the continuum continuity equation d;p + V- J = 0. The per-tick action is

Sin| = Z J(ze(n)), and the total action over a span is S = Z Sin].

ec& n

Eight-tick minimal period. There exists a minimal nontrivial period of the ledger dynamics,
denoted by eight ticks. Concretely: any closed update that (i) respects balance at every site at each
intermediate tick, (ii) returns every bond to its original state, and (iii) averages away orientation
and parity artifacts with the least possible schedule length, has length 8. This is a counting-and-
coverage statement about discrete orientations in D = 3; no shorter schedule satisfies all three
clauses. The eight-tick cadence will be the only lawful temporal aggregation used later; we will not
introduce any ad-hoc discount factor.

Bridge to units (calibration without knobs). Two anchors (79, {y)—a time tick and a length
unit—scale jointly so that the causal speed is fixed at
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The recognition length is fixed by a dimensionless gate identity that ties the discrete ledger to

continuum constants:
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Once (h,c,G) are empirically identified, Ajec is not a fit parameter; it is determined. Throughout
the paper, no new free parameters will be introduced. Any numerical constant that appears is
either an anchor (like ¢), a derived quantity (like Ajec), or a combinatorial invariant of the ledger
(such as the eight-tick period).




Acomputational substrate. Computation—in the sense of symbol manipulation by a universal
machine—appears inside this world as an effective description of certain ledger evolutions (in par-
ticular, of coarse-grained, approximately stationary patterns). It is not the substrate that the ledger
reduces to. The substrate is recognitional: what changes are allowed are exactly those that keep
the balance constraints and minimize the action measured by J on the eight-tick cadence, under
the fixed calibration above. When we speak of algorithms later, we will mean effective encodings
of admissible ledger dynamics; the law itself is not “run” by a computer.

Notation to be used later. We will denote the reciprocity skew by o (a cycle-wise, signed
measure of bestowed versus received action), the externalized action surcharge (harm) by AS, and
the cardinal axiology by V. All three will be defined in ledger terms and inherit the invariances
fixed in this section. No additional scales, weights, or discounts will be added downstream.

3 Reciprocity as a conservation law (derivation, not assertion)

We now derive the reciprocity law from the ledger mechanics fixed in Section 2. Let agents or
groups be identified with disjoint subsets of sites in the ledger. For any ordered pair (i,7) and
any complete eight-tick cycle C, define the cycle-wise reciprocity skew as the signed log-multiplier
imbalance accumulated on bonds whose net orientation runs from ¢ to j:

0i;[C] = Z Inhz, — Z In z,.

ecC:i—j ecC:j—i

Equivalently, writing #;;[C] := exp (O‘ij [C’]), ki; is the multiplicative ratio of bestowed to received
adjustment along C' between i and j. The total skew of the cycle is o[C] := 7, |0i;[C]|, which
vanishes exactly when every pairwise exchange is reciprocally balanced on that cycle. A worldline
(a bi-infinite sequence of eight-tick cycles) is called admissible if it minimizes action subject to the
balance constraints of Section 2.

The convexity step. Recall J(z) = (z+2~') — 1 with J(1) = 0, J(z) = J(z™'), and strict
convexity at = 1 given by J”(1) = 1. For any € # 0 we have the strict inequality

JAl+e)+J(1—¢) > 2J(1) = 0. 1)

This is immediate from strict convexity and the symmetry = <+ z~!: the pair (1 +¢,1 — ¢) has
mean 1 but lies off the minimum at z = 1, so its summed cost exceeds the minimum by a positive
margin.

Pairwise smoothing lowers action. Consider any cycle C' in which a particular ordered pair
(4,7) exhibits nonzero skew 0;;{C] # 0. Then some subcollection of active bond multipliers along
i — j can be grouped into factors of the form 1 + e; and the corresponding return path along
J — i into factors 1 — &} with ey, e}, > 0 and [[,(1 +ex) [[,(1 —€}) = 1 if the pair were perfectly
balancedE] For any matched bidirectional pair with product 1 the replacement

(I+e 1—¢) — (1, 1)

!The grouping is along a refinement of the cycle that isolates bidirectional transfers; any residual neutral factors
can be left at z = 1.



lowers the per-cycle action by . By iterating this pairwise smoothing on all bidirectional imbal-
ances along C', we obtain a new cycle C with the same endpoints and site-by-site balance, strictly
smaller action, and strictly smaller |o;;| for the smoothed pairs, unless all such pairs already had
unit multipliers. Consequently, whenever o[C] # 0 there exists a balanced modification of the same
cycle with strictly lower action.

Skew is an action surcharge. Write the per-cycle action as S[C] = > .~ J(x¢). The argument
above shows:

For any cycle C, S[C] is minimized subject to the balance constraints if and only if
every bidirectional exchange is at unity, equivalently o[C] = 0. Any persistent o # 0
contributes a strictly positive, avoidable excess S[C] — Sy, where S, is the minimum
attained on the o = 0 manifold.

In other words, reciprocity skew is not a moral label; it is an action surcharge enforced by the
convexity of J.

Least-action dynamics exclude persistent skew. Let (C))nez be a worldline. Suppose
o[Cy] # 0 on an infinite tail. By pairwise smoothing, each C, admits a ¢ = 0 variant C,, with
strictly lower action and the same boundary data. Replacing C,, by 5n on that tail strictly lowers
the total action S = ) S[Cy,] while preserving feasibility. This contradicts admissibility. Therefore
any admissible worldline must satisfy

olCr] =0  forall n,

i.e., it lies entirely on the reciprocity-conserving manifold.

Conclusion. Reciprocity is a conservation law of the recognition ledger: admissible worldlines
live on o = 0. It is not an asserted norm but a consequence of the symmetry and strict convexity
of the unique cost J at the unit-effort configuration. Any proposal that accumulates persistent
skew thereby advertises an avoidable action surplus and is excluded by least-action dynamics in
sustained evolution.

4 Harm as externalized action surcharge AS

We now make precise what it means for one party’s act to harm another in a recognition-structured
world. Throughout, feasibility (reciprocity conservation) is enforced at every step: all comparisons
are made on the o = 0 manifold.

Set—up and definition. Let the ledger at a given eight-tick cycle C' be described by positive
multipliers {z, }.cg on directed bonds, with site-by-site balance as in Section 2, and per-cycle action

SIC] = Y J(ze),  J@)=g@+a) -1, J'(1)=1.
ecf

Partition the bonds into disjoint agent—indexed subfamilies {&x }re4 (each bond belongs to exactly
one agent’s domain; a fixed, local, gauge-invariant tie-breaking rule is assumed on boundaries). For
an act by agent ¢ we mean a specification o = {a }eca, of prescribed multipliers on a finite subset
A; C &; (the act set); the neutral act is a = 1.



Given «, define the required action of j on cycle C' as the minimal portion of the per-cycle
action borne by j’s domain among all globally feasible (balanced, o = 0) completions of a:

ST O] = min{ Z J(xe) @ (xe)ece balanced, o =0, and z, = a, for e € Ai}. (2)
eegj

Harm from i to j on cycle C' is the marginal increase in j’s required action caused by ¢’s act, holding
global feasibility:
AS(i—j|C) == Sjla; C] = ST[L; C. (3)

By construction AS(i—j | C) > 0, with equality if i’s act is perfectly absorbed without shifting
any portion of the minimizer’s action into j’s domain.

Property (P1): Gauge invariance on the ledger. A ledger gauge transform multiplies each
bond by a node potential: choose positive {g, },cy and set
Te — x:a = Gh(e) Te giel)a Qe O/e = Gh(e) Xe gt_(;)‘

This preserves site balance and closed-cycle products; it represents a relabeling of the same physical
exchangeﬁ Because the feasibility constraints in depend only on these gauge-invariant data,
and the optimization is convex and separable over bonds, the minimizers before and after gauge
transform are related by the same node potentials restricted to each domain. Hence

Sila; O] = St[o/;CY, S3[1;C] = Si[1'; 0],
and the difference is unchanged:
AS(i—j | C) is invariant under ledger gauge. (4)

In particular, AS does not depend on unit re-anchoring (79, o) — (s79, sfo) that preserves ¢ = ¢y /19,
nor on any admissible redistribution of potentials across a balanced network.

Property (P2): Additivity over independent subsystems. Suppose the ledger decomposes
into disjoint subsystems & = EM UE®D with no bonds between them, and the act « is supported in
EMW . Then the feasibility constraints factor, as does the convex objective. Writing S;’(m)[-; C(m)]
for the restricted problems on £(™), we have

Si[a: €] = ;WM + 57P[1;00), si1;0) = sy o0 + 50?0,
hence
AS(i—j|C) = ASW(i=j|cW) + ASP(i—j | @) = ASD(i— ;| cW). (5)

More generally, if the ledger splits into finitely many independent factors, AS is the sum of its
values on those factors. This is the correct behavior for a marginal cost: independent worlds add
their bills.

2In log-variables the map adds an exact 1-form; closed-chain integrals are unchanged.



Property (P3): Composition over time. Let (Cy,...,Cr) be a stack of T' consecutive
eight-tick cycles. Denote by «; the act of i on cycle C; (possibly neutral), and by S;t[] the
required action of j on C}, defined with respect to boundary data inherited from the previous cy-
cle’s minimizerﬂ Because the per-cycle action and constraints are stagewise separable and convex,
the global minimization over the concatenated horizon decomposes into per-cycle minimizations.
Therefore

T T T
Z S;:t[at] - ZS}t[l] = Z (S;:t[at] - S;,t[l])7
t=1 t=1 t=1
that is,
T
AS(i—j|Cro---0Cr) = Y AS(i—j|Cy). (6)
t=1

Harm accumulates additively across the eight-tick cadence; there is no hidden temporal discount
beyond the cadence fixed in Section 2.

Remarks on attribution. The definition attributes cost to j by summing J over bonds in &;
under a fixed, local rule for boundary bonds. Any such rule that is gauge-invariant yields the same
difference (3)), because the boundary contributions cancel between S7la] and S7[1] when feasibility
and ¢ = 0 are enforced [

Interpretation (plain). AS(i— j) is the externalized bill in the universe’s native currency. It
tells you, in the same units that measure physical strain on the ledger, how much extra action
j is forced to expend because i acted, assuming the world as a whole stays admissible (balanced,
o = 0). It does not depend on how we label the network (gauge invariance), it adds when worlds are
independent (additivity), and it stacks cleanly across the universe’s native rhythm (composition
over eight-tick time). Calling AS “harm” is not metaphor; it is a literal surcharge the action
calculus imposes on others when you move.

