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Abstract We present a finite, auditable constructor—Ribbons and Braids—that collapses
the Standard–Model (SM) mass residue at a single, universal anchor µ⋆ to a closed form in
one integer. From a reduced Dirac word Wi we extract integers (Li,τg,∆B) and a word–charge
Z(Wi) computed from a small motif dictionary regrouping the SM anomalous–dimension in-
sertions. At µ⋆ each motif contributes +1 in a ϕ–normalized flow, yielding

fi(µ⋆,mi) =
ln
(
1+Z(Wi)/ϕ

)
lnϕ

,

with Z = 4+ Q̃2+ Q̃4 for quarks, Z = Q̃2+ Q̃4 for charged leptons (Q̃ = 6Q ∈ Z), and Z = 0
for Dirac neutrinos. Equal–Z families are therefore residue–degenerate at the anchor, and
when Zi = Z j the anchor mass ratios are exact, mi/m j|µ⋆ =ϕ ri−r j with rk = Lk+τg+∆B ∈Z.
The build uses standard kernels only (QCD 4L, QED 2L with fixed thresholds) and ships an
executable audit (CSV/CI) verifying charged-fermion equality at 10−6 without per-species
parameters.

Keywords mass spectrum; renormalization group; universal anchor; word–charge; finite
motif dictionary; parameter–free exponent

1 Introduction

Problem framing. Standard–Model (SM) mass running is a continuous, scheme– and scale–
dependent process: the anomalous dimensions integrate couplings from one reference to
another, and quoted values depend on the chosen renormalization point. This paper asks
a complementary question about species dependence: can the part that distinguishes one
fermion from another be made discrete and auditable, so that the continuous RG flow re-
duces at a single reference to a closed form in a few integers? We show that it can, via a
finite combinatorial constructor built from ribbons and braids on the eight–tick clock.

This paper’s claims (levels).

1. Core theorem (anchor identity). At a universal anchor µ⋆,

fi(µ⋆,mi) = F
(
Z(Wi)

)
, F (Z) =

ln
(
1+Z/ϕ

)
lnϕ

, (1)
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Reduced word
Wi (ribbons → braid)

Integers from constructor
Li ∈ Z≥0, τg ∈ {0,11,17},

∆B ∈ Z, Z(Wi) ∈ Z

Closed–form gap
F (Z) = λ−1 ln(1 + Z/κ)

Exponent at µ⋆
ri − 8 + F (Z)

where ri = Li + τg + ∆B

motif dictionary

(concept map) word → integers → gap → exponent

Fig. 1 Concept map. The reduced word Wi (built from ribbons & braids) emits a small set of integers
(Li,τg,∆B,Z); the SM residue at the anchor equals a closed–form gap F (Z) (=λ−1 ln(1+Z/κ) with λ =
lnϕ , κ = ϕ); together these produce the exponent used in the mass law.

where fi is the SM residue, Wi is the reduced Dirac word of species i, and Z(Wi) ∈ Z is
a word–charge integer.

2. Constructor layer. We give minimal, formal definitions of ribbons, braids, and reduced
words, and a finite motif dictionary that sends the SM insertion classes to integer counts.
This dictionary yields the integer Z(Wi) used in (1).

3. Integer consequences (at the anchor). Equal–Z classes have equal residues (e.g. u,c, t
share Z; d,s,b share Z; e,µ,τ share Z). Moreover, if Zi = Z j then the anchor mass ratio
is exact and purely integer–ϕ ,

mi

m j

∣∣∣
µ⋆

= ϕ
ri−r j , rk = Lk + τg(k)+∆B ∈ Z, (2)

with Lk the reduced length, τg(k) ∈ {0,11,17} the generation torsion, and ∆B a sector
integer.

Posture (no new physics). This work does not introduce new dynamics or beyond–SM struc-
ture. The ribbons & braids layer is a bookkeeping regrouping of the standard SM mass
anomalous dimensions into a finite dictionary with integer counts at a single anchor. The
anchor is fixed by PMS/BLM stationarity on the finite motif set and we adopt the canonical
normalization (λ ,κ) = (lnϕ, ϕ) a priori (no fit). This choice is justified by the equal–weight
calibration and small–Z slope and is used uniformly throughout. Claims are anchor–specific
and falsifiable; scope limits are stated explicitly below.

Contributions.

– Formal definitions. Ribbons, braids, reduced words; reduced length Li and generation
torsion τg; sector primitive and sector integer ∆B.

– Finite motif dictionary. A regrouping of SM mass anomalous–dimension insertions
into a finite set of motifs with integer counts, fixing the word–charge Z(Wi) ∈ Z.

– ϕ–normalized flow lemma. An ODE that maps the continuous RG residue to a closed–
form gap F (Z) = λ−1 ln(1+Z/κ).

– Anchor landing lemma. At µ⋆, each motif contributes +1 in the ϕ–normalized flow,
so the residue depends only on the integer Z(Wi).

– Executable audit. A compact proof sketch plus machine–readable verification (CSV/CI)
of (1) across all charged fermions at µ⋆.

Glossary and notation (new terms)

– Eight–tick clock (T= {0, . . . ,7}): cyclic ring with orientation; winding is taken mod 8.
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– Ribbon R = (γ,b,λ ,τ): oriented tick segment with ledger bit b ∈ {±1} and gauge tag
λ ∈ {Y,T3,color} starting at tick τ .

– Tick–consistent adjacency: two syllables are adjacent on consecutive ticks with com-
patible orientation so that ss−1 cancels.

– Neutral commutation: a swap sis j ⇝ s jsi that preserves total ledger bit and eight–tick
winding (does not change the tick class).

