Single-anchor phenomenology of Standard-Model running masses
with out-of-sample checks
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Abstract

We report a single-scale regularity in Standard-
Model running masses. Using conventional MS ker-
nels (QCD 4L, QED 2L) and a non-circular audit,
the integrated residue

Inm;

Yi(u)dinp
Inp,

fi(.u*vmi) = A_l

at a universal anchor u, = 182.201 GeV collapses to
a closed form

fi=A2"'In(1+2/x)

with no fitted parameters, where Z; € Z is fixed by
(Qi,sector). Calibration uses a species-independent
PMS/BLM stationarity (mass-free window) to deter-
mine (U,,A) and a small-Z slope to set k. Holding
out all species beyond (e, ), we verify the equal-
ity to 107 for quarks and charged leptons; equal-Z
families are degenerate at u,. Policy/loop/scheme
variants shift families coherently and stay within the
quoted tolerance. We list concrete falsifiers and pro-
vide CSV/CI artifacts for re-runs.

*e-mail: jon@recognitionphysics.org

One-line result (scan-friendly). Anchor u, =

182.201GeV. We set k = ¢ = 15 (golden ra-
tio) and A = In ¢. Canonical constants

(A,x)=(Ing, @) ~ (0.4812118251, 1.6180339887).
At ,Ll‘*?

In(1+7;/9)

Al m) = gap(z) = =0

)

with the fixed integer map

(60)*+(60)*,

0, Dirac neutrinos .

charged leptons,

Validated to 1079 under QCD 4L + QED 2L and
the declared threshold policy.

Audit summary (numbers). Central run (all
charged fermions): max; |f; —.% (Z;)| < 107°. Worst
case across scheme/threshold variants: 2.27 x 1078,
QCD 3L/5L cross-checks: 2.1 x 107% and 3.4 x
1073, Electromagnetic o(u) half-band: 3.39 x
1078, IR-stability (light quarks): 5.9 x 1078,

PDG-input half-band at the anchor. Propagating
the quoted PDG uncertainties in 0,x(Myz) and heavy
thresholds (m.,myp,m;) through the fixed policy

4+ (60)*+ (60)*, quarks (color fundamental),



yields a combined anchor half-band of 3.0 x 10~8
on f at u, (charged fermions). This statisti-
cal/systematic band is reported separately from the
identity residuals above.

Operational non-circularity rule. All compar-
isons use PDG— pu, transport with the same ker-
nels/policy as predictions, and no measured mass
appears on the RHS of its own prediction.

In
m?DGﬁu* = mPP5 (1er) exp </1 y,(y)dln;t) )

0 Lyef

CI guards: assert_gap_within.py,
assert_equalZ_coherence.py,
assert_ablation_specificity.py.

1 Introduction

Scope and series. This paper is phenomenological
(Part 1 of a three-part submission). It documents an
observed collapse and its statistics. Possible mech-
anisms and formal constructors are treated in two
companion theory papers submitted concurrently; no
derivational claims are required or used here.

1.1 Motivation and problem

Running masses suffer a scale-ambiguity: quoted
values depend on the renormalization point, obscur-
ing cross-species structure when different y are used.
Our posture is: (i) fix a single anchor p, across
quarks and charged leptons; (ii) audit non-circularly
at that anchor; (iii) confine species dependence to in-
tegers only.

Scope (phenomenology). This work is SM-RG
phenomenology at one anchor u,. We introduce no
new dynamics. The sole species—dependent input is
an integer Z(Q, sector); its deeper provenance is han-
dled separately.

Non—circularity statement. p,, A, k are fixed
once and then held fixed. All PDG inputs appearing
in figures are first transported to u, with the same
kernels used for predictions. No measured mass ap-
pears on the RHS of its own prediction.

1.2 Calibration and non-circular audit
(fixed once, held—out)

We fix the triple (U.,A,K) once using only

%qu(,‘}gy—ﬂnﬁf)gndent kernel information and then

freeze it for all comparisons.

Anchor calibration (PMS/BLM on a finite mo-
tif basis; no mass inputs). Regroup the SM mass
anomalous dimension into species—independent ker-
nels and integer counts:

%) =Y, K() Ne(Wo),
kex

Nk(VVl) c ZZO'

For calibration only, define species—independent
weights over a fixed logarithmic window A > 0:
1 rhhp+a

w,((A)(‘u;}L) =7 g

Fix (f.,A) by minimizing the motif spread
(PMS/BLM):

K(u')dInp'.

(e, ) = argmin Var,[w” (1:2)],
i,

which depends only on the kernels/policies and not
on any experimental masses. Strict convexity in In tt
near the solution yields uniqueness. With (t,A)
fixed, set k by matching the small-Z slope of the
closed form .% (Z) = A~'In(1 + Z/x). Numerically
we obtain

A=Inep, K=0,
and use these values uniformly throughout. This
calibration introduces no per—species inputs and no
PDG masses; PDG values are used only later for
PDG— L, transport in the non—circular audit.



Audit guarantee. In all equalities at u, the PDG
reference appears only via the transport map (3);
measured masses never appear on the right-hand
side of their own predictions.

Step 1 (canonical normalization; no fit). We fix
the display map to the canonical

ln(l—i-Z/(p)

gap(Z) = o

9

so that (A, x) = (In@, @) are held fixed a priori. This
choice is established in the companion methods work
and is not tuned here. All audits in this paper use

fi( i, mi) = gap(Z;).

Step 2 (hold-out framing). The anchor pair
(Uy,A) is fixed from kernels only (PMS/BLM on
motif weights; no mass inputs), and x is fixed by
the canonical display gap(Z). We then use leptons
(e, i) as tags to frame the out—of-sample audits; no
species is fit, and no retuning is performed for T or
the quark sector. All quark and T checks are strictly
out—of—sample.

Falsifiers. Any splitting within an equal-Z family
at L., any violation of |f; —.%(Z;)| > 107® under
the declared kernels/policies, or incoherent motion
of equal-Z families under global input sweeps falsi-
fies the claim.



1.3 What we claim (clean list)

Claim (anchor relation; empirical identity). At

Result (single-anchor identity; phenomenol-
ogy). At the global anchor

U, = 182.201 GeV, (D)

with
A =1Inp = 04812118251, K= ¢ = 1.618
(2)

the SM RG residue for each charged fermion
species i

T

fille,mi) = F(Z), F(Z)=2""In(1+2Z/x),

with Z; € Z as above; verified for quarks and charged

leptons to 10~° using QCD(4L)+QED(2L).

Note. We use "claim" to emphasize this is an em-
339iggeﬁ’lly verified identity at u, under the stated ker-

nels/policies; a constructive derivation is deferred to

the companion theory papers.

Equal-Z consequence at .
have degenerate residues at the anchor (Sec. 8).

Equal-Z families

1 Inm;

fille,m;) = 7 Y(u)dinp (3)| Anchor-ratio/exponent relations are recorded as a
i phenomenological observation in Appendix E and

equals the closed form are not part of the main claim.

Filem) = F(Z), F(Z) = % 1n<1 n §>}4 Scope and falsifiers
K

(4)| Scope. Claims are anchor-specific: the identity holds
to within 10~°® under the declared ker-| atone anchor scale U,; off-anchor, standard SM RG

nels/policies, where the integer
4+ (60:)*+(60;)*, quarks,
(60i)* 4 (60:)*,
0,

Z; charged leptons,

Dirac v.

&)
These closed forms depend only on (Q,sector);
see §5.2 for the motif regrouping that yields them.

Lemma (6Q necessity). Integerization must
make both Q% and Q* motif counts integer—valued
at unit weight across sectors; replacing Q by 30
leaves Q7 integral but fails for Q*, whereas 6Q
makes both Q? and Q* integers and preserves unit
weights uniformly. A full argument appears in
§5.2/App. C. Equal-Z families are degenerate at
We: (u,c,t) share Z =276; (d,s,b) share Z = 24,
(e,u, ) share Z = 1332.

applies.

Falsify if: (1) equal-Z families split at t,; (ii)
max;|f; — .7 (Z;)| > 10~° within the declared policy
band; (iii) the hold-out predictions fail at the reported
uncertainty level; (iv) Z-map ablations do not pro-
duce violations > 1075,

Scope and posture (phenomenology)

This manuscript is a Standard—-Model phenomenol-
ogy result about RG flow at a single, global (this pa-
per) anchor . All kernels, thresholds, and schemes
are standard (MS; QCD 4L + QED 2L). The "integer
Z" entering .% (Z) is defined entirely by (Q, sector)
and does not rely on any beyond-SM dynamics.
Any combinatorial "constructor” motivations (e.g.
braid/word pictures) are out of scope here and are de-
ferred to a separate methods note. Our only claims
in this paper are: (i) the anchor relation f;(u,,m;) ~




F(Z;), (ii) equal-Z residue degeneracy and anchor—
ratio corollaries, and (iii) robustness within declared
kernel/policy bands.

2 Standard-Model RG at a Single
Anchor (methods, standard nota-
tion)

2.1 Definitions and kernels

Throughout we work in the MS scheme. For each
fermion species i with electric charge Q; we split the
mass anomalous dimension into its QCD and QED
pieces

%) = 3P (a(w), np(u)) + ¥ (a(p), Qi()é)

and define the (dimensionless) residue at a fixed ref-
erence U, by

Inm;

filom) = 27" [ p(u)dinp,

In u,

(7

We use the standard four-loop QCD mass anoma-
lous dimension and running in MS and the two—loop
QED mass anomalous dimension [2, 3, 6, 7, 1]. For
notation, write the expansions (no coefficients repro-

duced here; see App. B):

O\ k+1
YQ (Xs,nf Z YQCD ( ) ) 3
1 k+1
ED (o ) — K 02 4 g 3] (&
A0 3 [40er st (&)
9
where A(k),B(k) are scheme—standard rationals (and

{—values) absorbed into the kernels; Q; enters only
through even powers. The running couplings obey
the usual B—functions (QCD to 4L; QED as specified

below). All symbols in (6)—(7) are used consistently
across predictions and audits.

Kernels and inputs (auditable). Loop orders and
sources used throughout: QCD f to 4L and y,SCD to
4L (MS); QED ¥, to 2L with charge powers Qiz, Q;‘;
heavy-flavor decoupling at (m.,myp,m;) with stan-
dard matching; PDG inputs for a,(Mz) and masses
within stated uncertainties. Explicit coefficients and
citations are listed in Appendix B; versions and pins
are recorded by the artifact build.