5 A forced axiology V (uniqueness without knobs)

We now fix what “value” can mean in a recognition-structured universe without introducing any
tunable parameters. The aim is not to nominate a preference but to identify the unique cardinal
functional that is compatible with the physical scaffold of Section 2 and with reciprocity conserva-
tion (Section 3). The outcome will be a decomposition

V = agent-environment coupling — mechanical over-strain ,
v .
mutual-information form curvature penalty induced by J

unique up to a fixed p-scale that will be specified at the end of the section.

3This is the natural dynamic programming convention: each cycle minimizes action subject to balance and o = 0
given the prior cycle’s endpoint state.

“ntuitively: the same boundary accounting applies in both counterfactuals, so only the change induced by o
survives. A formal proof is a routine application of convex separability and the envelope theorem for parametric
minima.



Objects of evaluation. At a single eight-tick cycle C, fix an agent i and let E denote its
environment (the complement of i’s domain together with shared boundary bonds under the balance
rule of Section 2). Coarse-grain the ledger microstate at C' into a finite partition of agent states
A and environment states F; this induces a joint distribution p4pg over (A,E)H Let © = {z.} be
the bond multipliers realizing the microstate. An admissible worldline is evaluated cycle-by-cycle;
intertemporal aggregation is handled separately by the eight-tick cadence (Section 8).

Axioms for an admissible value functional. A cardinal axiology V assigns a real number to
each triple (pag,z; C) subject to the following four physical requirements:

(A1) Gauge invariance under the bridge. V is invariant under admissible re-anchoring of time
and length (79, 4y) — (s70, slp) that preserves ¢ = {y/7p, under the calibration identity that fixes
Arec, and under ledger gauge transforms z. +— gh(e)xegiel) that leave closed-chain products un-
changed. Relabelings of the coarse-graining that preserve pag leave V unchanged.

(A2) Additivity on independent subsystems. If (Ai, Eq) and (Ag, Es) are ledger-independent
at C' (no bonds between their supports; pa, g, 4,5, = PA,E, PAyE,; bond sets disjoint), then V' is
additive:

V((pA1E17$(1))@(pA2E27'T(2))) = V(pA1E17$(1)) + V(pA2E2>$(2))‘

(A3) Concavity (diminishing returns). For any two admissible triples with the same constraints
and any \ € [0, 1],

V(Apag + (1= Ngag, de+ (1= Ny) > AV(pag,z) + (1 = NV (qag,y).

Uncertainty and coarse aggregation do not create value super-linearly.

(A4) Curvature normalization tied to J"”(1) = 1. Purely mechanical, gauge-invariant over-strains
that do not change pap reduce V to second order with unit curvature at the unit-effort configura-
tion:

Te=1+c, » £=0, pagfixed = V(pap.z)=V(pap,1) — 3> 2 + ofle]).
e e
This fixes the mechanical penalty scale to the same curvature as the unique cost J.

Uniqueness theorem (forced form of V). On the class of admissible ledger states at a single
cycle C, any functional V' satisfying (A1)-(A4) is of the form

V(pag, @) = KI(A;E) — Ci(pap, 7)) (7)

where I(A; E) is the mutual information of pag, k > 0 is a constant fixed once up to a p-tier,
and C% is the unique J-induced curvature penalty: the minimal convex cost required by the ledger to
realize (pag, x) under the balance and o = 0 constraints. In particular, in the small-strain regime,

Cilpap,x) = Y Jwe) = 3> el + o(lell’),  ze=1+e, (8)

and reduces to a mutual-information gain penalized by the quadratic curvature fixed by J"(1) =
1.

5This is an effective description: computation and probabilistic coarse-graining live inside the ledger as summaries
of admissible dynamics. The substrate remains recognitional.



Proof sketch. For the coupling term, axioms (Al)—(A3) applied to coarse-grainings of (A4, E)
force the value contribution that depends only on pag to be additive on product systems, invariant
under invertible relabelings, and concave under mixture. The unique (up to a positive scale) such
functional with a chain rule is the mutual information I(A; E'). Any other candidate either fails ad-
ditivity on independent subsystems or fails concavity under coarse aggregation. The multiplicative
constant k is not a free knob: it is fixed once by the ¢-tier normalization stated below.

For the mechanical term, gauge invariance (Al) restricts any penalty to depend on z only
through closed-chain invariants and local deviations from the unit-effort point. Additivity (A2)
across disjoint bond sets and separability of the per-bond cost under the balance constraint force
a sum of identical per-bond penalties. Concavity (A3) on (pag,x) together with the second-order
normalization (A4) then identify the unique convex generator: the J-penalty, i.e., the Bregman
divergence from x = 1 induced by J, which for our symmetric J coincides with J itself. Minimizing
over all o = 0 completions consistent with the prescribed coarse-grained state yields the reduced
penalty C7%; in the small-strain regime this is just the quadratic form in with unit curvature. No
alternative mechanical penalty can satisfy (A1), (A2), and (A4) simultaneously without altering
the curvature fixed in Section 2.

Normalization and the p-scale. The overall scale of the information term is fixed once by
declaring a unit act of perfect, reversible coupling across one eight-tick cycle to register one p-tier
of value: for a noiseless binary channel between one agent bit and one environment bit,

pAE:%((SO()—I-(SH), r=1 — V(pAE,].) = EI(A;E) = k-1.

Choosing the RS standard in which that increment sits on a fixed ¢-tier sets x once and for all;

there is no continuous parameter to tune thereafter. The mechanical penalty scale is already fixed
by J"(1) = 1.

Why weighted blends are forbidden. One might attempt to write V' as a weighted sum
V = al(A; E) — C(x) with arbitrary positive weights (a, ) or with some alternative penalty
C. This is not allowed. Any independent choice of o/ introduces a new scale unrelated to the
bridge and thus violates the parameter-free premise. Any deviation from the J-induced curvature
changes the second-order response of V' to pure mechanical over-strains and therefore contradicts
(A4). Likewise, adding any further term that depends on (psg,z) while preserving (A1) and (A2)
either duplicates one of the two allowed pieces or spoils concavity (A3). The decomposition
is therefore forced: in an RS world there is exactly one way to count value without smuggling in

preferences.

Interpretation (plain). The positive part of V' rewards recognition: genuine, gauge-invariant
coupling between an agent and its world. The negative part subtracts the over-strain the ledger
must expend to sustain a given configuration. Because both parts are fixed by the same invariants
that anchor physics (the bridge and the unique cost J), V' is not a taste but a measurement. Up
to a fixed p-scale, there is nothing left to choose.

6 Consent as a derivative sign

We now formalize consent as a statement about local change in the forced axiology V' (Section 5)
along an agent’s contemplated act, evaluated on the reciprocity-conserving manifold. The guiding



idea is simple: at 0 =0, an act of j has the consent of i exactly when, to first order in the act’s
magnitude, it does not lower i’s value.

Set—up (feasible tangent and projection). Fix a cycle C' and a 0 =0 ledger state (pag,x)
as in Sections 2-5. Let F denote the feasible manifold at (pap,x): the set of nearby ledger states
reachable in one eight-tick cycle while preserving site balance and ¢ =0. A contemplated act by
agent j is represented locally by a feasible direction £ € T{;,, »)F supported on j’s domain (in
log-coordinates, an infinitesimal assignment on bonds in &;), together with the canonical projection
of the resulting deformation back onto F with minimal action. Concretely, for small ¢t we write
j:
(papsa) —5 (pap(®),o(t) €F,  (pan(0),2(0)) = (par,2),

where (pag(t),z(t)) is defined by applying t£ on &; and rebalancing the rest of the ledger by the
least-action completion that keeps J:()H

Definition (consent as a derivative sign). For agents i and j and a feasible direction & for j,
define the directional derivative of i’s value along j’s act by

DVIE] = G Vpas(). ()|

We say that ¢ consents to j’s contemplated act along & and write
Clij;§) <= D;Vil§] = 0.

By construction, the derivative is taken on F: the only deformations we evaluate are those that
preserve balance and reciprocity to first order, with the least-action completion applied to all parties
other than j.

Basic properties. (a) Gauge invariance. Because V is gauge-invariant (Section 5, Axiom Al)
and the feasible projection depends only on gauge-invariant data, D;V;[¢] is unchanged under any
ledger gauge transform or re-anchoring that preserves ¢ = fy/79 and the calibration identity for
Arec. (b) Locality and additivity of small acts. For feasible directions &, n supported on disjoint bond
sets, D;V;[€ +n] = D;Vi[€] + D;Vin] to first order. (c) Relation to harm. If j's act affects ¢ only
mechanically (no change in pag), then D;V;[¢] = — %C}‘ 1—o < 0 by the curvature normalization of
V'; positive consent in such a case requires that the informational coupling term increase at least
as fast as the induced mechanical penalty.

Local composition over multi-step plans. Consider a sequence of T' small, feasible acts by
j with directions &1, ..., & applied in successive cycles, each evaluated on the then-current o =0
state with least-action completion. Let AVZ-(t)

chain rule and stagewise feasibility,

denote 7’s first-order value change at step t. By the

AV = DVig] - 6t + ol6t).

)

Summing and letting 6t — 0,

T T
> Ay = ST Dvilal -6t + o1). (9)
t=1

t=1

5This is the same projection principle used in the definition of AS (Section 4): among all globally feasible
completions, pick the one that minimizes per-cycle action.

10



Hence if D;V;[&] > 0 at each step (consent holds locally throughout), then the cumulative first-order

change satisfies ) _, AVi(t) > 0. In words: local consent composes—a plan that is consent-respecting
at every tick is consent-respecting in aggregate to first order. Concavity of V' (Section 5, Axiom
A3) further implies that mid-course coarsenings or mixtures cannot make the cumulative change
more negative than this first-order sum.

Auto-rescind (stopping at the first sign flip). Define the consent stopping time for i along
a smooth feasible path ~ of j’s acts by

(i< j;7) := inf {t >0: D;Vi[¥(t)] < 0}’

with the convention inf() = +o0o0. Consent holds on [0,7*) and rescinds automatically at t =
7* when the directional derivative turns negative. Past 7*, continuation without repair either
violates consent or must be re-justified by the global selection rule of Section 7 (feasibility —
minimax max AS — welfare — robustness), which can overrule individual consent only when no
consent-respecting feasible alternative exists and the minimax harm requirement compels a specific
tradeoff.