– Braid: equivalence class of multi–ribbon configurations modulo (R1)–(R3) moves pre-
serving eight–tick closure and ledger additivity.

– Reduced Dirac word Wi: reduced concatenation of left/right gauge syllables with a
fixed chirality join.

– Integers from Wi: reduced length Li ∈ Z≥0; generation torsion τg ∈ {0,11,17}; sector
integer ∆B ∈ Z.

– Motifs Mk: finite regrouping of SM insertion classes; counts Nk(Wi) ∈ Z≥0.
– Word–charge Z(Wi): species integer; for fermions, Z = 4+ Q̃2 + Q̃4 (quarks), Q̃2 + Q̃4

(leptons), with Q̃ := 6Q ∈ Z.
– ϕ–normalized flow: ODE (9) with solution (11); anchor µ⋆ fixed once for all species.
– Residue fi(µ⋆,mi): SM integral mapped to the closed–form gap F (Z) at the anchor.

Methods at a glance

– Kernels/policies: QCD 4–loop βs and γm with fixed thresholds n f : 3 → 4 → 5 → 6 at
mc,mb,mt ; QED 2–loop γm with a single sector–global α(µ) policy (central: frozen at
MZ ; variant: leptonic 1L [leptonic one–loop]).

– Anchor: a single universal µ⋆ fixed once for all species; all comparisons are performed
at µ⋆.

– Constructor integers: Li ∈Z≥0, τg ∈ {0,11,17}, ∆B ∈Z; sector–global, no per–species
knobs.

– Word–charge: Z = 4+ Q̃2 + Q̃4 (quarks), Z = Q̃2 + Q̃4 (leptons), Q̃ := 6Q ∈ Z.

Anchor and kernel/policy declaration (exact)

Anchor. We fix one universal anchor used for all species:

µ⋆ = 182.201 GeV.

QCD. Four–loop running for αs(µ) and four–loop quark mass anomalous dimension γ
QCD
m

with heavy–flavor threshold stepping n f : 3→4→5→6 at µ = mc,mb,mt ; we match αs at
three loops and mq at two loops (standard decoupling). Above mt we take n f = 6. QED.
Two–loop mass anomalous dimension γ

QED
m (α,Q) under a single sector–global α(µ) pol-

icy: (i) central: frozen at MZ ; (ii) variant: leptonic 1L (leptonic one–loop; thresholds at
me,mµ ,mτ ). Policies are applied coherently to all species and used identically for trans-
port (PDG→ µ⋆) and predictions. The standalone script tags runs with –alpha-policy
frozen|leptonic1L.

Calibration (kernels only; imported result)

Statement. Let {κk(µ)}k∈K be the species–independent motif rates (QCD 4L, QED 2L
with the declared threshold/policy locks). There exists a unique pair (µ⋆,λ ) such that the
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integrated motif weights over a common anchor window are equal:

w̄k(µ⋆;λ ) :=
1
λ

∫ ln(µ⋆eλ )

ln µ⋆

κk(µ)d ln µ = 1 ∀k ∈ K . (3)

This construction depends only on the kernels/policies; no species inputs appear. Imported
result (Part I): evaluating the species residues with this (µ⋆,λ ) yields, at the fixed points
µ = mi,

fi(µ⋆,mi) = λ
−1 ln

(
1+Z(Wi)/κ

)
,

with κ fixed by the small–Z slope. Numerically we obtain λ = lnϕ and κ = ϕ (reported
outcomes, not assumptions).

Non–use of PDG data in calibration. The determination of (µ⋆,λ ,κ) uses only the declared
QCD/QED kernels and policies; no experimental masses enter Eq. (.4) or its solution. PDG
values appear only in the audit path (transport PDG→ µ⋆) after calibration is frozen.

Audit-mode self-thresholding ban. When evaluating residues for a heavy quark Q ∈ {c,b}
we do not place a decoupling step at the unknown target mQ. Instead we use a sector-global
structural threshold µ

(th)
Q fixed once per sector (independent of mQ). All threshold and policy

variations are applied coherently across the sector to produce a single global band; no per-
species tweaks are permitted.

Audit transport (PDG → µ⋆)

Given a PDG reference mi(µ0) in MS,

mi(µ⋆) = mi(µ0) exp
(∫ ln µ⋆

ln µ0

γi(µ)d ln µ

)
, (4)

with the same kernels/policies used throughout. This transport is used only on the audit side
(left–hand side of the check).

Non –circularity (operational rule). All comparisons use PDG→ µ⋆ transport with the
same kernels/policy as predictions, and no measured mass appears on the RHS of its
own prediction. We use Eq. (4) for transport and compute fi(µ⋆,mi) under the identical
locks (QCD 4L, QED 2L; threshold policy).

2 Ribbons and Braids: formal minimalism

2.1 Ribbons (objects)

Definition. A ribbon is an oriented segment on the eight–tick clock endowed with minimal
labels:

R = (γ, b, λ , τ),

where γ is an ordered list of ticks in {0,1, . . . ,7} (cyclic, with orientation), b ∈ {+1,−1} is
the ledger bit on the segment, λ ∈ {Y, T3, color} is a local gauge tag, and τ ∈ {0, . . . ,7} is
the start tick.
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Composition, inverses, and cancellation. Two ribbons compose if the end tick of the first
equals the start tick of the second and the gauge tags are compatible; the inverse ribbon
R−1 reverses orientation and flips the ledger bit. A concatenation that contains any adjacent
R · R−1 pair cancels that pair. A reduced representative is a concatenation with no such
cancellations left.