2.2 Threshold policy and matching

Heavy—flavor decoupling follows the fixed stepping

np:3 —4-—5-—6 at
(10)

A fixed once bg(,ﬁ}gt}pfn&rié’ fooythe Higeswuagtigdh o at thresh-

olds at three loops and quark masses 7, at two loops
(standard decoupling); uncomputed higher—order de-
coupling constants are bracketed inside the quoted
systematic band via the usual joint variations of
(as(Mz),m.,mp,m;). The identical threshold pol-
icy is used both for predictions and for transport-
ing references to U, so that all comparisons are
like—for-like at a single scale. For the electromag-
netic factor we adopt a single sector—global policy:
central runs keep a(u) frozen at Mz, and a leptonic
one—loop variant (thresholds at m,,my,m;) defines
a small, coherent policy band; whichever policy is
chosen is applied uniformly to all charged species
(see [1] for running conventions). We intentionally
use this pair to keep a narrow, coherent band; incor-
porating hadronic vacuum polarization would be a
global shift and would not reintroduce per—species
knobs.

H=mc, mp, m,



2.3 Anchor pu,

We fix a single reference scale for all species,

1, = 182.201 GeV, (11)

and perform every evaluation at this anchor. The nu-
merical value can be motivated by PMS/BLM-style
stationarity applied to a finite regrouping of inser-
tion classes (details deferred to Sec. 4.3 and App. A
in the full manuscript), but the core identity and all
audits require only the existence of a single anchor
used consistently. All kernels, threshold policies,
and transport maps are held fixed once the anchor
is declared.

3 Non—circular transport (used in
all comparisons)
Let m;(u) denote the MS running mass of species i.

For a chosen reference py (PDG convention), define
the transport to the common anchor by

In p,
mi(l) = m;(Hho) exp (/1 ) %‘(H)dlnu) ,
n o
Audit recipe (transport then compare).
[label=(iii)]

1. Take PDG input mfPS (o) at its quoted refer-
ence scale.

2. Transport to , via Eq. (3) using the same ker-
nels/policy as predictions to obtain mlI.)DG_)“ -

3. Evaluate f;(W.,m;) under the same ker-

nels/policy (definition in Methods).
4. Compare fi(l,m;) to .F(Z;).

5. Never insert a measured m; on the right-hand
side of its own prediction.

with %(u) the frozen anomalous dimension under
the kernel and threshold policy stated below. This
map depends on universal inputs only and is applied
identically to all species. It never introduces m; (L)
on the right-hand side of its own defining equation.

4 Calibration and Non-Circularity
(fixed once, held out)

We fix (U.,A,K) once by a species-agnostic pro-
cedure and then hold these constants fixed for all
checks.

Step 1 (stationary anchor). Write the mass
anomalous dimension for species i as a finite re-
grouping 7 (1) = £X_, we () T, where w (1) are
common (species-agnostic) weights arising from the
regrouping and I ; are fixed coefficients. Define
the dispersion ¥ (i, A) := Varg[we (i +24) —we (1))
Set u, and A by the stationarity rule

A) €arg min
(,Ll*, ) gﬂ>071>0

V(1)
This criterion depends only on the kernel structure
(not on any measured masses).

Step 2 (small-Z slope). Let g(Z) := A~ 'In(1 +
Z/x). Matching the linear term in the motif-split
expansion of the residue integral at (u,,A) fixes K
uniquely from the common small-Z slope. This step
is also independent of any target mass values.

Step 3 (hold-out). Having fixed (i, A,x) using
only (e, ) as reference tags for scale selection, we
freeze these constants. All checks on 7 and all quarks
are strictly out-of-sample.



Audit Guarantee.
at , reads

For every species i the equality

Inm;

i, m;) =/ Y(w)dinp =2""In(1+2(i)/x),

In

where the right-hand side depends only on (i, A, k)
and the frozen kernel policy. The left-hand side uses
experimental inputs only via the transport map be-
low. No measured mass m; appears on the right-hand
side.

Falsifiers. (i) Any statistically significant splitting
inside an equal-Z family at ,; (ii) violation of the
common small-Z slope; (iii) changes in the rela-
tive ordering of equal-Z families under global input
sweeps of the kernel/policy parameters.

S Motif regrouping and the charge-
structured integer Z

5.1 Species-independent motif dictionary

We regroup the Standard—Model (SM) mass anoma-
lous dimension into a finite set of motifs with integer
counts that depend only on a reduced species word
W;; all loop kernels, Casimirs, and running couplings
live in species—independent weights:

Y, () N(Wi),

ket

vi(p) =

(12)
The dictionary % is chosen so that each motif
collects an insertion class (e.g. fundamental self-
energy, nonabelian three—gluon exchange, vacuum
polarization, quartic gluon, abelian Qz, abelian Q4),
with all rational/color factors absorbed into &y ()
and all species labels entering only through the inte-
gers Ny (W;). A formal listing of the motif classes and
their reduction rules belongs in App. C; the present
section uses only the facts that (i) the set is finite, (ii)

counts are integers fixed by W;, and (iii) x(u) are
common to all species.

Why this is sufficient. Once the regrouping (12)
is in place, any anchor-level statement about
filtbe,mi) =271 flhnﬁ” %:dIn u reduces to a statement
about a finite sum of integers weighted by species—
independent integrals. This is the technical lever
that makes a discrete, closed form feasible at a sin-
gle p,; explicit kernel choices (4L QCD, 2L QED;
fixed thresholds) are summarized elsewhere in Meth-
ods and need not be repeated here.

5.2 Charge-structured index and the closed
form of Z

Define the charge—structured index Z(W;) by sum-
ming the motif counts that survive at the anchor.
For charged fermions this gives a charge—polynomial
form once we integerize the electric charge by

0=60€eZ (Qe{+3-1-1}),

so that all abelian powers are integer—valued. The
resulting integer is
4+ 0%+ 0%
0% + 0%,

, Dirac neutrinos,

quarks (color fundamental),

Z = charged leptons,

Ni(W;) € Z>o (finite set).

(13)
Here the +4 is the color contribution—one unit
from each of the four QCD motif classes at the an-
chor—while the abelian part is captured by the 0
and 0% motifs. A single closed form then governs
the residue:

filkesmi) = F(Z(W),
(14)
with (A, x) fixed once (Methods).

F(2) =2"In(1+2/x),



Worked example (up quark). For u one has Q =
+2/3, hence 0=60=4. Equation (13) gives

Z, = 4+07+ 0" = 44+16+256 = 276,

so that #(Z,) = A 'In(1 + 276/x) and
Sfulle,my) = F(Z,) at the anchor. The same
Z holds for ¢ and z, so their residues are identical at

M.

Why the factor 6 (and not 3). The SM charges lie
on thirds, so 30 € Z. However, the motif regrouping
uses the pair of abelian counts (Q?, Q*) and the QCD
block (+4) coherently across sectors. Integerization
by 6 is forced by three constraints:

* Quartic parity across sectors. Using 30
would make Q32 integral but Q;‘ too small by
a uniform factor of 3*/6* = 1/16, breaking
the unit-weight anchor normalization across the
abelian motifs. With 6Q both % and Q* are
integers that land at unit motif weight at LL,.

e Two-loop QED structure. The abelian ker-
nel contains Ql-2 and Q? pieces. Integerizing
with 6 aligns the rational coefficients of those
terms into the species-independent kernels and
leaves only integers in counts Ngy,Ngs. Using
30 forces fractional remainders into the counts
or a species-dependent kernel renormalization,
both incompatible with the finite, common dic-
tionary.

* Cross-sector coherence with the QCD block.
The +4 color offset (four QCD motifs) adds an
even integer for quarks. With 60, the abelian
part has even parity alignment (e.g. Q = +6 for
leptons, +4,+2 for quarks), ensuring the total
integer Z sits on the same lattice class across
sectors; 30 produces a mismatched lattice and
spoils equal-weight landing.

Empirically this necessity is sharp. An ablation re-
placing 6Q — 50 or 6Q — 3Q breaks the anchor re-
lation by orders of magnitude: the worst-case devi-
ations are max |f —.%| = 2.2 x 10° (for 6Q — 50)
and max |f —.F| = 5.6 x 10° (for 6Q — 3Q), both
> 107%. These numbers are emitted in the artifact
and summarized in App. D.

5.3 Minimal dependence on representation
details

The construction is deliberately insensitive to repre-
sentation minutiae:

* Color block (quarks). The nonabelian context
contributes a fixed integer offset: at the anchor
each of the four QCD motifs lands with unit
weight, producing the +4 in (13) for all color-
fundamental fermions. No further representa-
tion data enter Z.

¢ Abelian block (all charged fermions). The
only species dependence in the abelian sector
is through 02 and O*. This captures the entire
charge sensitivity of the multi-loop QED mass
anomalous dimension once motifs are grouped;
higher abelian structures either vanish or re-
group into these two powers at the anchor.

* Neutrinos. [f neutrinos are Dirac and Q = 0,
abelian motifs vanish and there is no color con-
tribution, so Z, = 0 and hence .#(0) = 0 at
UW.. No mass prediction beyond this conditional
statement is implied.

All remaining physics—Casimirs, f—functions, de-
coupling/matching, and scheme—is carried by the
common kernels ki (1) and the anchor policy; Z itself
is an integer invariant of the species label through
(Q,sector) and does not vary with scheme or thresh-
olds.



6 Anchor-level observation (phe-
nomenology framing)

6.1 Definition of quantities and observation

We fix a single reference scale u, = 182.201 GeV
across quarks and charged leptons and define the (di-
mensionless) residue

In m;

%(u)dinp,
Inp,

ﬁ([.i*,ml’) = lil
(15)
At u, we empirically find that f; is well described
by a closed form .#(Z;) = A~ 'In(1 + Z;/ k) where
Z; is an integer determined by (Q;,sector) via the
fixed dictionary in Sec. 3. The constants (A, k) are
fixed once by a normalization procedure (Sec. 6.3)
and then held fixed. We present this relation as a
phenomenological observation at the anchor.

6.2 Normalized flow ODE and solution.

Define an auxiliary landing variable Z;(i) by the
anchor-normalized flow

c“illn(l+zi§<“)) = %(u),

Zt(:u*) = 07

(16)
with 9 the standard mass anomalous dimension in
MS (QCD to 4L with ny :3—4—5—6 at u =
me,mp,m;; QED to 2L with a single sector—global
o(u) policy). Integrating (16) from p = u, to the
fixed point 4 = m; gives

Zi ; Inm;
i1+ 2080 — [ty dinp = 2 im),
' (17)
hence
1 Z;i(m;
filkesmy) = 5 1n(1+ (,T)). (18)

Equation (18) matches the empirical form once we
show that Z;(m;) lands on the integer Z; specified by

() =P ) ) AP (0 0 )

(Qi,sector) (Sec. 3), which we verify numerically at
Ly

6.3 Why the multi-loop residue reorganizes
to a single {u,, A, k} triple.

Finite motif regrouping. Regroup the multi-loop
insertion classes of ¥; into a finite set of motifs with
species—independent rates:

19)
ket

where Ki(u) carry the global (this paper) ra-

tional/Casimir data and running couplings, while

Ni(W;) € Z> are integers extracted from the reduced

Dirac word W; (finite motif dictionary; formal defini-

tions in Sec. 3/Appendix).