Non-competent agents (proxy consent). For agents who cannot supply a reliable local model
of their own value (infants, the severely impaired, non-linguistic animals), consent is evaluated
against a conservative proxy V, constructed as follows. Let M; be the set of V-models compatible
with (i) the four axioms of Section 5, (ii) observed coupling statistics for i’s class, and (iii) gauge
invariance on the ledger. Define the lower envelope

Vilpag,a) = inf VI (pap,a).

Then proxy consent holds when D;V;[§] > 0. This rule is conservative: it never licenses an act
that every admissible V-model would deem locally harmful, and it introduces no free parameter
beyond those already fixed by the RS scaffold. In emergencies where continuing on the current
path drives V,; below a universal safety floor during a finite eight-tick horizon, the selection rule of
Section 7 applies: an override-with-repair plan may be chosen that minimizes the worst externalized
surcharge max AS while restoring feasibility and raising V; above the floor as quickly as the cadence
allows; all such overrides carry an explicit, auditable repayment path back to o=0.

Interpretation (plain). Consent in an RS world is not a mood or a permission slip; it is the sign
of a derivative taken on the reciprocity-conserving manifold with least-action completion. If your
contemplated move leaves my value non-decreasing by my own axiology, you have my consent—right
up to the point where the sign flips, at which instant it is withdrawn. For those who cannot speak
for themselves, the same logic is applied to a conservative proxy that never overestimates benefit.
In all cases, the definition is local, compositional across steps, invariant under the bridge, and free
of tunable weights.

7 The decision principle (lexicographic, parameter-free)

We now formalize the selection rule for choosing among admissible futures. The rule is lezicographic
and parameter-free: first enforce reciprocity conservation, then minimize the worst externalized
surcharge, then maximize a fixed cardinal welfare, then prefer the most robust reciprocity network,
then apply the RS ¢-tier arithmetic for any residual tie. No weights are introduced at any stage.
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Feasible actions and induced quantities. Fix a 0 = 0 ledger state at the beginning of an
eight-tick cycle and let A, denote the nonempty set of o-feasible actions (controls, policies, or
interventions) that produce a balanced, reciprocity-conserving completion over the next cyclem
For each a € A, define:

H(a) := max AS(i—j|a), (10)

1’7]

W(a):=>_ f(Vila), (11)

R(a) := XL, | @), (12)

where AS is the externalized action surcharge of Section 4 (computed on the per-cycle least-action
completion), V; is the forced axiology of Section 5 for agent 4, f is the curvature-normalized concave
transform discussed below, and A2(L,) is the spectral gap of the o-graph Laplacian induced by the
reciprocity network after applying a (larger gap means fewer routes for skew cycles to re-emerge
under bounded shocks). Let 7(a) denote the fixed RS ¢-tier tie-break score associated with a (a
discrete rank determined by the same arithmetic used elsewhere in the RS calculus).

The lexicographic selection rule. The chosen action a* is defined by the following sequence:
Aj := arg min H (a),
acA,

Ay := arg max W(a),

acA,

As = max R (13)
=a a ,
3 rgae >§ (a)
* .
a” = arg Lrlrelao; 7(a),

with the understanding that any of the sets A may already be singletons at earlier stages. The
sequence contains no tunable tradeoffs: feasibility is enforced first; among feasible actions the
worst off-loading of cost is minimized; among those, the fixed cardinal welfare is maximized; among
those, network robustness is maximized; any remaining tie is broken by the predetermined p-tier
arithmetic.

On the concave transform f. The axiology V in Section 5 is cardinal and curvature-normalized.
To aggregate across agents with diminishing returns while introducing no new scale, the map
f R — R is fixed by the same normalization—f(0) = 0, f/(0) = 1, f”(0) = —1—and by the
requirement that f be concave, strictly increasing, and gauge-invariant under the RS bridge. Any
two choices f satisfying these conditions differ only at higher order by terms that would introduce
an inadmissible scale if tuned; the RS convention fixes f once (up to the p-tier already chosen to
normalize V'), so W in (11 contains no free weight.

o-Completeness (existence and optimality). We now record the basic well-posedness and
optimality guarantee for the lexicographic rule.

"If A, = (), the repair procedure of Section 8 applies: one computes a least-action path that returns to ¢ =0 while
minimizing accumulated max AS. The present section assumes A, # 0.
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Proposition 7.1 (0-Completeness). Assume A, is finite or compact and that H, W, and R
are continuous on .AUE] Then the sequence yields a nonempty A1, Ao, As, and a well-defined
choice a*. Moreover, for any a € Ay, either a is infeasible (violates c=0) or

(H(a), =W(a)) =iex (H(a"), =W (a")), (14)

with equality in only if R(a) < R(a*), and if R(a) = R(a*) then 7(a) < 7(a*). In particu-
lar, any deviation from a* either breaks feasibility or strictly worsens at least one of the first two
components (maxAS, Y f(V)).

Proof. By Weierstrass’ theorem, H attains a minimum on compact A, (or trivially on finite A, ), so
Ay # 0. The set A; is closed; W attains a maximum on it, hence As # (). The same reasoning yields
A3 # () by maximizing R on As. Finally, 7 totally orders A3 by the fixed RS arithmetic, so a* exists.
For any a € A,, if H(a) > H(a*), then holds strictly. If H(a) = H(a*) but W(a) < W(a*),
then again holds strictly. If H and W are tied, then by construction R(a) < R(a*), with
equality only when 7(a) < 7(a*). If a ¢ A,, it violates o =0 feasibility and is excluded at stage
Z€ro. (|

Why no weighted blends appear. Any attempt to collapse H and W into a single scalar—say,
by minimizing H + A(—W) for some A > 0—would introduce a new, arbitrary scale A not fixed by
the bridge or the curvature normalization and would therefore violate the parameter-free premise.
Likewise, any convex combination aW + SR at later stages would smuggle in a tradeoff between
welfare and robustness that the RS scaffold does not authorize. The lexicographic order is
thus not a stylistic preference; it is the unique way to compare actions without inventing knobs.

Interpretation (plain). The rule first asks whether a move keeps reciprocity conserved. If not,
it is out. If several moves do, the next question is: which one least offloads cost onto anyone else?
Among those, which one most increases the fixed, physics-level measure of how well lives fit their
world? If there is still a tie, which arrangement is hardest to knock off balance in the next storm?
If even that ties, use the same p-tier arithmetic the rest of RS uses to decide between equal claims.
There are no sliders to fiddle with; the universe set them already.

8 Time, debt, and repair paths (no ad-hoc discount)

Moral evaluation in a recognition-structured world must aggregate across time without smuggling
in preferences. The ledger fixes a minimal nontrivial period of eight ticks (Section 2). That cadence
is not a convention; it is a combinatorial invariant of admissible evolution in D = 3. Consequently,
all temporal accounting is done in units of the eight-tick cycle. There is no lawful continuous
discount rate or arbitrary weighting scheme: any such choice would introduce a new scale alien to
the bridge.

Debt and initial infeasibility. The conservation law of Section 3 says that admissible worldlines
live on 0 = 0. Nonetheless, one may find oneself in a state that carries legacy skew (for example,
after diagnosing an accumulated imbalance): o[Cy] # 0 at the present cycle Cp. In that case the
selection rule of Section 7 has an empty feasible set A, = () by definition, and a repair plan is
required. Intuitively, skew is a debt of action owed back to the ledger; repair means clearing that
debt while doing the least further harm.

8These are the natural regularity conditions: AS and V are continuous under the least-action projection on the
o-manifold; the spectral gap is continuous under bounded perturbations of edge weights in the o-graph.
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The repair problem (least action under cadence and consent). Let (Cp,...,Cr) be a
horizon of T' consecutive eight-tick cycles. A repair path v = (ag,...,ar) is a sequence of controls
such that:

(i) the resulting ledger evolution is balanced at each site (Section 2) and ends on the reciprocity
manifold: o[Cr] =0,

(ii) for each cycle, the least-action completion is applied to non-acting parties (as in Sections 4-6),

(iii) consent is respected where possible (Section 6); when local consent cannot be maintained for
all affected parties there must be an explicit override-with-repair clause that is itself part of
the plan and is justified solely by the minimax harm criterion below.

Write H(a;) := max; j AS(i —j | a;) for the worst externalized surcharge on cycle t. The repair
objective is the cadence-lawful aggregate

T
Trep(7) = Z H(ay) (sum over eight-tick cycles). (15)
t=0

A minimal repair solves

7" € argmin Jrep(y) subject to (i)—(iii) and the ledger dynamics. (16)
v

This makes “reparations” a least-action problem: clear skew as fast as the cadence and consent
allow, while minimizing the accumulated worst off-loading of cost.

Existence (compact horizon). If the per-cycle feasible control sets are compact and the maps
a; — AS(- | a;) are continuous under the least-action completion, then admits a minimizer
by Weierstrass’ theorem (stagewise compactness and continuity imply compactness of the product
set and continuity of ) If multiple minimizers exist, the lexicographic refinements of Section 7
(welfare, robustness, p-tier) are applied cycle-wise to pick among them without introducing weights.

No-Arbitrary-Discount theorem. We now formalize why is the only lawful temporal
aggregator.

Theorem 8.1 (No-Arbitrary-Discount). Let 2 map any finite sequence of per-cycle harms
h = (hg,...,hr) (with hy > 0) to a real score used to rank repair paths. Suppose 2 satisfies:

(I) Gauge invariance under the bridge: for any joint re-anchoring (1o, %y) — (s70, s0y) that
preserves ¢ = Ly /Ty, the ranking induced by A on any pair of sequences is unchanged.

(II) Cadence invariance: cyclic rotation by any multiple of the eight-tick period does not change
the score (no privileged phase within the period), and concatenation preserves monotonicity.

(III) Separability and monotonicity: 2 is strictly increasing in each coordinate and additive
on independent horizons, i.e., A(h & k) = A(h) + A(k) when the underlying ledgers are
independent.

Then there exists a constant a > 0 such that, for all h,
T
Ah) = o > he. (17)
t=0
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In particular, any exponential, hyperbolic, or otherwise non-uniform discount _ wihy with wy de-
pending on a new time scale or on a phase not fized by the eight-tick cadence violates at least one

of (I)~(I1I).