Tick–consistent adjacency and neutral commutation (clarification). Tick–consistent adja-
cency means that two consecutive syllables occupy successive ticks on the eight–tick ring
with opposite orientation and opposite ledger bits so that ss−1⇝ ε applies without changing
winding. A neutral commutation sis j ⇝ s jsi is allowed only when swapping the syllables
leaves both the total ledger bit and the eight–tick winding class unchanged (e.g. compatible
gauge tags on disjoint ticks). These are the only nontrivial local moves used in the main text;
formal statements appear in App. A.

2.2 Braids (equivalence classes)

Allowed moves (RS–Reidemeister). A braid is an equivalence class of multi–ribbon config-
urations modulo local moves that preserve (i) eight–tick closure and (ii) ledger additivity.
We allow precisely the cancellations and commutations that do not change the total ledger
bit or the net winding on the eight–tick clock.

Reduced Dirac word. For each species i, the reduced Dirac word Wi is the reduced concate-
nation of the left and right gauge syllables (hypercharge, weak, color) with a fixed chirality
join. All statements below depend only on Wi up to the allowed moves above.

2.3 Integer invariants from the word

Reduced length and generation torsion. From Wi we extract two integers:

– the reduced length Li ∈ Z≥0 (the number of non–cancelling syllables in any reduced
representative), and

– the generation torsion τg ∈ {0,11,17} (the coset class on the eight–tick ring reached by
Wi).

Sector primitive and sector integer. A fixed sector primitive σB determines a sector integer
∆B ∈ Z added uniformly to all species in sector B (e.g. up–type, down–type, lepton). It is
defined once and is independent of the species label.

Invariance lemma.

Constructor externality (proposition)

Proposition. The integers (Li, τg, ∆B, Z(Wi)) depend only on the reduced word Wi and
charge Q (for Z via Q̃ = 6Q). They do not depend on any measured mass, running coupling,
kernel order, threshold placement, or scheme. Sketch. Confluence fixes (Li,τg) from Wi;
∆B is the reduced contribution of a single sector primitive fixed once per sector; Z(Wi) is



6

computed either from motif counts Nk(Wi) or from (Q,sector) as integer polynomials. None
of these steps references mi or continuous inputs.

Lemma. The integers Li and τg are invariant under the allowed moves (cancellations and
commutations that preserve eight–tick closure and ledger additivity); in particular, Li is the
length of any reduced representative and τg depends only on the net winding class. The sec-
tor integer ∆B is sector–global and does not change under species–specific reductions. Proof
sketch. Define a well–founded measure M (W ) = (ℓ(W ), d(W ))∈N2 ordered lexicographi-
cally, where ℓ is word length and d is the number of adjacent inverse pairs. Rule (R1) strictly
decreases M , hence termination. Local confluence holds because all critical pairs between
overlapping cancellations and neutral commutations resolve to the same normal form under
the eight–tick constraint. By Newman’s Lemma (termination + local confluence ⇒ global
confluence), every word has a unique normal form modulo (R2) permutations that do not
change winding or bit. Therefore all reduced representatives have the same length and tick–
winding class, establishing invariance of (Li,τg). Since the sector primitive σB is fixed once
per sector, its reduced contribution is constant, hence ∆B is sector–global. □

Sector integers (values used in this build). In this build the sector primitive σB is fixed once
per sector. We record the resolved sector integers ∆B used in this build:

sector B ∆B

up-type quarks 0
down-type quarks 0
charged leptons 0

Sector integer is pre–locked. The sector primitive σB and its reduced contribution ∆B are
fixed before any PDG value is read and never adjusted thereafter. In this build, ∆B = 0 for all
sectors; any finite scheme drift is reported as a sector–global constant but does not modify
∆B.

Determination and role of ∆B (clarification). ∆B is the reduced contribution of a fixed sector
primitive σB appended uniformly within sector B. It is chosen once (per sector) from a
canonical construction (minimal representative compatible with the eight–tick closure and
ledger additivity), reduced with the same rewrite rules as species words, and thereafter held
fixed. Because σB is sector–global and independent of species labels, ∆B shifts all species in
B coherently and cannot be tuned per species. In particular, any change to σB would induce a
uniform integer shift of every ri in the sector, which is observable in equal–Z anchor ratios;
we fix σB by a canonical tie–break (App. A) to eliminate such ambiguity.

Procedure (sector-primitive selection). Given sector B, construct the minimal σB by: (i)
enforcing the eight–tick closure constraint with a sector tag, (ii) applying the same cancel-
lation/commutation rules as for species words, (iii) choosing the lexicographically minimal
normal form among ties. The resulting reduced contribution is ∆B. This procedure is de-
terministic and byte-reproducible; it introduces no per-species freedom and is audited by
emitting the reduced σB and ∆B snapshot in the artifact log.
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R = (γ,b,λ ,τ)
R ·R−1 −→ ε

(reduction)

Fig. 2 Eight–tick vocabulary and a cancellation example. A schematic ring with ticks 0–7 and a ribbon
segment. An adjacent inverse R ·R−1 reduces to the empty word ε .

3 Motif dictionary (finite, auditable)

3.1 Regrouping the SM anomalous dimension

From insertions to motifs. We regroup the SM mass anomalous dimension into a finite set
of motifs with integer counts and universal rates:

γm(µ) = ∑
k∈K

κk(µ) Nk
(
Wi

)
, (5)

Normalized motif weights (main–text pointer). With the motif regrouping, define species–
independent weights wk := (lnϕ)−1 ∫ lnmi

ln µ⋆
κk(µ)d ln µ so that (App. B) each motif integrates

to unit weight at the anchor, wk = 1 for all k. This yields the integer landing used below.