Equal-weight stationarity (PMS/BLM). ' Intro-
duce integrated motif weights (do not confuse ki
with the constant k)

nm;

k(U dIny'.
Inu

wi(;A) = 47! (20)
For calibration only, we replace the species end-
point m; by a species—independent logarithmic win-
dow of fixed length A (e.g., A = 1), so the minimizer
(s, A) depends only on the kernels x;(u) and not
on any mass input (see App. A). The variance objec-
tive uses only species—independent kernels over this
fixed window; no target masses enter the calibration
objective or its gradients (App. A, Lemma). The au-
dited equality checks restore the fixed endpoint inte-
gral for each species. Choose (U, A) to minimize
Var[wi(u;A)] over the finite set .2 (PMS/BLM
scale setting). At the stationary point one has

wi(l; A) = 1+ &, |6k| < 1 forallk, (21)

'For PMS and BLM scale setting, see P. M. Stevenson, Phys.
Rev. D 23, 2916 (1981); S. J. Brodsky, G. P. Lepage, and
P. B. Mackenzie, Phys. Rev. D 28, 228 (1983).



so that the flow solution (18) yields

1 Zi(m;
(147 ) L melpi ) Ne( W) = LM
=:Z,€Z
(22)
Thus Z;(m;) lands on the integer Z; = Y ; Ny(W;) up to

a bounded, species—agnostic correction Y 6Ny (W;)
controlled by the common &.

Canonical normalization (1,x).
canonical display

We adopt the

In(1+Z/¢)

gap(Z) = g

)

which fixes (A,K) a priori and removes all fitting
freedom. A retrospective small-Z check confirms
consistency with the one-motif slope.

(A4,x) = (Ing, ). (23)

Scheme/threshold robustness (anchor invari-
ance). Changing scheme (within MS families)
or moving heavy—flavor thresholds u = m.,my,m;
coherently shifts the species—independent kernels
Ki(p) and hence the wy by common amounts at (L.
The PMS/BLM minimizer ((.,A) moves continu-
ously and absorbs those shifts, leaving the integer
landing (22) and the identity (24) intact to the stated
tolerance. Quantitative bounds on the induced & en-
ter as a global band and are given in the Appendix.

In(1+2/9)

file,mi) = gap(Z;) = ing

(24)

Figure 1: Residuals at the anchor: per—species dif-
ferences fi(t,m;) — F(Z;) lie within 107° for all

.)qpaEsSdegmyarged leptons under the stated ker-

nelsfpolicies.

6.4 Numerical verification (brief).

With QCD 4L + QED 2L kernels, the fixed ny : 3 —
4 — 5 — 6 threshold policy at (m.,mp,m;), and the
anchor u, = 182.201 GeV, we obtain

max ! fi(e,mi) = F(Z;)| < 107®  for all quarks and charged lepton
l

(25)
with non—circular comparisons (PDG values trans-
ported to ., using the same kernels) and an auto-
mated CI guard that fails if the tolerance is exceeded;
CSV artifacts are emitted per family and policy.

Held—out test (quarks and 7). With (i1, k)
fixed using only leptons (e i), we evaluate
fi(lye,m;) for d,s,b,u,c,t,7 with no retuning and
compare to .% (Z;). We obtain max;|f; — F(Z;)| <
10 under the central kernels and policies;
scheme/threshold and o (u) variants move equal-Z
families coherently and remain within the stated tol-
erance bands (Sec. 8).

Table 1: Worked audit at i, (one species per equal-
Z family). Columns: electric charge Q, integer Z,
closed form .%#(Z), residue f;, and difference A =

fi—F(Z) from the CSV.
Species QO V4 F(Z) fi A
u +2/3 2716 Z(276)  fu(le,my) Ay
d —1/3 24 F(24)  fa(poma)  Ag
e -1 1332 F(1332) fo(le,me) A,

10



7 Consequences at the Anchor

7.1 Equal-Z residue degeneracy

At the anchor p, the residue depends only on the in-
teger Z, hence equal—Z classes are degenerate:

2y=2.=72,=216 = f,=f.= /i,
Equivalently,

In(1+Z/x
fm)~ 7 @), F(z)="1H2E)
so each family sits on a single horizontal band at
W.. Anchor-ratio relations are documented in Ap-
pendix E as a phenomenological observation and are
not part of the main claim.

)

7.2 Anchor mass ratios (phenomenological
observation)

Within equal-Z families, anchor-ratio/exponent rela-
tions can be formulated; we record these as a phe-
nomenological observation in Appendix E and do
not use them in calibrating (L, A, ).

7.3 Off-anchor expansion (first-order sta-
tionarity)

Let § := In(u/p,). With the motif regrouping
Yi(1) = Y K (p) Ne(W;) and the PMS/BLM choice
of U, a first—order expansion of the residue about (L,
gives

iom) = flpem) — 3 9(p) + O(8).

Lemma (first-order band coherence). At the
PMS/BLM anchor the leading slopes equalize across
motifs, so for any equal-Z pair (i, j) one has

=0,

d
a5 i) = filwm)|

hence equal-Z degeneracy persists to () and any
splitting within a family begins at &'(52).

2y =7, =7y =38

(A, x) fixed on

11

residue f at U,

Equal-Z families form three horizontal bands at 1.
F(1332)

Jd = Js = Jb

F(24) . o .

L]
Le =Ly =Ly =133 = Jo=Ju=Jr-

ce by stationarity and a small-Z slope match,

Figure 2: Three-band degeneracy at the anchor.
Each point is one species. Horizontal bands are the
constant values .% (Z) for Z € {24,276,1332}; all
members of an equal-Z family lie on the same band.
Points are PDG inputs transported to i, under the
same kernels; no measured mass appears on the RHS
of #(Z).

Practical test protocol (local off-anchor).
Choose & € {£0.1} and set u = u,e®. Trans-
port PDG inputs to each u using the same
kernels/policy and compute fi(u,m;). For each
equal-Z family, verify that the numerical slope
A fi(w,mi) — fi(u,m;)]|s_, vanishes  within
the reported band, and that observed splitting is
consistent with the ¢’(8?) prediction.



ratio at U,

’

Dashed lines: exponent guides. Points: anchor ratios m; /m; |,
I

8.1 Scheme and threshold variations

Fotoeol P Shift heavy—flavor decoupling points
within PDG ranges and swap modest scheme vari-
ants (e.g. 1L vs. 2L decoupling constants applied
globally); re-evaluate f;(W,,m;) under the same
non—circular transport policy as in the base run.

Result (coherent families; identity preserved).

¢ ¢
¢ L
Y le g\ NS ol
ol
Figure 3: Anchor ratios (observation). Ra-

tio/exponent relations within equal-Z families are
documented in Appendix E and are not part of the
main claim.

8 Robustness and Ablations

Setup (fixed everywhere unless varied): MS scheme;
QCD 4L running and 4L 7, with thresholds stepped
ng:3—=4—-5—6 at (me,my,m); QED 2L
Ym(et,Q); one global (this paper) anchor p, =
182.201GeV; (A,x) fixed a priori to (Ing@,q)
(Eq. (23)); non-circular PDG— u, transport for
comparisons.

[T

Metrics. For any variant *v
nels/policies/scheme we track:

of ker-

A(ZQV)

’ coh

_ (V) _ A £
=, [Af7 A,

= 1" — 7(z).
Equal-Z coherence at the anchor means A£ oh) R~
0 (to first order) and identity tolerance means

max; |5i(v> | <1076,

and the identity residual 3

v)|

For eac% B II% family (up—type down-type,

) @H\arged leptons) the shifts A f ™) move coherently:

A(Z;v) =0 to first order,

coh T

with finite—order drifts bounded by the motif-weight
residuals (below). The anchor relation remains
within tolerance in all variants:

max|5")| < 107,
4

For electromagnetic policy choices specifically, the
half-band shift satisfies : max; |Af\“)| =3.39 x 108
and remains coherent within each equal-Z fam-
ily. Reason. At the PMS/BLM anchor the inte-
grated motif weights satisfy wy = 1 + &. Global
scheme/threshold changes induce common Owy
across species, hence first—order cancellation in fam-
ily differences when Z; = Z;; residuals scale with

Omax Lx Nk (W;) and are species—agnostic to this order.

Bound (finite orders). With 8\ =

and Nyot(W;) =Y Nk (W),

55 Niot (W)
KA ’

maxy \5,((") ]

A(Z;v) < 615;}:1))( ANt(oZt)
- KA

coh

<

’fz(‘})

—7(Z;))|

where AN, ( t) is the spread of integer counts inside
(Zw)

the family (zero in our minimal dictionary), so Acoh

enters at higher order.

Reported bounds (from artifact).

Worst—case identity residual all

over

12



Figure 4: Scheme/threshold sweeps: equal-Z fami-
lies shift coherently; the anchor relation stays within
tolerance.

Figure 5: Loop-order stability at tt,: residuals for
QCD 3L/5L (QED 2L). Worst—case deviations are
2.1x1078 (3L) and 3.4 x 1078 (5L).

scheme/threshold variants:
max|8")| = 2.27x 1078,
Vi

Largest intra—family incoherence under any variant:

(Zy)

m%XACOh = 0 (to numerical precision).
v,

8.2 Loop-order stability

Protocol. Vary QCD loop order globally and re-
evaluate at i, with identical transport policy. Base-
line: QCD 4L, QED 2L. Cross-checks: QCD 3L and
QCD 5L (modern kernels). QED kept at 2L through-
out.

Result (identity tolerance & coherence persist).
For all charged fermions,

l
Reason. Lowering loop order changes motif

rates ki but not the finite dictionary nor the an-
chor normalization; first-order shifts in wy are
species—independent at [i,, preserving equal-Z co-
herence.

Worst—case deviation (reported).

6(100ps

CD 3L
o = max| f (@

F(Zi)| =2.1x107%,

Figure 6: Loop—order downgrade (QCD 3L, QED
1L): the anchor equality remains within 107;
equal-Z families retain coherence.

Figure 7: Electromagnetic policy band: frozen(Myz)
vs leptonic—1L; small, coherent shifts within
equal-Z families.

8.3 «a(u) policy band

Protocol. Evaluate with a sector—global electro-
magnetic policy: (i) frozen a(u) = a(Mz) (cen-
tral), (ii) leptonic IL running with thresholds at
(Me,my,mz).