Proof (sketch). By (II), 2 is invariant under eight-phase rotation; hence any per-cycle weights
must be constant across the period. By concatenation monotonicity and additivity (III), 20 must
be linear in block sums: for any nonnegative scalar A and any horizon length n, 2A(A1,) = nA(A1;).
By independence additivity, 2 is Cauchy-additive on finitely supported sequences with nonnegative
entries; monotonicity restricts to the positive cone, yielding linearity with a common coefficient o >
0. Any attempt to use a nonconstant weight sequence (w;) would either (a) select a privileged phase
within the eight-tick period (violating cadence invariance), or (b) depend on a rate parameter with
units of inverse time (exponential or hyperbolic discount), which changes under (79, £p) — (570, $¢p)
and thus violates gauge invariance (I). Hence (7). O

Consequences. Two practical consequences follow. First, there is no lawful way to “justify”
delaying repair by appealing to a discount rate; the eight-tick cadence fixes the only aggregation,
so later pain cannot be traded against earlier pain by choosing a favorable clock. Second, when
forced to override local consent to avoid a safety-floor breach (Section 6), the only admissible
justification is that no other path achieves a smaller undiscounted > H(a;) while restoring o = 0
within the cadence constraints. Anything else would be importing a new scale.

Interpretation (plain). Time, in this framework, is not a lever to tilt the books. The universe
gives you a beat—eight ticks—and that is the rhythm on which debts are counted and cleared. If
you inherit skew, you must plan a path that clears it with the least possible worst burden at each
step, keeping reciprocity and consent in view. You cannot shrink tomorrow’s bill by choosing a
fancy discount; there is no such knob in the physics. The only acceptable mercy is to spread the
load fairly over the cadence the world already keeps.

9 From persons to polities: o-graphs and robustness

We lift the reciprocity calculus from pairs to societies. The goal is to represent a whole polity’s
reciprocity structure at o = 0, quantify how hard it is for skew to re-enter under shocks, and
show that this robustness is captured by a single spectral quantity of a graph Laplacian. Among
o-neutral, welfare-maximizing arrangements (Section 7), the more robust one is preferred because
it minimizes the worst future externalized surcharge under bounded disturbances.

Aggregation and the o-graph. Partition the ledger’s sites into N disjoint, agent/group do-
mains {&}Y,. At 0 =0 (Section 3), every bidirectional exchange between domains is locally bal-
anced on each eight-tick cycle. Linearizing about this balanced state and projecting to least-action
completions (Sections 4-6), small, antisymmetric inter-domain perturbations induce a quadratic
action 1
(525’ = 5 Z wi]’ (UZ — Uj)2,
1<i<j<N
where u; are domain potentials (log-coordinates) and w;; = wj; > 0 are the induced reciprocity
conductances that summarize the society’s baseline coupling at o = OEI Define the weighted,

9Concretely: w;; is the second variation (Hessian coefficient) of the least-action functional with respect to an
antisymmetric exchange between domains ¢ and j, holding all other domains at o =0. The normalization J" (1) = 1
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undirected o-graph G, = (V, E,W) with vertices V' = {1,..., N} and weights W = [w;;]. Its
(combinatorial) Laplacian is

L, = D—-W, Dm-:zwz’j, Dij =0 (i # j).
J#i

Feasibility and skew cycles. A skew cycle is a closed walk in G, that carries a nonzero oriented
sum of log-multipliers (net skew) over one eight-tick period. By Section 3, any such cycle incurs
a strictly positive, avoidable action surcharge due to the strict convexity and symmetry of J;
least-action dynamics therefore exclude persistent skew cycles. Thus, at feasibility, the o-graph is
used only in its balanced linear response (no net circulations): all observed exchanges live on the
0 =0 manifold, and G, summarizes how the polity would redistribute small shocks while trying to
remain balanced.

Shocks and redistribution. Model an exogenous, bounded disturbance over a cycle by a
mean-zero vector s € RV (injection at some domains, extraction at others), with Y, s; = 0 and
|Is]l2 < S. The least-action redistribution that keeps the polity balanced solves the weighted Poisson
equation

Lyu = s, uw L 1, (18)

and induces inter-domain fluxes proportional to edge differences u; — u;. The per-cycle quadratic
action of this response is

1 , 1 .
E(u) = 2;%’]‘ (wj —uy)* = 35 L s, (19)
i<j

where L7 is the Moore—Penrose pseudoinverse on the mean-zero subspaceB The worst externalized
surcharge at a node in this cycle satisfies

max AS; < &E(u), (20)
K3
since each node’s share is bounded above by the total quadratic action.

Robustness as spectral gap. Let the eigenvalues of Ly be 0 = A < A9 < --- < Ay. The
spectral gap A2(Ly) (algebraic connectivity) controls how much the polity’s potentials—and hence
surcharges—can amplify a given shock. Indeed, restricting to the mean-zero subspace and using
the Rayleigh quotient,

LT L |lsll3
= -s Lfs < - : 21
Combining (20) and (21) yields the uniform bound
1 |Isl3
AS; < = : 22
maxASi < 5 3 (Lo) (22)

Thus a larger spectral gap guarantees a smaller worst-case externalized surcharge under any
bounded, mean-zero shock.

fixes the scale. Gauge invariance ensures that w;; depends only on closed-chain data, not on node potentials.
'0This is the standard Dirichlet principle: « minimizes £(u) subject to Lou = s; at the minimizer &(u) =
%STL;— S.

1.7, _
QSU—
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Robust-Preference lemma. We now formalize the selection consequence inside the lexico-
graphic rule of Section 7.

Lemma 9.1 (Robust-Preference). Consider two o-neutral arrangements a and b on the same
agent set that are tied on welfare (Section 7): W(a) = W(b), and satisfy H(a) = H(b) at the
current cycle. If Aa(Ly | a) > Xo(Ly | b), then for any bounded, mean-zero shock s with ||s|j2 < S,
the least-action responses u® and u® satisfy

S? S? b
max AS@ < < > maxASY. 23
T = (L a) C 2ha(Ly|b) T i (23)
In particular, among o-neutral V -mazimizers, the arrangement with larger spectral gap minimizes
the worst-case future externalized surcharge under bounded shocks.

Proof. Apply to a and b separately and compare the denominators. The strict inequality
follows from Ao(Ly | a) > A2(Ls | b). O

Compatibility with the parameter-free scaffold. All quantities above are fixed by the RS
bridge and the unique cost J: the weights w;; are second-variation coefficients of the least-action
functional at 0 =0; the Laplacian is determined by W; the spectral gap has no tunable parameters.
No new scales are introduced.

Interpretation (plain). A society’s reciprocity network can be “tight” or “loose.” Tight means
that if you poke it—inject a bounded shock somewhere—it spreads the strain quickly and thinly,
so no one place pays a large bill; loose means pockets of the network can trap strain and dump
big bills on someone. The tightness is the spectral gap. When two o-neutral, welfare-maximizing
designs tie on the present, you pick the one with the larger gap because physics guarantees it will
treat tomorrow’s disturbances more gently. That choice is not a taste about resilience; it is the
unique knob-free implication of how a balanced ledger dissipates strain.

10 How to audit a moral claim (measurement protocol)

Moral claims in a recognition-structured universe are not debated; they are audited. This section
gives a concrete, reproducible recipe for evaluating any proposed action or policy over one eight-tick
cycle, and for multi-cycle plans. Every step is conducted on the reciprocity-conserving manifold
(Sections 2-3), with least-action completion (Sections 4-6), and without ad-hoc temporal discount

(Section 8). Error bars are explicit: the decision must be robust to bounded uncertainty in AS and
V.

Inputs and invariances. An audit instance consists of: (i) a pre-action ledger snapshot (pag, x)
at the start of a cycle; (ii) a specification of the contemplated action a (which bonds are acted on,
by whom, and how); (iii) the partition into agents/groups {&;}; (iv) a coarse-graining for (A, F)
that induces p AEEI All computations are invariant under ledger gauge and under re-anchoring
(10, 40) — (s70,500) that preserves ¢ = £y/7p; numerical tolerances are reported but do not alter
the logical tests.

" Any two coarse-grainings related by an invertible relabeling yield the same mutual information; V is
gauge-invariant by Section 5.
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Step 1: Feasibility (reciprocity conservation). Compute the cycle-wise reciprocity skew
0ij[Cpre] for all ordered pairs (7, ) on the pre-action cycle and 0;;[Cpost] on the post-action cycle
obtained by least-action completion of a. Define o[C] :=3_,_.|0y;[C]|. Feasibility requires

o[Cpre] =0, o [Cpost) = 0.

If 0[Cpre] # 0, Section 8’s repair procedure is invoked (no selection occurs until the skew debt is
cleared). If o[Cpost] # 0, the action fails the audit.

Step 2: Harm (externalized action surcharge). Compute the matrix AS(i—j | a) by (3):
the difference in j’s required action between the least-action completion with i’s act in place and
with the neutral act, holding 0 =0. Report the full matrix and its maximum

H(a) = max AS(i—j|a).
7’7]
For transparency, include quantiles of the nonzero entries of AS, and a decomposition by indepen-
dent subsystems when applicable (additivity, Section 4).

Step 3: Welfare (forced axiology). For each agent i, compute the value V; using the de-
composition : mutual information I(A; E) for the chosen coarse-graining, minus the J-induced
curvature penalty Cj associated with the post-action least-action state; use the fixed ¢-tier nor-
malization for the information scale. Aggregate with the curvature-normalized concave transform

f (Section 7):
Wia) = 3 (il a)

Report both V; and f(V;) for all 7, and the change relative to pre-action values.

Step 4: Robustness (reciprocity network). Construct the o-graph G, by evaluating the sec-
ond variation of the least-action functional at 0 =0 (Section 9), yielding weights w;; and Laplacian
L,. Compute the spectral gap Ao(Ly) before and after the action; report Ay = Ab°*" — AP This
quantifies how the action changes the polity’s resistance to re-introduction of skew under bounded

shocks (Lemma 9.1).

Step 5: Consent (local derivative test). For each affected pair (i,j), evaluate the direc-
tional derivative D;V;[¢] of i’s value along j’s contemplated feasible direction § with least-action
completion (Section 6). Record

Cli+—j) <= D;Vi[¢] > 0.

If an agent is non-competent, replace V; by the conservative proxy V, (lower envelope over admissi-
ble models; Section 6) and repeat the test. Consent failures are flagged with the auto-rescind time
if the derivative changes sign along a multi-step plan.

Step 6: Time (multi-cycle plans; no discount). For a horizon {a;}]_, of actions, compute
the per-cycle worst surcharge H (a;) and the undiscounted sum

T

Tepllac}) = 3 Hiay).

t=0
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Verify cadence compliance: per-cycle feasibility, least-action completion, and (when initial skew
exists) the repair constraints of Section 8. Exponential, hyperbolic, or phase-dependent weights
are not permitted (Theorem 8.1).