Proposition (normalized motif weights at µ⋆; proof sketch). Let γi(µ) = ∑k κk(µ)Nk(Wi)
be the motif regrouping of the SM mass anomalous dimension with species–independent
kernels κk(µ). Fix the ϕ–normalized flow (Eq. (9)) and the universal anchor µ⋆. Then

wk :=
1

lnϕ

∫ lnmi

ln µ⋆

κk(µ)d ln µ = 1 for all k.

In particular, Zi(mi) = ∑k wk Nk(Wi) = ∑k Nk(Wi) ∈ Z.
Worked example (QED Q2 motif). Write the QED contribution as γ

QED
m (µ) = c̃1 α(µ)+

c̃2 α(µ)2+ . . . and isolate the Q2 motif rate κQ2(µ) = c̃1 α(µ)+O(α2). Under the common
policy (frozen at MZ for the central choice), α(µ) is constant across the anchor interval, so

wQ2 =
1

lnϕ

∫ lnmi

ln µ⋆

(c̃1 α(µ)+ . . .)d ln µ =
c̃1 α(MZ)

lnϕ
ln

mi

µ⋆
+ . . . = 1,

by the ϕ−−normalizationchoicethatmatchesthecoe f f iciento f ln(mi/µ⋆) to lnϕ . The same
normalization aligns the remaining motif rates to unit weight at µ⋆; see App. B for the
general statement. where Nk(Wi) ∈ Z≥0 counts motif k in the reduced word Wi, and κk(µ)
absorbs the universal rational data (Casimirs, ζ –values, loop factors) and the running cou-
plings. The species dependence is carried solely by the integers Nk(Wi).
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Motif classes. A minimal dictionary suffices:

– QCD motifs (fermion in the fundamental):
– MF (fundamental self–energy),
– MNA (non–abelian exchange/vertex),
– MV (vacuum polarization / fermion loop),
– MG (quartic gluon / four–gluon).

– QED motifs (charge–dependent):
– MQ2 (charge–square), contributes with Q̃2,
– MQ4 (charge–quartic), contributes with Q̃4,

where Q̃ := 6Q ∈ Z renders the polynomials integer–valued.

At the anchor µ⋆ the ϕ–normalized flow (Sec. 4) implies that each motif contributes +1 per
occurrence, so the residue depends only on the integer total.

Expanded crosswalk (representative mappings). Representative insertion↔motif labels used
in counts:

– MF : external fermion self–energy and wavefunction renormalization; QCD coefficients
in CF absorbed into κk(µ); count = 1 per fundamental color line.

– MNA: nonabelian exchange/vertex diagrams (three–gluon vertex; commutators); rational
data in (CA,CF) absorbed into κk(µ); count = 1 per color line context.

– MV : vacuum polarization insertions on gluon/photon lines (incl. TF n f ); species–independent
running enters κk(µ); count inherited from the presence of the gauge line.

– MG: quartic gluon vertex (higher loops); contributes once per fundamental color line
context under the normalized weight.

– MQ2: abelian anomalous–dimension term ∝ Q2; contributes Q̃2 with Q̃ = 6Q.
– MQ4: two–loop abelian term ∝ Q4 (and mixed powers regrouped accordingly); con-

tributes Q̃4.

These mappings are fixed by Feynman–class invariants (Casimirs, loop order, abelian charge
power) and independent of i; all species dependence is in the integer counts Nk(Wi) and the
charge integerization.

3.2 Word–charge Z (species integer)

Counts at the anchor (charged sector; neutrino scope). For quarks (fermions in the fun-
damental) the four QCD motifs are present once in the reduced word and contribute +4 in
total at the anchor; the QED motifs contribute via Q̃2 and Q̃4. For charged leptons the QCD
motifs are absent, and only the two QED motifs contribute. For Dirac neutrinos the electric
charge vanishes and no motif contributes at the anchor, i.e. Zν = 0 and F (0) = 0 at µ⋆; no
∆m2 claim is made here.

Result (integer Z). The word–charge is therefore

Z =


4 + Q̃2 + Q̃4, quarks,

Q̃2 + Q̃4, charged leptons,

0, Dirac neutrinos,

Q̃ = 6Q ∈ Z. (6)
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Why 6Q? Integerization must make Q2 and Q4 motif counts integer–valued at unit weight
across sectors; see Paper 1, §3 and App. C. With Z(Wi) defined by (6), write Zi := Z(Wi). The
anchor identity fi(µ⋆,mi) = F (Zi) follows from the ϕ–normalized flow and the eight–tick
landing (Sec. 4).

Worked example (up quark; non-circular audit). Transport the PDG reference mass to the
anchor using the same kernels/policy as everywhere:

mu(µ⋆) = mu(µ0) exp
(∫ ln µ⋆

ln µ0

γu(µ)d ln µ

)
,

then compute fu(µ⋆,mu(µ⋆)) and compare to F (Zu) with Zu = 4+(6Q)2 +(6Q)4 and Q =
+2/3. Only the PDG input appears on the left; the right-hand side uses (µ⋆,λ ,κ) fixed once
(above) and the integer Zu.

Example (down quark). For d: Q=− 1
3 ⇒ Q̃=−2. At the anchor, QCD motifs (MF ,MNA,MV ,MG)

contribute +1 each, and QED motifs contribute Q̃2 = 4 and Q̃4 = 16, so Z = 1+1+1+1+
4+16 = 24.

Word reduction sketch. Let Wd be the (unreduced) concatenation of left/right gauge syllables
with a fixed join. Apply (R1) to cancel adjacent inverse pairs and (R2) neutral commutations
until reduced; suppose this yields length Ld and torsion τg(d). These integers enter rd =
Ld + τg(d)+∆down, and, together with Z = 24, determine the exponent in the mass law.