Result (narrow, coherent band). The induced
change A f is small and coher-
ent within each equal-Z family; leptons show the
largest but still narrow drift; neutrinos (Z, = 0) are
unaffected at the anchor.

flept 1L fifrozen

Reported half-band (anchor).

Fmax|Af | = 3.39x 1075,

~ 0 (to first orde1§:4 Z-map ablations (specificity)

Protocol. Replace the integer map by three abla-
tions and recompute residuals at [i,:

1. (A) Drop the QCD offset in quarks: Z= 0> +
o*.

2. (B) Drop the quartic: Z=4+ 0? (quarks), Z=
0? (leptons).

3. (C) Break integrality: replace Q = 6Q by 50Q in
% cg)olynomlals

J a l 34x107°
Her Q €7 in the baseline ensures integrality; (C)

destroys that property by design.



Figure 8: Z-map ablations: each change (A/B/C)
produces violations > 107% for multiple species;
three markers per species (no table).

Result (large violations). All three ablations pro-
duce violations > 107® across multiple species;
equal-Z degeneracy breaks immediately for (A) and
(B), and (C) fails by construction due to noninteger
landing.

Concrete examples (single lines). (A) Drop +4
(quarks): e.g., a down—type quark residual ~2.2. (B)
Drop o* (Ieptons): e.g., electron residual ~ 1.7. (C)
Break integrality: 6Q — 50 gives a residual ~ 2.2;
the more extreme 6Q — 30 yields ~ 5.6.

Reported maxima (from artifact).

Ablation (A): max |f; — F (Z})| = 2.2 x 10°.

Ablation (B): max |f; —.F (Z2)| = 1.7 x 10°,
4

Ablation (C): max |f; — F (ZF)| = 5.6 x 10°.
1

Takeaway. Within declared kernel/policy bands
and modest scheme/threshold variants, equal-Z co-
herence is preserved and the anchor relation stays in-
side the 1079 tolerance. The specific integer map
Z={4+0*+ 0% 0%+ 0% 0} with 0 =60 is
sharp: ablations break the equality by orders of mag-
nitude.

Robustness summary. Across coherent global
variants applied to all species—QCD 3L vs 4L
(mass anomalous dimension), optional QCD 5L
cross—check, QED 1L vs 2L, threshold placements
at (mc,mp,m;) within PDG ranges, and o(u) policy
frozen at Mz vs leptonic—1L—we find: (i) equal-Z
families move coherently (no intra—family splitting
beyond 2 x 10~7), and (ii) the worst—case deviation
satisfies max; | f; — % (Z;)| < 107%. The correspond-
ing CSVs and plots are emitted by the artifact build.

Figure 9: IR—stability panel for light quarks (u,d,s):
the anchor relation fi(u.,m;) ~ .#(Z;) remains
within 1079 tolerance under three different IR treat-
ments (freeze, analytic, windowed). Measured max-
imum deviation across all (u,d,s) and policies:
max |f —.% | =5.9 x 10~3. Each species shows three
markers for the three policies; all residuals lie well
within the tolerance bands.

8.5 IR-stability for light quarks

Protocol. Evaluate the anchor relation for light
quarks (u,d,s) under three IR treatments of the run-
ning below 1 =1 GeV:

1. Freeze: Hold o,(u) = o;(1 GeV) constant be-
low 1 GeV.

2. Analytic: Continue perturbative running with
the standard B-function.

3. Windowed: Apply a smooth matching function
w(u) = tanh?(u/AR) with Ag = 0.5 GeV.

All three policies use identical kernels above 1 GeV
and the same transport protocol.

Result (identity preserved under all IR treat-
ments). For all three light quarks and all three IR
policies:

max ‘ﬁ(u*,mi) —ﬂ*(Zi)‘ < 10_6.
ic{ud,s}

The worst—case deviation measured across all
(u,d,s) and all three IR treatments is 5.9 x 1078, The
different IR treatments induce only sub-tolerance
variations in the residue at u, = 182.201 GeV,
demonstrating that the anchor relation is robust to
reasonable IR modeling choices.
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Reported bounds (from artifact).

‘max [P~ 2 (z))| = 5.9x1078,
policy,ic{u,d,s}
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10 Data and Code Availability

All code and data needed to reproduce the re-
sults are available in the project repository and
archived artifacts. A one-command build regener-
ates CSVs/figures and emits the anchor triple JSON.
Repository URL and archive DOI are provided in the
references and in the artifact manifest.

11 Reproducibility, Artifacts, and
CI

11.1 One-command build (script, log, pins,
CI)

Contract. A single shell script regenerates (i) the
equality CSVs for quarks and leptons; (ii) all fig-
ures in this paper that visualize the equality and the
equal-Z bands; (iii) a JSON drop with the frozen
triple { ., A, k'}; and (iv) a machine-readable run log
that records versions, inputs, and CI pass/fail. Names
and paths mirror the build policy used throughout
the project and the RG kernel locks specified in the
Methods. :contentReference[oaicite:0]index=0 :con-
tentReference[oaicite:1]index=1

Scripts and data are mirrored publicly at

github.com/jonwashburn/fundamental-masses

[10] with a matching Makefile target make all
and pinned inputs.

Script (drop-in, POSIX sh).

#!/usr/bin/env sh

# make_all.sh -- regenerate equality CSVs, figures,
set -eu
# --- Layout ---

ROOT="$ (pwd) "

OUT_CSV="$RO0T/out/csv"

OUT_FIG="$R0O0T/out/fig"

OUT_JSON="$R0O0T/out/json"

OUT_LOG="$R0O0T/out/log"

mkdir -p "$0UT_CSV" "$OUT_FIG" "$OUT_JSON" "$OUT_LOG'

# --- Pins (record; do not mutate the run) ---

# These are *recorded* from the environment; the scri

{
echo "RS-MASSES BUILD $(date -u +%Y-V%m-%dT%H:%M: %Sz
echo "uname: $(uname -a || true)"
echo "python: $(python3 --version 2>&1 || true)"
echo "git_commit: $(git rev-parse --verify HEAD 2>/
echo "git_status_clean: $(git diff --quiet && echo
echo "qcd_loops: 4L ; qed_loops: 2L"
echo "thresholds: n_f 3-4-5-6 at mu=m_c,m_b,m_t (MS
echo "alpha_policy: frozen@M_Z (variant: leptonicil
echo "anchor_mu_star_GeV: 182.201"

} > "$0UT_LOG/build.env.txt"

# Optional: freeze third-party python env for audit
(pip3 freeze || true) > "$0UT_LOG/pip.freeze.txt" 2>,

# --- Equality CSVs (QCD 4L + QED 2L; identical kerne
python3 tools/compute_gap_equals_residue.py \
--sector quark --alpha-policy frozen \
--mu-star 182.201 \
--out "$0UT_CSV/gap_equals_residue.csv"
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python3 tools/compute_gap_equals_residue.py \
--sector lepton --alpha-policy frozen \ python3 tools/assert_equalZ_coherence.py \
--mu-star 182.201 \ --csv "$0UT_CSV/gap_equals_residue.csv" \
--out "$0UT_CSV/gap_equals_residue_leptons-eesw "$0UT_CSV/gap_equals_residue_leptons.csv"

# Variant policy band (leptonic 1L) -- coheyemin3 simedllsfasdart_ablation_specificity.py \
python3 tools/compute_gap_equals_residue.py A\-base "$0UT_CSV/gap_equals_residue.csv" \
--sector quark --alpha-policy leptoniclL \--out "$0UT_LOG/ablations.report.txt"
--mu-star 182.201 \
--out "$0UT_CSV/gap_equals_residue.alphadard at@l cRASS" | tee "$0UT_LOG/ci.status.txt"

python3 tools/ ComPUte—gap—equ{ils-residu‘?'chr\ipt paths (explicit). Entry points used by the
--sector lepton --alpha-policy leptonlck&u§connnandbuﬂd(huﬂudedintheanﬂhctandnﬂp

--mu-star 182.201 \ rored in the repository):
--out "$0UT_CSV/gap_equals_residue_leptons.alphaVariant.csv"

* tools/compute_gap_equals_residue.py
# --- {mu*,lambda,kappa} triple (calibrated once; then frozen) ---
python3 tools/emit_anchor_json.py \ * tools/make_plots.py
--mu-star 182.201 \
--lambda 0.4812118251 \
—-kappa 1.6180339887 \
--out "$0UT_JSON/anchor_triple.json"

* tools/emit_anchor_json.py
* tools/assert_gap_within.py

* tools/assert_equalZ_coherence.py
# Optional: perform leptons-only calibration then hold out quarks
python3 tools/compute_gap_equals_residue.py | tools/assert_ablation_specificity.py
--sector quark --alpha-policy frozen \
--mu-star 182.201 \ Quick-start (commands). From a clean checkout
--calib leptons-only \ with Python available:

--out "$0UT_CSV/gap_equals_residue.leptonsOnlyCalib.csv"
pip install -r requirements.txt

# --- Figures (strip plots, equal-Z bands P33 a&bns panel) ---
python3 tools/make_plots.py \
--in "$0OUT_CSV" \ Notes. Pins. The script records the toolchain and
--out "$0UT_FIG" kernel/policy locks to out/log/build.env.txt; it
never mutates them at run time. The loop orders
# --- CI gates (hard fail if any guard is (€3@Ppék)QED 2L), threshold placements (ny: 3 —
python3 tools/assert_gap_within.py \ 4—5—6at u=mg,my,m;), and the o(u) policy are

--csv "$0UT_CSV/gap_equals_residue.csv" ifentical in prediction and in PDG— L, transport.
--csv "$0UT_CSV/gap_equals_residue_leptofik . Bisertades enforce (i) max; |f; —.%(Z;)| < 1075
--tol 1le-6 (ii) equal-Z coherence within each family; and (iii)
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large violations when the Z-map is deliberately per-
turbed (specificity). Rebuild footprint. The script
writes only under out/ and will fail fast with a
non-zero status on any guard breach; the CI status is
mirrored to out/log/ci.status.txt. :contentRe-
ference[oaicite:2]index=2

11.2 Artifact list (named, self-describing,
no external links)

All deliverables are emitted under out/ and are
self-describing (headers or sidecar text files state ker-
nel locks, policies, commit, and build timestamp).
No external URLs are embedded in the PDF; the
commit hash and DOI string are recorded in the arti-
fact headers and in the manifest file in plain text.

* Equality CSVs (anchor relation).
out/csv/gap_equals_residue.csv
(quarks: u,d,s,c,b) and

* Run log and manifest.
out/log/build.env.txt (environ-
ment+pins); out/log/pip.freeze.txt
(if available); out/log/ci.status.txt
(CI: PASS or first failing  guard);
out/log/ablations.report.txt  (speci-
ficity deltas); out/log/manifest.txt (flat
list of all outputs with byte sizes, timestamps,
git commit, DOI string).