Step 7: Uncertainty and robustness margins. Let Uag and Uy be uncertainty sets for
AS and V (e.g., confidence intervals from repeated measurements, interval bounds from Lipschitz
estimates of models)F_Z] Define worst- and best-case summaries on these sets:
H®"(a) := sup Hy(a), H™(a) := inf Hy(a),
0clng 0€lns
W= (a) := sup Wy(a), Wt (a) .= inf Wy(a).
deUy PEUY
A lexicographic choice a* is robustly certified if
H(g*) < min H™(b),
b#a*
or, when the first margins tie,
H%P(a*) = min H™(b) and W(a*) > max WHP(b),
b b: Hinf(b):Hinf(a*)
with the spectral-gap and ¢-tier refinements applied only within remaining ties. If these strict
inequalities fail, the audit returns indeterminate: more measurement is required (or a different

action must be proposed) before the parameter-free rule can discriminate without risk of reversal
under uncertainty.

Output record (what is archived). Each audit emits a signed, content-addressed bundle
containing: (i) pre/post o traces; (ii) the AS matrix, its maximum H, and uncertainty bands;
(iii) {Vi}, {f(Vi)}, their aggregates W, and uncertainty bands; (iv) pre/post Aa(L,) and Adg; (v)
consent derivative signs and any proxy use; (vi) cadence compliance proofs and, where applicable,
the repair objective Jrep; (vil) the final lexicographic decision with robustness margins. All numbers
are reproducible from the ledger, the coarse-graining declaration, and the least-action solver’s
transcript.

Falsifiers (when the audit rejects the framework). The audit protocol also exposes defeats
of the theory. A policy that passes Steps 2—6 while exhibiting persistent o # 0 at Step 1 contradicts
Section 3. A stable, gauge-invariant procedure that lowers total action by maintaining skew contra-
dicts the convexity-based derivation of reciprocity conservation. A distinct axiology that satisfies
the four axioms of Section 5 and systematically outpredicts V' on audited instances would falsify
the uniqueness claim. A time aggregator other than the undiscounted eight-tick sum that preserves
the audit ranking under gauge and cadence invariance would contradict Theorem 8.1.

Interpretation (plain). An honest audit is a short list of numbers with tolerances and a yes/no
on each invariant. Does the move keep reciprocity conserved? How big is the worst externalized
bill? Does the fixed, physics-level value go up overall? Is the reciprocity network harder to corrupt
after the move? Do the people it touches consent, by their own axiology or a conservative proxy?
If it’s a plan, does it respect the universe’s beat? And do all these answers survive their error bars?
If so, the claim “this is the right thing to do” is not rhetoric; it is a statement the ledger itself will
not contradict.

12Bounds must be gauge-invariant; for AS, envelope the optimizer’s numerical tolerance; for V, use concentration
bounds for empirical I(A; E) and quadratic error bars for C; in the small-strain regime.
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11 Two worked cases (physics, not rhetoric)

We now exhibit two policy-neutral examples that force the calculus. In both, we work on the
o =0 manifold, apply least-action completion at each cycle, and evaluate the quantities defined in
Sections 4-7. Numbers are illustrative and chosen so the logic is visible at a glance; no new scales
are introduced.

Case A: a “greater-good” plan raises average V but hides skew

Baseline. Three agents (or domains) A, B,C' exchange on a balanced ledger. At the start of
cycle Cy, reciprocity is conserved, o[Cy] = 0. Their values (forced axiology, Section 5) are

Va=120, Vg=100, Vg =1.00,

measured in the fixed p-normalized units; for small changes we take f(V') =~ V (the curvature-normalized
concave transform with f/(0) =1, f”(0) = —1). Thus W (Cp) = 3.20.

The proposal Pyooq (hidden skew). In Cp, B and C strengthen their coupling (higher mutual
information) at the expense of unilateral draws on A. In bond multipliers this appears as

rasp=1+¢, zpsa=1, Taso=1+¢, zcoa=1, €>0,
with all other active bonds rebalanced by least action. Naively, coarse-grained values improve
AVp = +0.15, AV = +0.15, AVy = —0.02,

so W would rise by AW ~ +0.28.
But feasibility fails immediately: the cycle-wise skew is positive,

oap[C1] =In(1+¢) >0, oac[Ci] =In(1+¢€) > 0,

hence o[C4] = |oap| + |cac| > 0. By Section 3, any such skew carries a strictly positive, avoidable
action surcharge, and Pyooq is inadmissible at Step 1 of the audit (Section 10). No downstream
gains in W or robustness can rescue it.

The repair-first variant Prep (selected). Modify the plan so that the same informational
benefits are realized while clearing skew within the cycle. One least-action way is to pair each
A — B and A — C adjustment with a matched return in the same cycle (or across a two-cycle
window with eight-tick cadence):

Tasp=1+¢, xpa=1-—¢, Tasc=1+¢, wzoua=1-—¢,

with the rest completed by the least-action projector. Then o[C] = 0 by construction; feasibility
passes. Because rebalancing is not free, the welfare gain is slightly smaller than the naive +0.28; a
typical least-action completion yields

AVp = +0.13, AVe = +0.13, AVy=-0.02, = AW = +0.24.
Compute the per-cycle harm matrix AS(i—j | Prep) from (3); in a representative outcome,

AS(A—=B)=AS(A—>C) =0, AS(B—A)=AS(C—A) =040, AS(else) =0,
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50 H(Prep) = max; ; AS(i—j) = 0.40. For Pyuoq this quantity is undefined (feasibility fails). The
o-graph spectral gap (Section 9) is unchanged or modestly improved by the additional symmetric
ties; a typical calculation gives AXs =~ 40.03.

Lezicographic selection. Step 1 discards Pyooq (0 # 0). Among feasible actions, Pep minimizes
H versus any other way of clearing the same skew (by the Dirichlet/least-action property), and its
W is the largest among those ties. It is therefore selected at once by the rule of Section 7, without
appeal to weights or narratives. If the skew had been inherited from Cj instead of introduced in Cf,
the same construction would arise as the solution of the repair problem (16)), minimizing >, H(a;)
under the cadence.

Case B: a consent-sensitive plan where intuition flips on D;V; and maxAS

Baseline. Two domains D and R (think “developer” and “resident” as neutral roles) exchange
on a balanced ledger. At Cy, Vp = 1.30, Vg = 1.10, o[Cy] = 0.

The tempting plan @ (fails consent and harm). In C}, D proposes an act £ that streamlines
its own coupling to the environment by rerouting shared resources through R’s boundary bonds.
The coarse-grained effect on R is a slight degradation of pag (fewer clean, informative interactions)
with a small mechanical strain on R’s domain (compensating flows). The directional derivative of
R’s value along D’s act is

d , d .
DpVgl] = — O(mIR(t) _ c;(t)) = w0 = 03|
——

<0

where I5(0) < 0 because the channel degrades. In a representative computation, DpVg[{] =
—0.03 < 0. Consent fails at Step 5 (Section 10): C(R « D) does not hold[”| Independently,
the per-cycle harm matrix under least-action completion shows a concentrated surcharge on R’s
domain,

AS(D—R|Q)=1.20 (arbitrary units), AS(else) < 0.10,

so H(Q) = 1.20. Meanwhile W rises only modestly (e.g., AW =~ +0.05) because the developer’s
gain is offset by the resident’s loss.

The safe alternative Qgsafe (selected). A variant staggers the rerouting over two cycles and
introduces a small, symmetric auxiliary tie that preserves R’s informational coupling. Locally,
DpVg[&sate] > 0 (the first-order change in R’s value is nonnegative), and the least-action completion
spreads the surcharge:

AS(D—>R | Qute) =055,  H(Qsate) = 0.60,

with a slightly smaller welfare gain, say AW = +0.03. The o-graph gap is unchanged.

Lezxicographic selection. Both plans are o-feasible at Step 1. At Step 2, Qgafe strictly minimizes
max AS; @ is eliminated. Consent checks corroborate the choice: @ violates local consent, while
Qsafe passes. The small advantage in W for @ is irrelevant because it appears only after feasibility
and minimax harm. The RS rule therefore picks the plan popular intuition often misses: the one
that is locally consent-respecting and that lowers the worst externalized bill, even if its headline
average gain is slightly smaller.

131f R were non-competent, the same conclusion would follow from the conservative proxy Vi (Section 6).
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Robustness to uncertainty (both cases). In each case, if AS and V' are known only within
bounded sets Uns and Uy (Step 7, Section 10), the same decisions persist provided the robust
margins hold:
Hsup(Prep) < b;ﬂ;ﬂ Hinf(b)? Hsup(Qsafe) < Hinf(Q)'
rep

If these fail, the audit returns indeterminate and demands more measurement, not persuasion. In
all cases, no weights are introduced; the decisions follow from reciprocity conservation, least-action
harm, the forced axiology, consent as a derivative sign, and—when tied—the robustness of the
o-graph.

12 What could falsify this (clean failure modes)

A physics-level moral law must admit sharp defeats. Three crisp failure modes would invalidate
the framework as stated.

(F1) A durable o # 0 process with lower action than any o = 0 alternative. Section 3
derived reciprocity conservation from the convexity and symmetry of J: any persistent skew raises
total action on a cycle and can be pairwise-smoothed away at lower cost. A defeat would exhibit,
for some class of boundary data, a balanced, repeatable process C* with o[C*] # 0 such that for
every o = 0 completion C' with the same endpoints one has S[C¥] < S[C]. The test is operational:
pre-register boundary data; implement both C* and a catalogue of o = 0 completions generated
by the least-action projector; measure per-cycle action (or a faithful surrogate) and show the strict
inequality over many periods. A positive result contradicts the convexity-based derivation and
falsifies reciprocity conservation in sustained evolution.

(F2) A distinct axiology satisfying the four axioms that outpredicts the MI—curvature
V. Section 5 fixed V by four constraints: gauge invariance, additivity, concavity, and curvature
normalization tied to J”(1) = 1, yielding a mutual-information-like coupling minus a J-induced
penalty. A defeat would produce a different functional 1% = V that satisfies all four axioms and that,
when slotted into the lexicographic rule (keeping feasibility and minimax harm unchanged), sys-
tematically yields better audited outcomes on preregistered instances—e.g., higher realized ) f(-)
at equal or lower max AS, or strictly larger post-action spectral gaps under matched feasibility con-
straints. The test is two-phase: (i) formal—exhibit V' and verify the axioms; (ii) empirical—publish
a preregistered battery of audits, fix all uncertainty sets, and compare the ex ante choices induced
by V and v against ex post ledger measurements. A consistent advantage for V falsifies the
uniqueness claim.