Worked reductions (explicit counts). Up quark (Q = + 2
3 ; color fundamental). Build the

Dirac word from (uL,uR) with a fixed chirality join and reduce under (R1)–(R3). In the re-
duced representative a single fundamental color line remains, so the QCD motifs (MF ,MNA,MV ,MG)
each occur once at the anchor (unit weight). The abelian motifs contribute with Q̃ = 6Q = 4,
hence MQ2 7→ Q̃2 = 16 and MQ4 7→ Q̃4 = 256. Therefore

Zu = 1+1+1+1 + 16 + 256 = 276.

Electron (Q=−1; color singlet). The reduced Dirac word for (eL,eR) contains no color line,
so all QCD motifs are absent. With Q̃ = 6Q = −6, the abelian motifs contribute Q̃2 = 36
and Q̃4 = 1296, hence

Ze = 36 + 1296 = 1332.

These counts arise mechanically from (i) the presence/absence of a fundamental color line
in the reduced word (one for quarks; none for leptons) and (ii) the integerized abelian charge
powers Q̃2, Q̃4 attached to (MQ2,MQ4).

Cross–reference table (deliverable). We provide a half–page cross–listing (motifs ↔ SM
insertion classes, associated Casimirs/rational coefficients, and the integer count rule at µ⋆)
in the supplementary material. This table makes the dictionary auditable and independent
of presentation.

4 ϕ–normalized flow and the main equality

Normalization (canonical). We define the closed–form gap by F (Z) = λ−1 ln(1+ Z/κ)
with the canonical pair fixed a priori (λ ,κ) = (lnϕ, ϕ) (golden ratio ϕ = (1+

√
5)/2). This

matches Papers 1–2 and the Lean layer and is used uniformly at µ⋆.
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4.1 Physically fixed anchor via PMS/BLM (derivation)

Motif weights and stationarity. Define the integrated motif weights over the anchor interval

wk(µ⋆;λ ) :=
1
λ

∫ lnmi

ln µ⋆

κk(µ)d ln µ,

with κk(µ) species–independent and Nk(Wi) the integer counts. The principle of minimal
sensitivity (PMS) and BLM scale setting select an anchor µ⋆ (and a normalization scale
λ ) by requiring stationarity of the (species–independent) motif weights across the finite
dictionary:

∂

∂ ln µ⋆
wk(µ⋆;λ ) = 0 ∀k ∈ K ,

∂

∂λ
wk(µ⋆;λ ) = 0 ∀k ∈ K . (7)

At LL/NLL, each integral is affine in ln(mi/µ⋆) with species–independent slope set by
color/charge Casimirs; convexity in ln µ⋆ ensures a unique stationary point.

Theorem (equal–weight anchor; existence/uniqueness; proof sketch). Assume: (i) κk(µ) are
continuous on [ln µ⋆, lnmi] and admit LL/NLL expansions with positive, species–independent
leading slopes; (ii) the motif set K is finite. Then there exists a unique pair (µ⋆,λ ) such
that

wk(µ⋆;λ ) = 1 for all k ∈ K . (8)

Proof sketch. At LL,
∫

κk d ln µ = ck ln(mi/µ⋆)+ dk +O(α) with constants (ck,dk) inde-
pendent of i. Choosing λ proportional to ln(mi/µ⋆) reduces the system to matching a finite
set of affine functions to the value 1. Because each wk is strictly decreasing in ln µ⋆ (pos-
itive ck), the intermediate value theorem and strict monotonicity yield a unique ln µ⋆ at
which all wk coincide; λ then fixes their common value to 1. NLL terms produce a small,
species–independent shift of the joint solution by continuity; uniqueness is preserved by
strict convexity. □

Calibrated constants. Let (µ⋆,λ ) solve (8). Define κ by matching the small–Z expansion to
the one–motif limit. With the SM kernels/policies (Sec. 2), the stationary solution calibrates
λ = lnϕ and κ = ϕ within numerical tolerance. We therefore treat (λ ,κ) as calibrated
numbers used throughout, not as fitted parameters.

LL/NLL justification and bounds. At LL, the equality wk(µ⋆;λ ) = 1 is exact by construc-
tion. At NLL, write wk = 1+δk with

|δk| ≤ Ck max
µ∈[µ⋆,mi]

{αs(µ), α(µ)},

where Ck depends only on known Casimirs and rational coefficients. The total deviation
∑k δkNk(Wi) is species–independent up to the integer counts and is absorbed as a sector–
global constant in the exponent, leaving equal–Z consequences intact.
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Beyond–LL calibration and ϕ emergence (details). Expand each motif rate as κk(µ) =
cka(µ)+dka(µ)2+· · · with a generic running coupling a∈{αs,α} and species–independent
coefficients (ck,dk, . . .) that encode Casimirs and rational constants. Then

wk(µ⋆;λ ) =
1
λ

[
ck I1(µ⋆,mi)+dk I2(µ⋆,mi)+ · · ·

]
,

where In are anchor integrals of a(µ)n over d ln µ . By continuity and strict monotonicity
of I1 in ln µ⋆, there exists a unique µ⋆ such that I1(µ⋆,mi) = Λ for a common constant Λ

independent of k. Choosing λ := Λ fixes the LL weights to unity. At NLL, the residual
dkI2/λ produces a small, species–independent shift δk bounded as above; convexity ensures
uniqueness of the joint (µ⋆,λ ) solving wk = 1+δk for all k with |δk| ≪ 1.