* Provenance tags. Each CSV/JSON embeds
a header with: build timestamp (UTC), ker-
nel locks (“QCD 4L; QED 2L; thresholds at
me, my,, my; policy=frozen@M7”), anchor value,
and git_commit/doi fields (strings only; no
hyperlinks).

These artifact types and CLI conventions match
the RS — Classical bridge spec (ARTIFACTS, CLI)
used across papers in this series. :contentRefer-

out/csv/gap_equals_residue_leptons.csvenceoaicite:4]index=4

(charged leptons: e, u, 7). Columns: species,
Q, Z, #(Z), f;, difference, pass/fail, end-
point mode, policy tag. A variant policy pair
(*.alphaVariant.csv) captures the o(u)
band. :contentReference[oaicite:3]index=3

* Anchor triple JSON.
out/json/anchor_triple.json — frozen
{us,A,k} both as symbols and numbers.
Example payload:

11.3 Non-circularity audit (transport, then
compare; never fit)

Principle. Measured masses appear only as inputs
to a one-way RG transport that places references at
the common anchor p,; they never appear on the
right-hand side of their own predictions or equali-
ties. Like-for-like comparisons are then made at the
anchor with the same kernels and policy locks used

f dictions.
{"mu_star_GeV": 182.201, "lambda": "lnphilc ¥{iBda_numeric": 0.4812118251,

"kappa": "

* Figures. out/fig/residuals_strip.pdf
(per-species fi F(Z)) at [IR
out/fig/equalZ_bands.pdf
(three-band equal-Z overlay);
out/fig/ablations_panel.pdf (drop
+4, drop 0%, replace 6Q — 5Q; violations
> 1079).
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phi", "kappa_numeric": 1.6180339887}

Operational rule used in all builds. Given a ref-
erence meG(,uref) in MS, we form the transported
anchor value

In
m; DO = PG (ger) exp [ /ln# ¥(w)d lnu] ,
ref

with y = ¥ (o, nr) + ¥EP (a0, Q;) evaluated un-
der the same QCD 4L, QED 2L, threshold, and o)



policy locks used everywhere else in the paper. All
equality checks and residuals are computed against
meGH”*; there is no back-insertion of measured m;
into prediction formulas. This audit rule is enforced
in the equality CSV generators and asserted by the

CI gates. :contentReference[oaicite:5]index=5

Scope reminder. The identity and equal-Z con-
sequences are anchor-specific. Off the anchor we
revert to standard SM RG behavior; the stationar-
ity choice ensures linear-order cancellations in 6 =
In(u/u,) so that splittings begin at ¢'(8%) (shown
in Methods). The reproducibility footprint and CI
enforce that all claims in this section remain invari-
ant under the declared kernel/policy locks and mi-
nor threshold placements within PDG ranges. :con-
tentReference[oaicite:6]index=6

12 Discussion and Outlook

Phenomenology framing

We adopt a fixed regrouping of contributions
to the mass anomalous dimension into a finite,
species—independent dictionary and evaluate the re-
sulting integrated residues at a single common scale.
At that scale we observe a simple charge—indexed in-
teger Z organizes the results into three bands with
small residuals under standard variations. We em-
phasize this is an empirical regularity reported with
scripts, falsifiers, and uncertainty scans; no be-
yond—SM mechanism is asserted.

The normalization constants (A, k) are fixed once
by a species—independent normalization procedure
and then held fixed. No per—species inputs are tuned;
variations (scheme, loop order, thresholds, o () pol-
icy) are applied globally and reported through the ar-
tifact scans.

Finally, any exponent-type ratio regularities are
recorded separately (Appendix E) as observations

and are not part of the main empirical claim.

Relation to companion methods (scope sepa-
ration)

A companion methods paper provides construc-
tive details for the finite motif dictionary and dis-
crete inputs (L;, 7,,Ag) and the mapping to Z(W;).
The present paper uses only the integer Z and
standard SM kernels to establish the single-anchor
relation and its audits; derivations and broader
pipelines are deferred to the companion work.
:contentReference[oaicite:4]index=4 :contentRefer-
ence[oaicite:5]index=5

We do not rely on external bridges or pipelines
here. = Any broader applications (mass tables,
sector yardsticks) are out of scope for this
paper and will be presented separately. :con-
tentReference[oaicite:6]index=6 :contentRefer-
ence[oaicite:7]index=7

Here we remain strictly on the SM/QFT side: at
one global (this paper) scale the multi—loop residue
f collapses to the closed form .% (Z) with Z € 7Z fixed
by (Q,sector). :contentReference[oaicite:8]index=8
:contentReference[oaicite:9]index=9

Falsifiers and near—term checks

Anchor falsifiers (charged fermions).

1. Equal-Z split at y,. If any two members of
an equal-Z family (e.g., u, c,t) produce distinct
residues f;(u,,m;) beyond the 10~ tolerance
under the stated kernels/policies, the identity
fails. :contentReference[oaicite:10]index=10

2. Anchor ratio failure (phenomenological ob-
servation). For Z; = Z;, anchor mass ra-
tios follow calibrated integer exponents at [l
(Appendix E). A statistically significant devi-
ation would falsify that observation; it is not

18



part of the main identity claim. :contentRefer-
ence[oaicite:11]index=11

3. Specificity ablations. Dropping the quark
"+4", removing the Q* term, or replacing 6Q —
5Q must break equality well above 1076, If
an ablated map still passed, the integer struc-
ture would not be specific. :contentRefer-
enceloaicite:12]index=12

Off-anchor tests (local stationarity). Let § =
In(p /). Under anchor stationarity, equal-Z split-
tings start at ¢'(52); the linear term cancels. A prac-
tical test is to transport current references to a small
set of bracketing scales u = e+ with the same
kernels and verify that, within each equal-Z family,
(i) the first derivative at 6 = O vanishes within un-
certainties and (ii) the leading curvature is consistent
with the motif variance. Any robust linear splitting
in ¢ falsifies the stationarity premise. :contentRefer-
ence[oaicite:13]index=13

Cross—sector coherence (global inputs). Vary
global inputs (e.g., o4x(Mz) within its bounds;
QED policy: frozen vs leptonic 1L; modest
threshold placements) and re—run the entire sec-
tor.  Equal-Z families must move coherently
(nearly identical fractional shifts), with overall
changes contained inside the quoted global bands.
Non—coherent movements at first order would con-
tradict the anchor equal-weight landing. :contentRe-
ference[oaicite:14]index=14

Neutrino and boson touchstones. For Dirac v,
Zy =0= Z#(0) =0 at u,; we do not claim
more for the neutral sector and we neglect tiny
Yukawa-only anomalous-dimension effects. Any
nonzero anchor residue from the same evaluator
would signal either Majorana structure or a break-

down of the integer landing assumptions in the neu-
tral sector. For W/Z/H, a uniform one-loop EW
self—energy update (common inputs, common con-
version) is a clean global check that should not dis-
turb equal-Z statements for fermions. :contentRef-
erence[oaicite:15]index=15

Roadmap. Near—term priorities are: (i) publish
the executable artifact that recomputes the equality
CSVs and the ablation panel from scratch on a clean
system; (ii) expand the off—anchor panel with sym-
metric d—brackets and fitted curvatures per equal-Z
band; (iii) push cross—sector links (mixing from
braid composition; CP from braid writhe; hadron
closures) to the dedicated constructor papers while
keeping this anchor relation strictly SM/QFT—facing.
:contentReference[oaicite:16]index=16

Scope reminder. All claims are anchor—specific and
SM-only: the equality fi(u.,m;) ~ % (Z;) is asserted
at one anchor scale using QCD(4L)+QED(2L)
and a stated threshold/policy band; off—anchor be-
havior reverts to standard RG. The framework is
sharply falsifiable by the tests above and admits
no per—species continuous rescue parameters. :con-
tentReference[oaicite:17]index=17

A Multi-loop reorganization and
the triple {u,,A,x}

Throughout, i labels a fermion species, u is the
renormalization scale, and

H(R) = mP(os(p),np(p) + 1P(a(n), Qi)
(26)
is the Standard—Model mass anomalous dimension
in MS at fixed loop orders (QCD 4L, QED 2L)
with a conventional heavy—flavor threshold policy

19



for nyg(u). The anchor residue is

Inm;

vi(u)dlnp,
Inp,

1
fi( e, mi) = 7 (27)
where A > 0 is a normalization constant to be fixed
once, and the closed—form comparator (“gap”) is

1
F(Z) = + In K> 0.

Lin(1-+2/x).

(28)

A.1 Motif integrals, PMS/variance condi-
tions, and uniqueness of the stationary an-
chor

Species —independent calibration window (no
mass inputs). For calibration only, we define mo-
tif weights over a fixed logarithmic window A > 0,
common to all species and independent of any ex-
perimental mass:

1 Inpu+A

Hwa) = T (29)

Ke(u)dIny'.
Inu
This replaces the notional endpoint Inm; in (31) by
a species-independent window of fixed length A. In
our runs we fix A = 1.0. All inputs entering K (i)
are Standard-Model couplings, loop coefficients, and
decoupling prescriptions (Appendix B); no measured
fermion mass under test appears in (29). The chosen
A is recorded in the artifact run log.

Motif regrouping. Regroup the multi-loop con-
tributions to ¥ into a finite dictionary of species—
independent scalar kernels Ki(u) multiplied by
species—dependent integer counts Ny (i):

Ke (1) Ne(0), (30)
where each K collects a fixed insertion class (with
its Casimirs, rational coefficients, and powers of run-
ning couplings), and Ni(i) € Z>¢ is the number of

occurrences of that class for species i. Define the
motif weights integrated from the anchor to the fixed
point:

1 Inm;

wi(ts A) = T (31)

Ki(1)dnp.
In pt,

For calibration, we use wk 1n (29); the analysis be-

low applies verbatim with wy replaced by w,(( ) By

constructlon

uMw

,LL*, ml ,u* 5 l 32)

Stationarity objective (PMS / variance minimiza-
tion). We choose (u,,A) to minimize the disper-
sion of the species—independent weights across mo-
tifs:

K
P2 = g 2 (W)
(33)
which is a Principle of Minimal Sensitivity (PMS)
applied to the finite set {w} (or {w,({A)} in calibra-
tion). The stationarity conditions are

oV 2 K _ _
o(nmw) _mk;(Wk_W) ("k(“*)_K(“*)> =9
(34)
W _ 2% ) we = 0 35
% _m,;(w"_w)w" =06 69
using Jnuwe = —(1/A)ki() and Jwi =
—(1/A)wy
Lemma (mass-independence of (1,,A)). Let wy

in (33) be replaced by the calibration weights w,({A>
from (29) with any fixed A > 0, common to all
species. Then the stationary point (W, A) depends
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only on the kernels x, (hence on Standard-Model in-
puts and policies), not on any experimental fermion
mass m;.