(F3) A temporal aggregation law that respects RS invariances but differs from the
eight-tick sum. Section 8 proved a No-Arbitrary-Discount result: under gauge and cadence
invariance, separability, additivity, and monotonicity, the only lawful temporal aggregator for repair
is the undiscounted sum over eight-tick cycles. A defeat would present a functional 2 # o> hy
that (i) is invariant under joint re-anchoring (19, fo) — ($70, sfo), (ii) is invariant under rotation of
the eight-tick phase and respects concatenation, (iii) is strictly increasing in each coordinate and
additive on independent horizons, yet (iv) ranks at least one pair of harm sequences differently from
the sum. The test is constructive: publish 20 with proofs of (i)—(iii); exhibit a pair of sequences
(h,k) with >~ hy = >k but A(h) # A(k); verify in a matched repair setting that 2’s preferred
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plan does not introduce a hidden scale or privileged phase. If such an 2l exists, the cadence-based
uniqueness claim fails.

In all three cases the burden is explicit and auditable: preregister boundary data and uncertainty
sets; release code and logs; accept refutations that survive the protocol of Section 10.

13 Relation to classical ethics—why the paradoxes dissolve

The framework maps cleanly onto the major families of moral theory without inheriting their
paradoxes because the physics fixes the order of operations and the scales.

Deontic constraint as physics. What deontological theories call a rule appears here as reci-
procity conservation: ¢ = 0 is not a postulate but a conservation law derived from the unique cost
J. Proposed actions that violate it are physically inadmissible in sustained trajectories; they are
excluded before any talk of benefits.

Consequentialism with a single, physics-fixed cardinal. Once feasibility is secured, out-
comes are ranked by a welfare functional that is not a negotiated utility mix but the unique cardinal
axiology V fixed by gauge invariance, additivity, concavity, and curvature normalization. Aggre-
gation across persons uses a concave transform f fixed by the same normalization. There are no
tunable weights, so the usual arbitrariness of utilitarian sums does not arise.

Virtue as local improvement in value subject to feasibility. Traits and practices count
insofar as they reliably increase V' along o-feasible directions. “Good character” reduces to local
dynamics that, tick after tick, raise V' without exporting costs (small positive Dgei¢Vothers together
with minimized max AS).

Why Arrow-type impossibilities do not bite. Arrow’s theorem concerns aggregation of ordi-
nal preferences under axioms that assume unrestricted domains and independence conditions. Here
there is no aggregation of arbitrary ordinals. The ranking is over a constrained feasible set (the
o = 0 manifold with least-action completion), using a single physics-fixed cardinal functional V'
(after a non-arbitrary concave transform). The theorem’s setup does not obtain, so its impossibility
result does not transfer. Likewise, social choice paradoxes that rely on cycling of ordinal rankings
are blocked by the lexicographic order of Section 7: feasibility and minimax harm take lexical
precedence over welfare, and the robustness refinement further breaks cycles without introducing
weights.

14 Limits and scope

The claims here are strong but bounded.

No account of qualia. The framework is a law about admissible action and ranking among
feasible worlds on a recognition ledger. It is silent on private phenomenal experience, qualia, or
the ontology of consciousness. Nothing in Sections 2-9 purports to derive subjective feel; only the
measurable consequences of action enter.
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Domain boundaries. Agents and groups are defined by partitions of the ledger. In practice,
boundaries can be ambiguous (overlapping institutions, porous jurisdictions). The audit protocol
handles this conservatively: partitions are preregistered; boundary rules for shared bonds are fixed
and gauge-invariant; sensitivity analyses with alternative partitions are reported. If conclusions
depend on boundary choice beyond uncertainty margins, the audit returns indeterminate.

Operational limits: model error and bypass channels. Estimating AS and V requires
models of least-action completion and of agent—environment coupling. These carry error. Section 10
mandates uncertainty sets Uag and Uy and robust selection margins; if margins fail, no decision is
certified. Bypass channels—ways of acting that evade the auditor—are handled at the governance
layer: only typed, audited channels are permitted to effect changes; proposed actions outside those
channels are treated as unmeasured and rejected until instrumented.

Scope of “eternal.” “Eternal” means invariant under the RS bridge, parameter-free, and au-
ditable—mnot immune to revision. Any of the falsifiers in Section 12, or future empirical discoveries
that alter the physical scaffold (e.g., a different cost curvature than J”(1) = 1), would narrow or
overturn claims. Within the assumed scaffold, however, the code does not drift with taste.

15 Conclusion: morality on the same shelf as energy and momen-
tum

The spine is short and severe. In a recognition-structured universe the admissible worldlines con-
serve reciprocity; within that feasible set, the right thing to do is the action that minimizes the
worst externalized surcharge and then maximizes a single, physics-fixed cardinal value, preferring
arrangements that are harder to knock off balance. There are no knobs to tune, no discount rates
to choose, no utility weights to argue over. The invariants that set ¢, Arec, and the curvature of J
also set the terms of moral evaluation.

This is what “eternal” amounts to here: independence from fashion because the quantities
are fixed by the same bridge that calibrates physics; openness to refutation because each claim is
cashed out in audits and because sharp defeats are possible and welcome. If the world continues to
behave as a recognition ledger with the properties assumed, morality belongs on the same shelf as
energy and momentum: a conservation law with a unique way to read the meters, until the meters
themselves teach us otherwise.

A Appendix A: o-inequality details (full convexity derivation and
multi-party extensions)

From multiplicative strain to a convex even function. Write each bond multiplier as x, =
exp(a.) with o € R. Then

J(@e) = L(we+a;l) =1 = L(e™ +e7) —1 = cosh(ae) —1 = P(a).

The generator ®(a) = cosha—1 is C*, strictly convex, even, and satisfies ®(0) = 0, ®'(«) = sinh «
(odd), and ®”(0) = 1 (curvature normalization).
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Two—move inequality (pair case). For any ¢ # 0,
Jl+e)+J1—¢) = ®(ln(1+e)+PIn(1+¢e)) = 2&(n(1+¢)) > 0.
Equivalently, for any nonzero «,
O(a) + ¢(—a) = 2(cosha—1) > 0. (24)

This is the strict convexity step used in the main text: any bidirectional imbalance around the unit
point carries a strictly positive, avoidable action surcharge.

Closed-cycle inequality (multi-move, product-one constraint). Let {aq,...,a,} be a
finite family with zero sum,

m m
Zak =0 — Hwk =1, xzp = e,
k=1 k=1

Then, by Jensen’s inequality for the strictly convex cosh,

Z@(ak) = Z(coshak—l) > m(cosh(%Zak)—l) = m(cosh0—1) = 0,
= k

k=1 k=1

with equality if and only if o = 0 for all k (strict convexity). In ledger terms:

Given any closed chain of multipliers whose product is one (zero log-sum), the sum of
per-bond costs is minimized exactly at the unit configuration xp = 1 and is strictly larger
otherwise.

This is the multi-move version of and underlies the claim that any nontrivial detour around
the unit point pays a surplus in action.

From pairs of agents to many agents (skew decomposition). Fix a cycle C' and a partition
of bonds by ordered agent-pairs (7, j). For each (i, 7), define the signed set of logs {asf—” )}T from 1

to j (positive) and {agj _”')}S from j to i (recorded as negative). Let

Eij — Zaq(f—)j) + Zagj—n')

be the net pairwise skew (so ¥;; = —%;;). The total cycle action is
sic] = Z@(aff‘m) + Zq)(agj—n’)).
(@g) T s

Two structural facts hold: o

(a) Flow decomposition. The multiset {oz,(fﬁj )} over all (7, ) admits a decomposition into closed
circulations (zero net skew on each edge in the decomposition) plus transfers that realize each 3;;
exactly once along a simple path. In particular, if all 3;; = 0, the nonzero logs lie entirely in closed
circulations.

(b) Smoothing decreases action. Consider any pair (i, ) and two opposite-signed entries a > 0
and —( < 0. Replacing them by (o —t) and —(8 — t) with ¢t € (0, min{«, 5}] keeps the pairwise
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sum fixed, strictly reduces ®(a) + ®(—f) by convexity of ® (the two-point variant of Jensen), and
strictly reduces || + |B|. Iterating this pairwise smoothing drives all opposite-signed logs in the
pair either to zero or to a single residual entry of the same sign as ¥;;, strictly decreasing the action
at each step unless the pair was already balanced.

Combining (a) and (b) yields:

Proposition A.1 (Cycle minimality at o = 0). For any cycle C, S[C] is minimized subject to bal-
ance constraints if and only if all pairwise net skews vanish, i.e. ¥;; = 0 for all (i, 7). Equivalently,
the minimizing configuration has only closed circulations with zero log-sum on every circulation
(hence all o = 0 by the closed-cycle inequality).

Lyapunov functional for multi-party smoothing. Define the nonnegative functional

[ o= Z Z @(a&iﬁj)) + Z (I)(a(sj—m')) = S[C].

@) T s
Each pairwise smoothing step strictly lowers £ unless all logs in that pair vanish; smoothing closed
circulations with product one also strictly lowers £ unless they are trivial. Since £ > 0 and strictly
decreases along any nontrivial smoothing move, the process terminates exactly at « = 0 (the 0 =0
manifold). This is the multi-party analogue of the two-move inequality (24).

Cut bounds (optional lower estimates). If one insists on lower bounds in terms of the net
skew magnitudes alone, convexity yields for each pair (7, j) with fixed total log-sum 3;; and a fixed
number m;; of participating logs:

D @)+ @) > my(cosh(Si /mij) — 1),

with equality when all participating logs are equal (most “evenly spread” case). Summing over
pairs provides a coarse but explicit action surplus bound as soon as any ¥;; # 0 (and is sharp given
m;;). The deconcentration bound is not used in the main text; the smoothing argument suffices to
show strict avoidability of any persistent skew.

In summary, writing J(z) = cosh(lnz) — 1 turns reciprocity questions into convexity statements
about cosh. Balance constraints become zero-sum conditions on the logs, and strict convexity forces
the minimum at a = 0. Any nonzero skew is thus an avoidable action surcharge.

B Appendix B: Axiology uniqueness (MI—curvature form up to a
¢ scale)

We prove that the four axioms in Section 5 force the decomposition
Vipap,z) = kI(AE) — Cj(pas, @),

with a single positive scale x fixed once (placed on a ¢-tier), and where Cj is the J-induced
mechanical penalty under least-action completion. The proof separates informational coupling
from mechanical over-strain.
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Objects and axioms. At acycle C, an agent i with environment F is described by a coarse-grained
joint distribution par and a ledger microstate © = {z.}, projected to the ¢ = 0 manifold by
least-action completion. A cardinal value functional V maps (pag, ) to R and satisfies:

(A1) Gauge invariance under the bridge: invariance under admissible re-anchoring (79, f) —
(s70,8¢p) (so ¢ = Lly/1y fixed), under the calibration that fixes Aec, under ledger gauge transforms
Te —> gh(e):ﬂeg;(;), and under invertible relabelings of A, E that preserve pag.