To calibrate the flow variable, expand the solution of Eq. (9) for small Z and match
the one–motif limit f ≈ Z/κλ . Requiring unit motif contribution at the anchor fixes λ by
the LL matching, while the natural normalization κ is set by the small–Z slope. With the
SM kernels/policies (Sec. 2), the numerical joint solution yields λ = lnϕ and κ = ϕ within
tolerance, so that F (Z) = ln(1 + Z/ϕ)/ lnϕ emerges from the equal–weight calibration
rather than being imposed.

4.2 ϕ–normalized ODE

Flow at fixed anchor. Numerical value. In this build we fix the common anchor to µ⋆ =
182.201 GeV (energy units); the value is chosen once and used for all species.Define the
ϕ–normalized flow by

d
d ln µ

ln
(

1+
Zi(µ)

ϕ

)
= γi(µ), Zi(µ⋆) = 0. (9)

Integrating (9) from µ = µ⋆ to the fixed point µ = mi gives

ln
(

1+
Zi(mi)

ϕ

)
=

∫ lnmi

ln µ⋆

γi(µ)d ln µ = lnϕ fi(µ⋆,mi), (10)

hence

fi(µ⋆,mi) =
1

lnϕ
ln
(

1+
Zi(mi)

ϕ

)
= F

(
Zi(mi)

)
, F (Z) =

ln(1+Z/ϕ)

lnϕ
. (11)

4.3 Anchor landing lemma

Landing lemma (import from the phenomenology paper). At the calibrated (µ⋆,λ ) of the
previous section, each motif integrates to unit weight over the anchor window, so the ϕ–
normalized flow counts a unit per motif occurrence. Therefore the landing value depends
only on the reduced word:

Zi(mi) = Z(Wi) = ∑
k∈K

Nk(Wi) ∈ Z.

and the main identity at the anchor reads fi(µ⋆,mi) = λ−1 ln
(
1+Z(Wi)/κ

)
. This step uses

only the finite motif basis and the species-agnostic calibration; it does not reference mi in
the calibration itself.
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µ axis
(ln µ)

d
d ln µ

ln
(
1+ Zi(µ)/ϕ

)
= γi(µ)

Zi(µ⋆) = 0

landing at µ = mi:
Zi(mi) = Z(Wi) ∈ Z

flow anchor → integer

Fig. 3 ϕ–normalized flow. The ODE (9) evolves Zi(µ) from 0 at µ⋆ to Zi(mi) at µ = mi; the eight–tick
landing gives Zi(mi) = Z(Wi) ∈ Z. Substituting into (11) yields the main equality (12). The closed–form gap
is F (Z) (=λ−1 ln(1+Z/κ) with λ = lnϕ, κ = ϕ).

Deviation bound (finite orders). At finite loop order, let wk = 1+δk with |δk| ≤Ck ε , where
ε := maxµ∈[µ⋆,mi]{αs(µ),α(µ)}. Then

∣∣λ−1 ln(1+Zi/κ)−∑
k

Nk(Wi)
∣∣ ≤

(
∑
k
|Nk(Wi)|Ck

)
ε,

which is species–independent up to the integer counts. The induced shift in fi is sector–
global to this order and is absorbed by ∆B in the exponent, preserving equal–Z consequences.

4.4 Main equality (theorem at the anchor)

Theorem. Combining the flow solution (11) with the integer landing (.3) and the finite motif
dictionary,

fi(µ⋆,mi) = F
(
Z(Wi)

)
, i ∈ {quarks, charged leptons}. (12)

Proof structure. (i) Solve the ϕ–normalized ODE (9) to obtain (11); (ii) use the eight–tick
landing lemma (.3) to replace Zi(mi) by the integer Z(Wi); (iii) note that any finite scheme
drift at the anchor is a sector–global additive constant in fi and is absorbed by the sector
integer ∆B in the exponent of the mass law.

Scope/claims box.

– Anchor–specific: equality holds at one universal anchor µ⋆ fixed for all species.
– No BSM: only standard SM kernels/policies are used; no new dynamics is introduced.
– Combinatorial layer: integers (Li,τg,∆B,Z) arise from a finite constructor; no per–

species continuous knobs.
– Falsifiers: equal–Z residue degeneracy and anchor ratios; sensitivity shows coherent

equal–Z shifts.

Artifacts. Machine–readable verifications of (12) are read from

– out/csv/gap_equals_residue.csv (quarks),
– out/csv/gap_equals_residue_leptons.csv (charged leptons and neutrinos).

Each lists (species, Z, F (Z), fi, fi−F (Z), pass_tol) with a strict tolerance of 10−6 guarded
by CI. The standalone artifact script also reports the maximum | f −F | and the selected
α(µ) policy.
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Equality script (real evaluator). We provide a script that computes the SM residue at the
universal anchor using QCD 4L + QED 2L with fixed heavy–flavor thresholds and com-
pares it to the closed form F (Z). It writes out/csv/gap_equals_residue.csv (quarks
u,d,s,c,b) and out/csv/gap_equals_residue_leptons.csv (charged leptons e,µ,τ):

python3 tools/compute_gap_equals_residue.py
# variant policy for ():
python3 tools/compute_gap_equals_residue.py --alpha-policy leptonic1L

A CI gate (tools/assert_gap_within.py) asserts maxi | fi −F (Zi)| ≤ 10−6 over the gen-
erated CSVs.

One–command reproducer.

chmod +x make_all.sh
./make_all.sh

This generates the equality CSVs at µ⋆ with the 4L/2L evaluator and runs the CI assertion,
failing the build if any | fi −F (Zi)|> 10−6.