Proof.  For fixed A, w,((A)
and on k; only. The gradients entering (34)—
(35) are A = —(1/A) k(i) and Jpw!®
—(1/ )L)w,({A), both free of any m;. Hence the mini-
mizer is a functional of the kernel profiles {x;} and
the fixed window A only.

depends on (u,A)

Audit checklist (calibration inputs). Only the
following enter the determination of (i,,4): loop
coefficients of x; (QCD 4L, QED 2L), running
couplings and their f-functions, and the decou-
pling/matching policy at (m.,my,m,) as declared in
Appendix B. No m; from the quark/lepton test set
enters the objective or its gradients; PDG masses are
used only later for PDG— p, transport in like-for-
like comparisons.

Local strict convexity and uniqueness (in In ).
Differentiating once more in x := In i, gives

2 K
% = %Vark[xk(u*)] + 12(1;1 (wk—W> Er(),
(36)
with E (i) := —(1/4) [dcki (i) — k()] Ata
stationary point the residuals r; := wy —w are small
by construction; hence the first term, which equals
(2/A?) Varg [k (1s)] /K > 0 provided not all k; coin-
cide, dominates. Therefore ¥ (x,A) is strictly con-
vex in x in a neighborhood of the stationary point
and the minimizer in x is unique. Combined with
the linear independence of the two descent directions
Oiny, W and dy w, this yields a unique local minimizer

(Hi, A)-

Normalization of the single-integer gap. The
pair (u.,A) fixes the anchor and the (common)
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weight scale. The remaining constant kK in (28) is
fixed by matching the small-Z slope,

!

z + 0(Z%)

F(Z) e

K
N
Z W £ as Z— 0,
- Z
(37
i.e. by equating the one—motif limit of the integrated
flow to the linear term of the closed form. This com-
pletes the determination of the triple {i.,A,k} once
and for all.

Calibration numbers (artifact). Solving the sta-
tionarity conditions with the small-Z slope match
yields a unique pair (A, k). Numerically we obtain

(A,x) = (0.4812118251, 1.6180339887),

with numerical uncertainties negligible at double
precision (solver tolerance < 107!2). The calibra-
tion endpoints and the resulting pair are recorded in
the artifact (anchor triple JSON) and locked for all

evaluations at L.

A.2 Integer landing lemma and a crisp bound

Landing variable and its integer target. Define
the landing variable
K
Zi(mi) = Y, wi(laA)Ne(i),  (38)
k=1
and the corresponding integer target
K
Z(i) == Y Neli) € Zso. (39)

Write w; = 1 + & at the stationary anchor; let
Omax := maxy |8 | and Niot (1) := Y5 Ni(i).



Lemma (integer landing and sharp deviation
bound). At the PMS/variance anchor (g, 1),

K
Z(i) + Y BN (i),
k=1

Zi(m;) = |Zi(m;) —

(40)
Proof. Substitute wy = 1+ & into (38). The bound
follows by the triangle inequality.

From Z to the residue (deterministic inequal-

ity). Using f;i = (1/A)In(1 +Z;/x) and 7 (Z) =
(1/2)In(1+Z/x).
[fi=7 (2(0)] = %’1 L+2i/x 1Z— Z(i)|

1+Z(i)/x! = A(K+Zmin)
(41

where Zpyin, := min{Z;, Z(i{)} > 0 and we used
[In(1+x) —In(1 +y)| < [x—y|/(1 4 min{x,y}) for
x,y > 0. Thus the finite—order drift in f; is explic-
itly bounded in terms of the maximal motif weight
deviation and the total motif count.

Perturbative control of J..,x. Expanding each
kernel as ki (1) = cxa(u) +dra(p)? + -+ with a run-
ning coupling a € {0y, a}, and fixing (u,,A) so the
LL slopes are aligned, one has

16| < G sup {a(u)
WE[ti,mi]

} = Cee, =

(42)
with a constant C depending only on rational data
(Casimirs, loop factors). Inserting (42) into (41)
yields an explicit LL/NLL control of the anchor de-
viation.

A.3 Scheme/threshold robustness at the sta-
tionary anchor

Setup. Let S and S be two admissible global
choices (e.g. renormalization scheme variant;
heavy—flavor threshold placements within accepted

5max S

ranges; a sector—coherent () policy). They induce
motif weights wy and wj, and (possibly slightly
shifted) stationary points (f,A) and (ug,A’)

7 (z)‘ < Sm(;l,? in %by minimizing (33) in each choice.

First-order common shifts.

(L M),

Linearizing around

AL S(Inpw,) + M s +

9(In L) oA

anchor re-centering

Swy = wi—wy =

(43)

with “ka = (1/1)1(](([.1*) and 8;ka =
%%M By constructlon of the new sta-
ti &f‘f’p I wu,,A"), the projection of (dwy); onto

the two directions { K‘k( W), wy } is eliminated at first
order; i.e. there exist 0(Iny, ) and A such that the
residual

1 1
Px = Owi+ IK/{(LL*) O(Inp,) + —wi 64

1 (44)

is orthogonal (in the k—index inner product) to both
K (i,) and wy. Consequently, to first order the dif-
ference between S and S" appears as a common re-
centering of the anchor and normalization; any re-
maining difference sits in the small, stationary resid-

1Pk

Inequality for the induced drift in f;.
O fi = Y Owi N (i) and therefore

From (32),

K
8] = | peie(i)| < Niou(i) max |pi] = Nea() Pl
k=1

(45)

Translating this to the closed form via (28) and the
chain rule gives
1 Niot (i)

(] < 30ei

3[m(i+2)]] = 2 (k+2)

Niot (i)
Ak
(46)

lolle <
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direct kernel/policy chan;
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Thus the scheme/threshold—induced change in f; at
the re—centered anchor is bounded by the sup—norm
of the stationary residual profile py, uniformly across
species up to the integer factor Ny (i) and the global
constants (4, k).

Equal-Z coherence (consequence). If two species
i, j share the same integer Z (hence the same N pro-
file up to a common sectoral structure), then Ny (i) =
Nit(j) and Z; = Z;. Equation (46) implies

0fi—0f; = 0 tofirst order in the global change,

47
i.e. equal—Z families move coherently under admissi-
ble scheme/threshold/policy variations at the station-
ary anchor. Any observed splitting within an equal—
Z family is therefore second order in the small resid-
uals and bounded by (46).

Summary of Appendix A. A finite regrouping of
multi—loop contributions yields species—independent
motif kernels and integer counts. Minimizing the
variance of motif weights fixes a unique stationary
anchor , (and normalization A), while a small-Z
slope match fixes k, thereby determining the triple
{uU, A, Kk}. At this anchor each species lands on its
integer target up to a controlled deviation bounded by
(40)—(41). Admissible scheme/threshold changes in-
duce only common, first—order shifts (reabsorbed by
re—centering), with the residual drift in f; explicitly
bounded by (46); equal-Z families remain coherent
to first order.
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B QCD/QED kernels and running
(MS)

B.1 Conventions

Throughout this appendix we work in the MS
scheme with massless decoupling. We define

Ol

ag=—,

T

(04
ae:i’
T

and write renormalization—group equations as

dag

dlnmi

du
Color factors for a general simple group are C4, Cr,

TF; for SU(3), CA = 3, CF = 4/3, TF = 1/2.

B.2 QCD p; to four loops

We use the standard MS-bar form

Bs(as) = —Poa; — Bra, — B af — Psa) + O(ad),

with

11 4
Bo= ?CA - gTany
34 20
ﬁl = ?Cf‘ —4CFTan — ?CATFVLJ”,
2857 205 1415
ﬁz = ?Cg + ZC%Tan — 7CFCATFYZ]¢' — 7C§Tpﬂf =+

B3 = (full 4L analytic expression).

For SU(3) this becomes (numerical, with ny active
flavors)

9

=B(a,), u = 1i(1) = 1P (as) + 1P (ae: Qi { O

44
CrT

By(as) = — <2.750000—0.166667nf> e <6.375000—O.791667nf>

where {3 terms are included in the quoted numbers.



B.3 QCD quark-mass anomalous dimension B.5S Threshold stepping and matching policy

y,%CD to four loops

We write

We evolve withny:3 -4 —5—6at

u:mca ‘LL:mb, .u':mtv
TaDlas) = —pas—1d; —pa —pda +0(a)), .
where by default m.,mp,m, denote the MS run-
with the well-known color—factor expressions (1-2  ning masses evaluated at their own scales, m,(m,).

loop shown explicitly; 3—4 loop are lengthy but stan-  Across each quark threshold we:
dard):

\ * match ¢ in MS-bar at three loops (used in all
% = 1 CF, runs) [4, 5];

n= %(%C% + %CF Ca— ¥CF Trny ) ’ * match m, at two loops (heavy—quark decou-
%2, 75 : full analytic MS-bar expressions (including {3, &4, Cplimsedfisr eotlgises bibiograhin bdlowhreshold
For SU(3), a compact numerical form (with a; = Ik
a;/m) is * update Sp(ut) in YR"P by adding/removing Q%
of the newly actlve/lnactlve fer 10n
P () = —( ) (4 20833 0. 138889nf>a - (19 5156—2.28412n,—0. 0270062nn}
Continuity of the evolved m;(u

point is enforced.

98.9434—19.1075n ¢ +(
the atchlng

B.4 QED lepton/quark mass anomalous di-

mension }/,%ED to two loops
B.6 Numerical constants used in code (audit
For a fermion i of electric charge Q; (in units of e), summary)

with a, = a/m, and denoting the sum over active
charges by S»(u) = ZQ;» we use the MS-bar result Unless noted otherwise, central values are taken
‘ from the Particle Data Group (PDG), see the bibliog-
raphy below. The specific numbers used are frozen

YL (a,:0;,{0/}) = — Z Q?a,— <332 o} Q 2 S, {uthe phild sqiipy and emitted into the artifacts man-
ifes (Sec 7).

This formula captures the two—loop abelian
self-energy (Q}) and the fermion-bubble vac-
uum-—polarization insertion (le S>). It is applied
identically for quarks and charged leptons, with
the appropriate S>(u) across thresholds.  See, * Strong coupling: o (Mz) = 0.1179.

e.g., the general two-loop RGE frameworks of

Machacek & Vaughn and their SM specializations * Heavy—quark thresholds (MS-bar): m.(m.) =

* Electroweak inputs: Mz = 91.1876 GeV,
~1(Mz) = 127.955 (leptonic running base-
line).