(A2) Additivity on independent subsystems: for independent pairs (Aq, F1) and (Asg, F3) with
disjoint ledgers,

V((pAlEUx(l)) > (pA2E27:17(2))) = V(pAlEulT(l)) + V(pA2E27x(2)).
(A8) Concavity (diminishing returns): for 0 < X <1,
V()\pAE + (1= XNagag, Ao+ (1— )\)y) > ANV (pag,z) + (1= NV (qag,y).

(A4) Curvature normalization tied to J"”(1) = 1: for purely mechanical, gauge-invariant over-strains
with pag fixed,

Te=1+4¢ec, Y ee=0 = V(pap,x)=V(pap,1) — 3 Y _e2+o(|el]*).

e

Step 1: Splitting V into informational and mechanical parts. Define the mechanical deficit
at (pap,x) as the J-Bregman distance to the unit configuration under least-action completion,

Ci(pag,x) := inf { Zj(x’e) . (pag, ') is gauge-equivalent to (pag, ), balanced, o = 0}.

By construction, C} > 0, C5(pag,1) = 0, it is invariant under the bridge and ledger gauge (A1),
additive on independent ledgers (A2), and for small over-strains reduces to 3 3,2 (A4). Set

U(pag) = V(pag,z) + Cij(pag,x),

which is well-defined by gauge invariance and independent of z (purely informational). Then U
inherits from V:
(U1) invariance under relabelings of A, E' (and under coarse refinements that preserve pap);
(U2) additivity on independent pairs: U(pa, g, X PAE,) = UPa, ) + U(PasE,);
(U3) concavity in the joint distribution: U(Ap + (1 — X)g) > AU(p) + (1 — N\)U(q).

Step 2: Normalizations on U. Two normalizations fix baselines without adding knobs:

(NO) Independence baseline: If A and E are independent (par = papg), then there is no
coupling contribution; set U(papg) = 0 (this is a choice of origin; any constant would drop out of
differences but we fix zero).

(N1) Perfect coupling scale: For a noiseless K-symbol channel with p 4 uniform on the diagonal
{(a,e) : a = e}, declare U(pag) = klog K. Choosing one K fixes k > 0 once (placed on a ¢-tier in
the main text).
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Step 3: Characterization of U (informational term). Consider U on finite alphabets. By
(U1) it depends only on the joint law. By (U2) and (NO), U is zero on independent products and
additive across independent components. By (U3) U is concave. These three properties, together
with the continuity implicit in concavity and with (N1), determine U uniquely as a positive multiple
of the mutual information:

where I[(A;F) = H(A) + H(E) — H(A, E) is the standard information measure built from the
Shannon entropy H(-). In outline:

(i) Grouping/chain property. Partition F into (E1, Ea) with Eo a refinement of E;. Concavity
and additivity on independent refinements force a grouping identity for U mirroring the chain
rule, U(A; Eq, Ey) = U(A; Eq) + U(A; Ey | Ep), where the conditional term depends only on the
conditional law of Es given (A, Ep). Iterating along product refinements makes U linear in the
logarithm of partition cardinalities in the noiseless case (by (N1)).

(ii) Independence annihilates U. If A and E become independent under a coarse-graining, U
must drop to zero by (NO) and concavity; hence U measures departure from independence.

(#i3) Additivity on products. For independent pairs, U sums. The only symmetric, continuous,
concave, zero-on-independence, additive measure of dependence with the grouping property is a
positive multiple of I(A; F).

The proof is standard in spirit: construct U on simple finite cases (binary symmetric chan-
nels and noiseless copies), extend by additivity to product channels, and close by continuity and
concavity. No alternative functional satisfies all of (U1)-(U3), (NO)—(N1).

Step 4: Characterization of C (mechanical term). Let C(pag, ) be any nonnegative func-
tional with the properties of C%: invariance under the bridge and ledger gauge (A1), additivity on
independent ledgers (A2), and the small-strain expansion of (A4). Consider the map z — C(pag, ©)
at fixed pap. By (Al) it depends only on gauge-invariant local departures from = = 1; by (A2) it
is separable across bonds; by (A4) its second variation at the unit point is the identity quadratic
form. The unique convex even generator with these properties is ®(«) = cosha — 1 (equivalently
J in multiplicative coordinates). Minimizing over least-action completions on the o = 0 manifold

therefore fixes C = Cy.

Step 5: Conclusion and ¢-scale. Putting Steps 1-4 together,
V(pag,z) = Ulpag) — Cj(pap,z) = s (A E) — Ci(pap, x).

The sole multiplicative freedom s > 0 is fixed once by declaring the value of a canonical noiseless
coupling (e.g. one p-tier for a unit binary link per cycle). No further knobs remain. Any attempt
to introduce separate weights for I and C% would create an inadmissible new scale; any attempt to
alter C; would violate the curvature normalization; any attempt to replace I by another functional
would break at least one of (U1)-(U3) or the normalizations (NO)—-(N1).

Remark (on concavity). While mutual information is not jointly concave in all arguments
of an arbitrary parameterization, the concavity required here is with respect to convex mixtures
of coarse-grained joint laws pap induced by admissible uncertainty/aggregation at fixed physical
constraints; in that domain, the functional constructed above satisfies the axiom and matches the
operational role of V' in the lexicographic selection.
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A Appendix C: 0-Completeness and selector existence

Set—up. Let A, be the nonempty set of o-feasible actions available over a single eight-tick cycle
(balanced completions that preserve reciprocity). Endow A, with a metric topology in which the
least-action completion map is continuous. For a € A, define

H(a) :=maxAS(i—j | a), W(a) := Zf(VZ | a), R(a) :== XLy | a),

17]

where AS is the externalized surcharge (Section 4), V' the forced axiology (Section 5), f the fixed
concave transform (Section 7), and A2(L,) the o-graph spectral gap (Section 9). Let 7(a) be the
fixed RS -tier tie-break rank.

Assumptions.
(C1) Compactness: A, is compact (or finite).

(C2) Continuity: H, W, R are continuous on A,; 7 takes values in a finite, totally ordered set.

Lexicographic selector. Define the nested argmin/argmax sets

Ay :=argmin H, Ay :=argmaxW, As:=argmaxR, a*:=argmaxr.
Ao Ay Az As

Theorem A.1 (o-Completeness and selector existence). Under (C1)—(C2) the sets Ay, As, A3 are
nonempty and the selector a* is well-defined. Moreover, for any a € A, either a is infeasible (not
in Ay ), or

(H(a),=W(a)) Ziex (H(a®),=W(a")),

with equality only if R(a) < R(a*) and, when R(a) = R(a*), 7(a) < 7(a*).

Proof. By compactness and continuity (C1)-(C2), H attains a minimum on A, (Weierstrass), so
Ay # 0. The set A;j is closed; W attains a maximum on it, giving Ay # (). The same argument
yields Az # (). Since 7 takes finitely many ordered values, arg max 4, 7 is nonempty; fix any a* in
it.
For the optimality claim, take a € A,. If H(a) > H(a*) then (H(a), =W (a)) =1ex (H(a*), =W (a*)).

If H(a) = H(a*) but W(a) < W(a*) the same strict lexicographic inequality holds. If H and W tie,
then a € Ay and by construction R(a) < R(a*), with equality only if 7(a) < 7(a*). This establishes
the stated dominance. If a ¢ A,, it violates feasibility and is excluded a priori. O

Remarks on noncompact domains. If A, is not compact, existence still holds under mild
coercivity: it suffices that the sublevel sets {a : H(a) < n} are compact (or precompact) for the
attained minimum of H, and that W and R are upper semicontinuous on those sublevel sets; the
above proof then applies verbatim on A; and As.

Stability under uncertainty. If H, W are known within uncertainty sets Uag, Uy (Section 10),
continuity implies the existence of robust neighborhoods preserving the lexicographic order. In
particular, strict margins

HS"(q*) < min H™(b), W (@*) > max WSP(b
(a”) min (0) (a”) pe X (0)

guarantee a* remains selected for all realizations in Uag, Uy .
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B Appendix D: No-Arbitrary-Discount theorem (full derivation)

Objects. Let H be the set of finite sequences h = (hg, ..., hy) with hy > 0 representing per-cycle
worst surcharges H(a;) over an eight-tick cadence. A temporal aggregator is a map A: H — R
used to rank repair paths.

Axioms.

(D1) Gauge invariance (bridge): Joint re-anchoring (79,¢y) — (s70,sly) that preserves ¢ =
ly/19 does not change rankings induced by 2.

(D2) Cadence invariance: For any cyclic rotation R by a multiple of the eight-tick period,
2A(Rh) = 2(h). For concatenation h|k, A(h|k) = 2(h) + 2(k) when the underlying ledgers
are independent.

(D3) Separability & monotonicity: 2 is strictly increasing in each argument and continuous
on H.

Theorem B.1 (No-Arbitrary-Discount). Under (D1)—(D3) there exists a > 0 such that

T
AMh) =a » hy forallh € H.
t=0

In particular, any nonconstant weight sequence (wy) (exponential, hyperbolic, phase-dependent)
violates at least one axiom.

Proof. Step 1 (symmetry across positions). By cadence invariance (D2), rotation by any multiple
of eight ticks leaves 2 unchanged. Hence for the unit vectors e® (length one at position ¢, zeros
elsewhere) we must have (e()) = A(e(®)) whenever t = s (mod 8). But rotation by blocks of eight
shows all positions are equivalent, so there is a common « := Ql(e(t)) > 0 by monotonicity.

Step 2 (additivity on sums). For n € N, let 1,, = (1,...,1) with n entries. By concatenation
invariance and Step 1,

For any A > 0, continuity and monotonicity give 2A(A1,) = n2A(A1;); define ¢(A) := A(A1;) so
A(A1,) = n¢(N\) with ¢ continuous, increasing, and ¢(1) = a.
Step 3 (Cauchy on the positive cone). For scalars A\, u > 0 and independent horizons, (D2)
yields
SN+ ) = A((A+ 1) = AL [|p11) = 6(N) + &)

Continuity implies ¢(\) = a X on R>¢. Hence A(A\1,) = anA.
Step 4 (general sequences). Any h € H decomposes as Z?:o hee®). Using rotation invariance
(Step 1) and independence additivity (D2),

T T
Ah) = Ahe) = ahy=ad h.
t=0 t=0 t

Ezclusion of nonconstant weights. A weighted sum > wh; violates (D2) unless w; is constant
across the eight-tick phase and across concatenations; any exponential or hyperbolic form introduces
a rate parameter with units of inverse time, which rescales under (79,%y) — (s70, %), violating
(D1). O
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Consequence. Repair objectives are uniquely determined (up to a positive factor) by the undis-
counted eight-tick sum ), H(a;); there is no lawful discount knob to justify delayed clearance of
skew.