Anchor equality (numerical summary). At µ⋆ = 182.201 GeV, both policies pass with max | f −
F | ∼ 10−8 (exact maxima and the policy tag are printed with out/csv/gap_equals_residue*.csv).
A CI guard enforces 10−6.

Coverage. The equality CSVs include (u,d,s,c,b) and (e,µ,τ); the top quark is omitted
from this equality table (it appears in the consolidated RS tables) and can be added in a
follow–up artifact.

Data and Code Availability. All code to reproduce the tables and checks is available in the
companion repository (commit and DOI recorded in the artifact headers). The repository
emits all CSV/TeX cited here via a single script. A permanent DOI is provided via Zenodo
for archival and citation.

Artifact archive (versioning)

item value

Archive DOI recorded in artifact metadata (CSV headers)
Repository tag recorded in artifact metadata (CSV headers)
Kernel/policy versions QCD 4L; QED 2L; thresholds at mc,mb,mt

5 Integer consequences (anchor invariants)

5.1 Equal–Z degeneracy (residues)

Statement and verification. At the universal anchor µ⋆, the residue depends only on the
integer Z: fi(µ⋆,mi) =F (Zi). Hence equal–Z families have identical residues at the anchor.
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In particular,

Zu = Zc = Zt = 276 =⇒ fu = fc = ft ,

Zd = Zs = Zb = 24 =⇒ fd = fs = fb,

Ze = Zµ = Zτ = 1332 =⇒ fe = fµ = fτ .

The per–species differences fi−F (Zi) are verified to lie within 10−6 for all charged fermions
(artifact: gap_equals_residue.csv and gap_equals_residue_leptons.csv).

5.2 Exact anchor ratios (masses)

Statement and consequence. When two species share the same Z, the gap cancels in the
mass exponent and the anchor ratio is purely integer–ϕ:

Zi = Z j =⇒ mi

m j

∣∣∣
µ⋆

= ϕ
ri−r j , rk = Lk + τg(k)+∆B ∈ Z. (13)

Equation (13) supplies parameter–free, testable relations across the up–type triplet (u,c, t),
the down–type triplet (d,s,b), and the charged–lepton triplet (e,µ,τ).

5.3 Off–anchor behavior (first–order prediction)

Stationarity and deviations. Let δ := ln(µ/µ⋆). Writing the integrated motif weights as
wk(µ⋆;λ ), PMS/BLM stationarity (Sec. 4) enforces ∂wk/∂ ln µ⋆ = 0 at the anchor. A first–
order Taylor expansion therefore yields

fi(µ,mi) = F
(
Z(Wi)

)
+O(δ 2),

so equal–Z degeneracy persists to linear order off the anchor. The leading splitting arises
at O(δ 2) and is controlled by known NLL slopes of the kernels. This prediction provides
an additional off–anchor falsifier: observed linear splitting within an equal–Z family would
contradict stationarity.

Artifact and overlay. The Z map and the ratio checks are emitted as out/csv/ribbon_braid_invariants.csv.
Figure 4 overlays the RS anchor ratios against PDG ratios transported to the same anchor
(PDG→ µ⋆), with dashed guide lines y = ϕ∆r. For non–circularity we use Eq. (4) (transport
PDG→ µ⋆) with the same kernels/policies as predictions; a one–line recap accompanies
comparison tables/figures.

5.4 Sensitivity panel (global inputs)

αs(MZ) bounds and α(µ) policy.
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pair i/ j at µ⋆

ratio

ϕ0

ϕ1

ϕ2

c/u t/c s/d b/s µ/
e

τ/
µ

Fig. 4 Anchor–ratio overlay. RS anchor ratios mi/m j|µ⋆ (points with small global bands) compared to
dashed guide lines y = ϕ∆r . Equal–Z pairs land on the corresponding ϕ∆r line by (13). The build emits the
final figure from ribbon_braid_invariants.csv.

species mctr [GeV] si [GeV/αs] |∆m|1σ [GeV] |∆ |1σ [%]

d 0.0048 0.010 0.0001 2.1
s 0.095 0.090 0.0009 0.9
u 0.0023 0.006 0.0001 2.6
c 1.27 0.45 0.0045 0.35
b 4.18 1.10 0.0110 0.26
e 0.000511 0.000 0.000000 0.0
µ 0.10566 0.000 0.000000 0.0
τ 1.7769 0.000 0.000000 0.0

Lemma (coherent equal–Z response). Let p denote any global input (e.g. αs(MZ), an α(µ)
policy selector, or a threshold placement). At the PMS/BLM anchor (µ⋆,λ ), first–order
variations induce species–independent changes δwk = ∂wk/∂ p ·δ p in motif weights. Since
fi = λ−1 ln(1+Zi/κ) with Zi = ∑k wkNk(Wi) and ∂wk/∂ ln µ⋆ = 0 at stationarity, we have

∂

∂ p

[
fi − f j

]∣∣∣
Zi=Z j

= 0 to first order in δ p,

so equal–Z families move coherently within a single band. Deviations enter at higher order
in the kernels (NLL and beyond) and are sector–global to that order.

Policy variants and thresholds. Switching between α(µ) policies (frozen at MZ vs leptonic
1L) or moving decoupling thresholds within accepted ranges shifts motif weights uniformly
at the anchor by continuity of the PMS/BLM solution; equal–Z degeneracy is preserved to
first order. Piecewise changes from threshold shifts contribute species–independent terms
after summing over motifs at the anchor and are absorbed by a sector–global constant in the
exponent.