(Luoetal.); our QED normalization matches the 1.27 GeV, my(mp) = 4.18 GeV, m,(m;) =
MS conventions used there (bibliography in this 162.5 GeV (used for stepping; varied within
appendix). PDG bands in robustness checks).
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 Charges: Q, =+2/3,0,=—-1/3,0;=—1/3,
Qc=+2/3,0p=-1/3,0,=+2/3; Qe = —1,
OQu=-1,0:=—-1

* Color factors (SU(3)): C4 =3,Cp =4/3,Tr =
1/2.

* Zeta constants: (3,84, s as needed in the 4L
QCD coefficients (numerically hard—coded in
the library).

B.7 Notes on normalizations

This appendix uses a; = &/n and a, = /7. If
an implementation prefers d; = o /(47), replace
as — 4dg and rescale the loop coefficients accord-
ingly (i.e., multiply the L-loop term by 4%).

References. See the consolidated References section
at the end of the paper.

C Motif dictionary and the integer
Z

C.1 Minimal motif dictionary (in prose)

We regroup the multi-loop insertions of the Stan-
dard—Model mass anomalous dimension into a finite
set of motifs. Each motif has a species—independent
kernel (all rational/Casimir data and couplings) and a
species—dependent integer count. The minimal dic-
tionary used throughout is:

¢ QCD motifs (for fermions in the fundamental):
(i) fundamental self-energy MF; (ii) nonabelian
exchange/vertex My y; (iii) vacuum polarization
on the gauge line My; (iv) quartic—gluon Mg.
These four appear exactly once per fundamental
color line in the reduced word context.

(v)
(vi)

* QED motifs (abelian charge powers):
charge-square Mg contributing 0%

charge—quartic Mos contributing 0%, where

Q =60 € Z is the integerized electric charge.

Counts vs. kernels. The integers Ni(W;) (one per mo-
tif M) depend only on the reduced Dirac word W; of
the species; all continuous, loop—order, and scheme
details sit in the species—independent kernels.

C.2 Anchor count rule and the closed form
for Z

At the global (this paper) anchor ., the calibrated,
normalized flow makes each motif contribute unit
weight per occurrence. Therefore the landing vari-
able is the integer sum

Z(W;) = ;Nk(wi)-

For charged fermions this reduces to the explicit
charge/sector formulas

4 4+ 0% + 0%, quarks,
Z=<0%+ 0% charged leptons,
0, Dirac neutrinos,

The +4 for quarks is the coherent contribution of the
four QCD motifs (Mg, Mya,My,Mg), one each in
the single fundamental color-line context of a Dirac
fermion word. Charged leptons have no color line,
hence no +4. Dirac neutrinos have Q = 0, hence
Z=0.

C.3 Why the factor 6 in O = 6Q

The Standard—-Model electric charges lie in
{il,i%,i%,o}. Multiplying by 6 gives an integer
lattice O € {0,+2,44,46}, so the polynomial
contributions Q2 and Q% are integer—valued. This
makes Z manifestly integral without altering any
physics.
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C.4 Worked examples (one per family)

* Up-type quark (u,c,1): Q=+3 =0 =4
Then

Z =4+0°+0" = 44+16+256 = 276.
Thus Z, = Z, = Z, = 276.

* Down-type quark (d,s,b): Q = —% = 0=
—2. Then

Z=4+0"+0" = 4+4+16 = 24.
Thus Zd :Zs :Zb =24.

* Charged leptons (¢, 1, 7): Q= —1= 0 = —6.
Then

Z = 0*+0% = 36+1296 = 1332.

C.5 Minimal provenance of the quark +4

In the reduced Dirac word for a color—fundamental
fermion, exactly one fundamental color line survives
after cancellations. At the anchor each of the four
QCD motif classes contributes unit weight once in
that context, yielding a coherent +4. This offset is
representation (sector) data, not a tunable choice; it
is absent for color singlets.

C.6 Specificity checks (what Z is not)

Three simple ablations demonstrate the necessity of
the stated form:

* Dropping the quark +4 breaks equal-Z degen-
eracy within (u,c,t) and (d,s,D).

* Dropping the quartic piece Q% fails at
multi—loop order for charged leptons.

* Replacing 6Q by 50 spoils integrality and the
anchor equality simultaneously.

All three produce violations far exceeding the 1076
equality tolerance used at the anchor.

C.7 Scheme/threshold independence of Z

Z(W;) is defined purely from integer counts (motif
occurrences and Q). It is unaffected by renormal-
ization scheme, threshold placements, or loop order.
Such choices alter kernels, not the integer counts;
at the anchor the latter condense into the discrete Z
listed above.

D Equality CSV schema and CI
checks

Purpose. This appendix specifies the ma-
chine-readable outputs used to audit the anchor
relation

fi(le,mi) =~ F(Zy), F(Z)=A""In(1+2/x),

and records the continuous—integration (CI) gates
that must pass for the build to be valid.

D.1 CSV schema (columns and semantics)

Each equality table is a plain CSV with one row per
species and the following columns:

» species: PDG label (u,d,s,c,b,e,lu,T, op-
tionally ¢ in a separate run).

e Z: integer word—charge determined by
(Q,sector).
s Z(Z): closed form A~ 'In(1+ Z/x) evalu-

ated with the fixed {1, k}.
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e fi: SM residue /lflflinﬁ"y,-(u)dlnu at the
common anchor .

* A: (difference A = f; — % (Z).

the set
with mean-

* endpoint_mode: string in
{rs,pdg_to_u_star,pole},
ings:

- rs — quark fixed—point endpoint from
the internal evaluator (definition—level
check).

— pdg_to_l_star PDG reference
transported to p, with the same ker-
nels/policies (non—circular audit).

— pole — pole mass endpoint for the
QED-only lepton cross—check.

Header example.
species,Z,F_of_Z,f_i,Delta,endpoint_mode
Row example (illustrative only).

u,276,10.695000,10.695000,2.5e-08,rs

D.2 CI gates (hard requirements)

All  gates are evaluated separately per
endpoint_mode; the build fails on the first
violation.

Gate G1 — equality tolerance.
max |A;| < 107°.
1

This asserts the anchor relation at numerical preci-
sion for the chosen kernels/policies.

Gate G2 — equal-Z coherence. Group rows by
(Z,endpoint_mode). For each group G with mem-
bersi € G:

Gate G3

kernel/policy hash match
(non—circularity). For any table tagged
pdg_to_p_star, assert that the kernel/policy
hash in the CSV metadata exactly matches the one
used to compute .7 (Z) and f;; mismatch = fail.”

D.3 Minimal pseudocode (reference)

csv = load_csv("gap_equals_residuex.csv")
for mode in unique(csv.endpoint_mode) :
rows =

# Gl: equality tolerance

assert max(abs(r.Delta) for r in rows) <= le-6

# G2: equal-Z coherence
for Z in unique(r.Z for r in rows):

grp = [r for r in rows if r.Z == Z]
if len(grp) >= 2:
fmax = max(r.f_i for r in grp); fmin

assert (fmax - fmin) <= le-6
# G3: kernel/policy hash
assert all(r.hash

Deliverables. The build emits two CSVs (quarks;
leptons), the CI run—log, and a summary line report-
ing max; |A;| per endpoint_mode.

E Phenomenological observation:

anchor-ratio powers

Status. The relation below is recorded as a phe-
nomenological observation at U,. It is not used in
calibrating (W.,A,x) and is not part of the main
claim; no per-species tuning enters.

Statement. Conditioned on the anchor relation
fille,m;) = F (Z;), species with identical Z exhibit

2A minimal metadata preamble (emitted as commented
lines) should include: commit/tag, kernel versions, loop orders,
threshold set, (i) policy, and the anchor value (.
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anchor ratios mi/mj}#* = @' with r, € Z. We
record these integer differences r; — r; as an empiri-
cal regularity at . No claim is made here that ¢ or
the integers (r;) are derived within SM RG; deriva-
tions and combinatorial provenance are deferred to a
separate constructor paper.

Purely classical provenance of the integers.

* L; € Z>o (reduced length): an integer ex-
tracted from the reduced gauge word built
from the Standard—Model representation data
(Y, T3, color) with a fixed chirality pairing and
a finite, canonical reduction. It is presenta-
tion—independent and species—specific but not
adjustable.

* T,i) €10,11,17} (generation torsion): a repre-
sentation—independent, three—class integer as-
signed uniformly to generations 1,2,3; the
same values apply across all sectors.

* Ap € Z (sector integer): a single offset chosen
once per sector (e.g. up—type, down—type, lep-
ton) from a canonical sector primitive; it shifts
the entire sector coherently and is never tuned
per species.

These integers are structural: they are determined
before any comparison to data and remain fixed un-
der changes of scheme, loop order, or threshold
placements in the RG kernels.

Closed—form residue term. The function .% (Z)
is evaluated from the SM anomalous dimensions at
the single anchor and depends only on the integer
Z determined by (Q, sector); equal-Z families there-
fore share the same .#(Z) at u,. This converts
all species—dependent, continuous RG information
into a single closed—form term and underlies the an-
chor-ratio observation.

Constants policy (agnostic). M is a single global
scale factor fixed once for the full spectrum (e.g., by
a congsistent external choice of units/normalization).
Any change to RG inputs or policies is applied co-
herently to all species and only affects the common
uncertainty band; no per—species retuning is permit-
ted. This preserves falsifiability: deviations at the
anchor cannot be repaired by species—specific adjust-
ments.

Scope reminder. All exponent statements are an-
chor—specific. Off the anchor, standard SM running
applies; the integer structure (L, To(i)s Ap,Z;) remains
the same, while the residue contribution is given by
the usual RG integrals evaluated away from .

F Motif regrouping of 7, and the
stationarity lemma at a single an-
chor

F.1. Setup and notation (MSS scheme)

We work in MS with the Standard—Model mass
anomalous dimension written as

%K) = Y (o) np (1) + %P (aln), Q1)

(48)
for fermion species i with electric charge Q; (in
units of e). Throughout, heavy—flavor thresholds are
stepped at u = me,my,,m; with ny: 3 —4—5—6;
the same policy is applied to all species. Explicit
loop coefficients of }/SCD (to4L) and yn?ED (to2L)
are recorded in App. B and not reproduced here.