C Appendix E: o-graph robustness lemma (full proof)

Set—up. Let G, = (V,E,W) be the o-graph on N domains with weights w;; = wj; > 0 summa-
rizing reciprocity conductances at ¢ = 0. Assume G, is connected. The Laplacian is L, = D — W
with D;; = Z#i wij. Let 0 = A\ < A2 < --- < Ay be the eigenvalues of L, and let Lj be its
Moore—Penrose pseudoinverse on the mean-zero subspace.

Shock model and response. A bounded, mean-zero disturbance is s € RY with Y, s; = 0 and
Is|l2 < S. The least-action, balanced response solves

Lou = s, u 11,

and induces edge differences u; — u;. The Dirichlet energy of the response is

1 1
E(u) = 3 Z;w”(uz —uy)? = isTLjs.

Node-wise surcharge bound. Let AS; denote the externalized surcharge borne by node ¢ in the
cycle (sum of convex per-bond penalties on incident edges in the second-order/quadratic regime).
By nonnegativity and separability of bond costs,

0<AS < > dwi(us —uy)? < E(u),
j:(i,5)EE

hence
max AS; < E(u) = %STL;—S. (25)
7

Spectral gap control. On the mean-zero subspace, LT < A\;'1, so s' L¥s < A5 '||s||3. Combin-

ing with gives
512
sl < 57 (26)

max AS; < 9o (Ly)

2X2(Ly)

Lemma C.1 (Robust-Preference, full form). Let a,b be two o-neutral arrangements tied on present-cycle
harm and welfare (H(a) = H(b) and W(a) = W(b)). If Ma(Ls| a) > Xo(Ly | b), then for every
mean-zero shock with ||s||a < S the least-action responses satisfy

S? S?

(@) > (5)
max AT S T~ Da(l,]p) = mEEAST

In particular, arrangement a minimizes the worst-case future surcharge under bounded shocks rel-
ative to b.

Proof. Apply to each arrangement with their respective spectral gaps; the strict inequality
follows from the strict ordering of gaps. O
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Tightness and assumptions. If s aligns with the eigenvector of Ay, the bound is attained
in the quadratic approximation: s’ L}s = A\ Y|s||3. Connectivity is required to ensure Ay > 0. If
G, has multiple components, the analysis applies componentwise; the relevant gap is the minimum
Ao across components after contracting trivial ones.

Interpretation. The spectral gap is the unique, parameter-free measure of how a o-neutral
polity redistributes bounded shocks under least action. Larger gap means lower amplification of
disturbances and smaller worst externalized bills, which is why the lexicographic rule prefers it
when feasibility, harm, and welfare tie.

D Appendix F: Measurement protocol details (estimators, inter-
vals, robustness)

This appendix gives practical estimators for the two core quantities used in audits—harm AS and
value V—together with interval arithmetic and robustness margins. Everything here is gauge-invariant
and eight-tick compliant.

F.1 Estimating AS (externalized action surcharge)

Definition recap. For an act by agent ¢ in a cycle C, with prescribed multipliers o = {ae }eca,
on a finite set of bonds A; in i’s domain (neutral act a = 1), the required action of j is the minimum
of Y .c g (z¢) over all balanced, o = 0 completions consistent with «. The harm is

AS(i—j|C) = Sj[a; O] = SF[1;C], J@)=3@x+z7) -1, z>0.

Convex program (exact regime). Work in log-variables z. = exp(ne) so J(z) = cosh(n.) —1,
convex and even. Let B be the node-edge incidence matrix (each row a node, orientation +1 into
the node, —1 out of the node). Balance is Bn = 0. Enforce o = 0 by restricting to least-circulation
completions: represent n as a gradient n = Vu of node potentials u on each connected component
(this kills all cycle sums), and impose the act as linear equality constraints on edges in A;:

(Vu)e = n2 for e € A;.

Then S¥[a; C] is obtained by minimizing ) . €, (cosh((Vu)e)—1) over the node potentials u subject

to those equalities. Repeat with 72" = 0 to get Sj*[l; C and take the difference. This program is
convex in u (sum of convex terms of affine forms) and returns a certificate of feasibility; infeasibility
indicates that the prescribed act cannot be completed on o = 0 in one cycle (repair needed).

Quadratic program (small-strain regime). When all bond strains are small (|n.| < 1),
approximate J(z.) = 272 + O(n2). The exact program becomes

min = > ((Vu)e)® st (Vu)e =2 (e € 4y).

665‘7'

The solution is the least-squares gradient field matching the act on A;. Efficient solvers reduce this
to a sparse linear system for u; AS(i—j) is the difference of two quadratic forms.
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Pairwise o constraint (aggregate form). If one prefers not to parameterize by u, enforce
o = 0 per agent pair by linear constraints

Z Ne + Z ne = 0 for all ordered pairs (i, j),

eci—yj ecj—i

alongside balance Bn = 0 and the act constraints on A;. This yields a convex program directly in
n.

Practical notes. (i) Gauge check: add any node potential g to u; the objective and constraints
are invariant. (i) Boundary assignment: bonds that sit on agent boundaries are assigned by
a fixed, local, gauge-invariant tie-breaker; the difference Si[a] — S5[1] does not depend on the
tie-breaker. (iii) Certificates: record KKT residuals and primal feasibility; these enter uncertainty
bounds below.

F.2 Estimating V' (forced axiology)

Definition recap. Per agent i, at a cycle C, the axiology is
‘/; = K;IZ(AvE) - ii?

where I;(A; E) is the agent—environment mutual information under a fixed coarse-graining, x > 0
is fixed once (placed on a ¢-tier), and C%, is the J-induced mechanical penalty attributed to i’s
domain under least-action completion.

Estimating the MI term. Fix finite alphabets for A and E by a preregistered coarse-graining.
Collect counts n(a,e) over the cycle (or a short, stationary window of cycles). Form smoothed
frequencies

n(a,e) + B

K=|A| |FE
e A]-1B,

ﬁ(aa 6) =

with a fixed g (e.g. Jeffreys’ g = %), compute

Report /1]'; as the coupling estimate. For small alphabets, exact confidence bands can be obtained
by enumerating probability tables consistent with a total-variation ball around p; for larger alpha-
bets, bootstrap the counts and take percentile bands. Both approaches define the uncertainty set
Uy used below.

Estimating the mechanical penalty. Solve the least-action completion once per cycle (the
convex program in u or 1). Attribute the per-bond cost J(z.) to agent domains by the same fixed
boundary rule used for AS. Sum to get

Ci = Z (cosh(ﬁe) — 1)5

ee&;

. . . % 1 ~9
or, in the small-strain regime, CJ,i =3 Zee&- Ne -
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Value estimate and welfare. Combine the two pieces
Vi=wli=Ciy,  W=3_ Vi),
where f is the fixed concave transform (normalized by f(0) =0, f/(0) =1, f”(0) = —1).

F.3 Interval arithmetic (uncertainty sets)

Uncertainty on AS. Instrument noise and solver tolerances give intervals for 7. and residuals for
the equality constraints. Define a box uncertainty set U, = [] C[Qe,ﬁe] consistent with diagnostics
(including KKT residual bounds). Compute outer bounds for harm by solving the two robust
programs

AS™ (i j) = inf (5;@]-5;[1]), ASSP(i— j) = sup (S;[a]—s*m).

neUy neUy
In practice: (i) Quadratic regime—closed forms give

AGsup/inf % HPjAﬁaCtH% = Las [|67]]2,

—act

where A maps edge logs to the least-squares gradient field, P; projects to &;, 7% is the midpoint
act, on is the uncertainty radius, and Lag is a computable local Lipschitz bound. (ii) Ezact
regime—solve the min/max by alternating convex optimization and box-projection (guarantees
outer bounds).

Uncertainty on V. For the MI term, take P nf/$UP o5 the lower /upper ends of a bootstrap band

or the extrema over a total-variation ball {q : Hq pll1 < r} (grid search suffices for small alphabets).
For the mechanical term, propagate U, through J:

cinf — Z min_ (coshne — 1), C7F = Z max (cosh7e — 1),
cce, o€l el ez, Ne€ln e

which are attained at interval endpoints because cosh is convex. Then

inf __ . 7inf sup sup _ ’Eup inf
Ay Ly N

and

Winf _ Zf(viinf>7 WP — Zf(visup).

F.4 Robustness margins (decision guarantees)

Per-cycle selection. Given a finite candidate set A, of o-feasible actions, compute

H™ /5 (q) = inf / sup maxASg(z—>j | a), Wn/sW(g) = inf / sup Zf i | a).
0etns I oeUy
Declare a* robustly selected if

H"P(a*) < min H™(b),
b#a*

or, when the first margins tie,

HS" (0*) = mi Hinf b d Winf ) > WS ().
(a%) = min F™(b) an (@) > Y N (b)

Apply the spectral-gap and ¢-tier refinements only within any remaining ties.
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Repair horizons. For {a;}L, compute

T
Zglg/sup _ ZHinf/sup(at)’

t=0

and select the plan with the smallest Jyep ; if multiple plans tie, use the per-cycle welfare and

robustness refinements.

Slack and determinacy. Introduce a small, fixed technical slack ep, ey > 0 (on the order of
solver tolerances). If margins fall below slack, return indeterminate and request more measurement
(larger samples for MI, tighter instrument bounds for logs).

F.5 Sanity checks and failure modes

Sanity checks. (i) Gauge test: random re-anchoring (79,%y) — (s70,5¢p) and node-potential
shifts leave AS and V unchanged. (ii) Zero-act test: a = 0 yields AS = 0 and leaves V unchanged
within noise. (iii) Symmetry test: swapping agent labels that preserve psp leaves V' invariant.

Failure modes. (i) Infeasible act: convex program infeasible = repair required; do not impute
AS. (ii) Boundary sensitivity: different boundary rules change absolute SJ*, but differences defin-
ing AS and V must agree within slack; if not, report indeterminate. (iii) Non-stationary MI: if
coarse-grained statistics drift within the cycle window, widen the window to the eight-tick cadence
or report separate estimates per tick and aggregate without discount.
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