F.2. Finite motif dictionary and species—
independent kernels

We regroup the multi—loop insertions that build
into a finite set of motifs with species—independent
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rate kernels ki (i) and integer counts Ni(W;):

Explicit crosswalk (symbolic). Write the standard
expansions (suppressing [-arguments)

Hw) = ), k(WNW),  H ={F, NA,V,G, 02, 04}.
ket CD n . .
49) 1} =Y & [CFA,, + CrCuB, + CrTynyCy + (higher nonabelia
Here: n>1
(51)
* F (fundamental self-energy/vertex): absorbs D _ Z o [le bny + Q;t bua + (higher powers regroupe d)}.
the Cp—proportional QCD contribution at all n>1 i i
loop orders; (52)

* NA (non—abelian exchange): absorbs the CrCy
structures;

* V (vacuum polarization on gauge lines): ab-
sorbs the Cr Trnys(1) structures;

* G (quartic—gluon/four—gluon class): absorbs
the residual purely non-abelian higher—loop
structures (e.g. Cﬁ combinations affecting ¥,);

e 02, 04 (abelian charge motifs). absorb the
QED Q7 and Q% structures (two—loop and
mixed terms regrouped accordingly).

All dependence on the species label i sits in integers
Ni(W;). At fixed representation,

4 NA v ¢ {O7 lepton (color singlet),

where O := 6Q; € Z ensures integrality of the abelian
counts.
index

4+ (6 6
+( IQfe ratg Qt>o the fixed point u = m; gives
(60:)* + 6Qz ;

Z(W;) := Np+Nya+Ny +Ng+Ngo+Ngs =

0,
(50)
is an integer fixed by (Q;, sector).

With this dictionary the charge—structured

Then choose the species—independent kernels

Kp 1= ZA,,a?, Kna := Z(CABH)G?J
n>1 n>2

Ky = Z (Trng)Cuay, g:= Z (pure C4 combinations)ay,
n>2 n>3

Koz := Z bpo ", Ko4 := Z bpao, (53)
n>1 n>2

so that (49) reproduces (51)—(52) once the integer
counts Ni(W;) above are inserted. Threshold step-
ping for ny(u) enters only through kv and is com-
mon to all quark species.

F.3. Anchor-normalized flow and solution

1, quark in the fundamental (color),

Fix a single glN@.ﬁli‘tﬁ@Qpﬁper)Afmtﬁo%@ )énd con-
stants (A, k) (fixed once by normalization, see F.5).
Define the ¢—normalized flow by

Zi(w)\
. ) = %(u),

uarks,

Zi(u) = 0.

2y (54)

charged leptons,

tr nos,

W) ding = A~ 11n(1+z( )).
(55)

filfymi) == A7 P/mm
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F.4. Stationarity (PMS/BLM) and motif
weights

Define the motif weights

1 Inm;
wi (i A) = K(u)dinu,  kex.
A Inp,
(56)

Because the kernels ki () are species—independent,
the vector w(li;A) = (wy)r is common to all
species. We choose (L., A) by the principle of mini-
mal sensitivity/BLM: minimize the motif spread

(W A) = argmin Var[we(w:4)],  (57)
H,

where Varg[wy] = %Zszl(Wk —w)? with w =
+Y8 \wiand K = |7 =6.

Lemma (Uniqueness of stationary anchor). 7The
variance minimization problem (57) has a unique so-
lution (U, A) characterized by:

dVar 2 K
=—— wr —w)(Ke(te) — k(1)) =0,
(58)

K
aaVar_ KiZwk— Jwi =0, (59)

where K([) = %Zk Ki(W). The objective is strictly
convex in In U, near the stationary point.
ow
Proof.  Using a(lnm) = —4 k(i) and G =
Iwk, direct differentiation yields (58)—(59). For
strict convexity, compute

0% Var 2 2
Fnm 7~ &2 v+ 7 Z Wk W)k
(60)
where Z; (1) = Bg:u X, a A0 5 At the sta-

tionary point, the residuals (w; —w) are small by
construction, so the first term dominates. Since

Vary [k (i) > 0 whenever the motifs are distinct
(which they are), the Hessian is positive definite in
Iny,. Combined with the orthogonal descent direc-
tions {Jn W, d; W}, this ensures a unique local mini-
mum, which is global by continuity of the objective.

Unit-weight landing with bounded deviations.
At the stationary point,

Wi(t; A) =1+ &, m]?X’6k|:3 Omax < 1, (61)

and the flow variable at the fixed point reads

mi) = Y wiNe (W) = Z(Wi) + ) & Ne(W),
ke X ke X (62)

with the integer Z(W;) defined in (50). The devia-
tions 9§ obey the generic bound

‘5k| < Cr max {Ols (‘LL)} = C€, ek,

HE[kemi]

(63)
with C; depending only on known rational data
(Casimirs, {—values) in the NLL and higher terms
of K.

F.5. Integer landing inequality and the main
identity

Let Niot(W;) := Yicr Ne(W;). From (62) we obtain
the integer landing bound

‘Zi(mi) *Z(VV,') ’ < 6mathot(VVi>a Smax = m]le |6k|

(64)
Inserting (62) into (55) yields the anchor relation

(1) with (A,x) fixed once by the anchor normaliza-

tion. A convenient (and numerically natural) choice
is to pin A by the equal-slope condition implicit in
(57) and fix k by matching the small-Z one-motif
slope; in practice this lands on A =In¢ and k¥ = ¢
without ad hoc insertion.
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F.6. Scheme/threshold robustness at the sta-
tionary anchor

Lemma (Coherent shifts under scheme/threshold
changes). Let S and S’ be two admissible choices
(scheme variant, threshold placement, or o.(lL) pol-
icy) inducing motif weights wy and wy, with station-
ary points (W, A) and (1, A"). Then:

(i) The weight shifts decompose as

O fi = Yx OwrNi(W;) and the decomposition (65), the
common shifts §(In g, ) and 6A cancel in the differ-
ence, leaving only the p; contribution.

(iii) From f; = A~'In(1+Z;/x) and using |In(1 +
x)—In(1+y)| < |x—y|/(1 +min{x,y}), the bound
follows from |Z! — Z;| < Niot ()| P[] eo-

Consequence. At the  stationary  anchor,
scheme/threshold  variations induce primarily
common shifts absorbed by re-centering (L, A).

Swy = W;{ —wp= —lKk(/.L*)S(ln/,L*) _ lwk57t _1_"517376 residual p; is second-order in the input

A
(65)

where py, satisfies the orthogonality conditions

Y o () =0, Y pewi=0.  (66)
% 3

(i1) For species i,j with Z; = Z; (equal-Z family),
the residue shifts satisfy

]l

|5fl_6fj|§ 21 |]Vtot(i)_Ntot(j)|> (67)
where ||plle = maxg|pr| and Ni(i) =
L Ne(Wi).

(i11)) The maximal residue drift for any species is
bounded by

Nl
81 < 3t gy el ©9)

A (K + Zmin)
With Zuin = min{Z;, Z!} > 0.

Proof. (i) The decomposition (65) follows from
linearizing w) around (u,,A). The orthogonality
(66) holds because the new stationary point (u,,A")
minimizes variance, hence the projection of dwy
onto the gradient directions { ki (LL ), wx } vanishes to
first order.

(ii) For equal-Z species, Ni(W;) = Ni(W;) for all
QCD motifs and differ only in abelian counts. Using
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changes, ensuring equal-Z coherence persists to high
accuracy.

F.7. Worked algebraic examples (one quark,
one lepton)

Up quark (Q = +2/3; color fundamental). Motif
counts: Np = Nyg = Ny = Ng =1 (one per QCD mo-
tif at the anchor), Ngs = (6Q)* = 16, Ng4 = (60)* =
256. Hence

ZW,)=14+14+14+14+16+256 =276.
With wy = 1 + 8 at the PMS/BLM anchor,

Zu(my) =276+ Y 8Ne(W,),
ket

and from (55)—(??),

}Zu(mu) _276} < 6math0t(Wu)a

Zu U . .
fulthe,my) =271 ln(l + (:1)) =.%#(276) within the bound (64)

Electron (Q = —1; color singlet). Motif counts:
Nr = Nya = Ny = Ng = 0 (no QCD motifs), Ng» =
(60)% = 36, Nos = (60)* = 1296. Hence

Z(W,) =36+1296=1332,  Z.(m,)=1332+ Y &Ny (We),

ket
and the same reasoning gives

fo(tte,m.) = Z(1332)  within the bound (64).



F.8. Summary of the derivation

(1) Regroup 7; into the finite dictionary (49) with
species—independent kernels and integer counts fixed
by (Q;,sector). (ii) Choose (u,,A) by PMS/BLM
so that each motif integrates to unit weight up to
small, kernel-controlled &. (iii) Evolve the normal-
ized flow (54) to obtain (55); integer landing (64)
then yields the closed—form identity (??) with a sin-
gle, fixed pair (A, k), and furnishes the explicit error
control via 8max and Nyt (W;).
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G

¢ Neutrinos.

Skeptic’s Checklist (referee quick
scan)

* anchor relation (boxed). fille,m;) =
A~ 'In(1+Z;/x); (A, x) fixed once by station-
arity and a small-Z slope match; verification to
1076 with QCD(4L)+QED(2L).

* Motif regrouping. Finite dictionary
{F,NA,V,G,02,04}; species-independent
kernels K (u); integer counts Ni(W;); +4 for
quarks.

 Stationarity lemma. PMS/BLM conditions;
strict convexity = unique (i, 4); equal-weight
landing wy = 1+ 6.

* Integer landing bound.
6mathot(VVi>; fl _g<Z(VVl)>‘ S

Zi — Z(Wi)| <
amathot
kA/(1+Z/x)"

¢ Robustness. Scheme/threshold: max |6i(v)| =
2.27 x 1078; incoherence = 0. o(u) half-band:
3.39 x 1078,

« Loop order. QCD 3L/5L (QED 2L): 825 =
2.1%x10°8; 88Y —3.4% 1078,

* Ablations. Drop +4; drop Q% 60 — 50;
6Q — 3Q: violations > 107 (max ~ €(1)).

* Non-circular transport. PDG— p, with same

kernels; no measured mass on RHS of its own
prediction.

If Dirac and Q =0: Z, =0 =
Z(0) =0 at u,; Yukawa-only 7, neglected;
no further claim. Any non-zero anchor residue
from the same evaluator would falsify the Dirac
& Q = 0 premise rather than the charged-sector
identity.
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[2] J. A. M. Vermaseren,

* Artifacts. One-command build; CSVs; figures;
anchor triple JSON; CI gates for |f —.7| <
10~® and equal-Z coherence.
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Kernels and policies

Unless stated otherwise, we use: (i) QCD four-loop
running and quark mass anomalous dimensions with
ns stepping 3 — 4 — 5 — 6 at fixed MS thresh-
olds (U, Wp, 1) held constant for all species and all
scans, with standard one-step decoupling and match-
ing at each threshold; (ii) QED two-loop running
for charged leptons and quarks with a single, global
choice of a(u) policy; (iii) a single global input for
o (Mz). Sensitivity bands are produced by coher-
ent, sector-global variations of these inputs (no per-
species tuning or offsets).
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