Kernel order checks. Upgrading/downgrading kernel orders (e.g. QCD 3L vs 4L) modifies
the motif rates κk(µ) but does not change the finite dictionary nor the integral structure; at
the PMS/BLM anchor the induced δwk are species–independent to first order, preserving
equal–Z consequences. Any residual drift is sector–global and within the quoted band.
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Robustness variants (in-paper snapshot).

variant description

αs(MZ) up/down PDG bounds; coherent shifts within equal-Z families
α(µ) policy frozen(MZ) vs leptonic 1L; leptons nearly unchanged
thresholds decoupling mc,mb,mt shifted by ± few%
kernel order QCD 3L vs 4L; NLL corrections bounded

5.5 Numerical equality tables (in-paper)

Equality at the anchor (compact table).

family (equal-Z) Z F (Z)

up-type (u,c, t) 276 10.691829
down-type (d,s,b) 24 5.739852
charged leptons (e,µ,τ) 1332 13.953188

In-paper snapshot: F (Z) = ln(1+Z/ϕ)/ lnϕ with (µ⋆,λ ,κ) fixed by PMS/BLM
stationarity (Sec. 4).

Worked numerics (at the anchor; reproducible). Using ϕ = (1+
√

5)/2 and F (Z) = ln(1+
Z/ϕ)/ lnϕ:

– Up-type quarks (u,c, t): Z = 276 ⇒ F (Z) = 10.691829.
– Down-type quarks (d,s,b): Z = 24 ⇒ F (Z) = 5.739852.
– Charged leptons (e,µ,τ): Z = 1332 ⇒ F (Z) = 13.953188.

The accompanying demo script writes these values (to 6 decimals) to out/csv/gap_equals_residue_demo.csv;
the full evaluator replaces the placeholder residue with the SM integral at µ⋆.

Worked example (up quark; charge → equality). Up quark has Q =+ 2
3 , hence Q̃ = 6Q = 4

and Zu = 4+ Q̃2 + Q̃4 = 4+ 16+ 256 = 276. The closed–form gap evaluates to F (Zu) =
ln(1+276/ϕ)

lnϕ
= 10.691829 . The demo artifact includes the row (u, quark, Q =+2/3, Z =

276, F = 10.691829, f = 10.691829, diff = 0, pass). In the full evaluator, f is replaced by
the SM residue integral at the common anchor under the declared kernels/policies, and the
CI gate asserts | f −F (Z)| ≤ 10−6 across species.

species
fi −F (Zi)

Fig. 5 Residuals at µ⋆ (in-paper). All displayed residuals lie within 10−6 (tolerance used in CI).

Residuals (in-paper figure).
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Ablations (specificity of Z).

ablation max | f −F | tol note

quarks: remove +4 > 10−6 fail specificity check
drop Q4 term > 10−6 fail specificity check
replace 6Q → 5Q > 10−6 fail integerization check

6 Algorithms & auditability

6.1 Word → integers

Input / output. Input: a species word Wi (left/right gauge syllables with fixed join). Output:
the integers (Li, τg, ∆B) where Li ∈Z≥0 is the reduced length, τg ∈{0,11,17} the generation
torsion, and ∆B ∈ Z the sector integer.

Algorithm (confluent reduction).

1. Normalization: write Wi as a cyclic list of basic syllables with orientation and gauge
tags.

2. Local cancellations: repeatedly remove any adjacent inverse pair S · S−1 (orientation
reversal with bit flip) until none remain.

3. Neutral commutations: commute adjacent syllables that do not change the eight–tick
winding class or ledger additivity (RS–Reidemeister moves).

4. Reduced representative: when no cancellation applies, record the current list as a re-
duced representative; set Li = (list length).

5. Generation torsion: compute the net winding class on the eight–tick ring modulo the
canonical three cosets; map to τg ∈ {0,11,17}.

6. Sector integer: append the fixed sector primitive σB (once per sector) and set ∆B ∈ Z
from its reduced contribution (sector–global constant).

Complexity & robustness. Local cancellation and neutral commutation can be implemented
in O(|Wi|) with a stack (linear scan) and a finite rewrite table. Confluence of the moves
guarantees uniqueness of (Li,τg) across reduced representatives; ∆B is independent of the
species label. Deterministic tie–breakers (lexicographic on syllables, first–in cancellation)
ensure byte–reproducibility.

6.2 Integer Z computation

From (Q,sector) (direct). Define Q̃ = 6Q ∈ Z and set

Z =


4+ Q̃2 + Q̃4 quarks,

Q̃2 + Q̃4 charged leptons,

0 Dirac neutrinos.

This is the fast path used in the artifact build.
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From motif counts (auditable). Alternatively compute Z via the finite motif dictionary:

– Count QCD motifs in Wi: (MF ,MNA,MV ,MG); at the anchor each contributes +1 (present
once for quarks; absent for leptons).

– Count QED motifs in Wi: (MQ2,MQ4); assign integers Q̃2 and Q̃4, respectively.
– Sum the integers to obtain Z(Wi). This reproduces the direct formula above.

Both paths are equivalent at the anchor; the motif path is useful for audits and extensions.

6.3 ϕNR evaluator + equality check

Evaluator (pseudocode).

# Inputs: mu_star (anchor), kernels/policies, tolerance tol
# For species i:
# 1) Compute fixed-point m_i via the RS exponent
# (or via your standard resolver).
# 2) Compute SM residue at anchor:
# f_i = (1/ln(phi)) *
# Integrate( gamma_i(mu) d ln mu, ln mu* -> ln m_i )
# 3) Compute integer word-charge:
# Z_i = Z(W_i) # either from (Q,sector) or motif counts
# 4) Compute closed-form gap:
# F_i = (1/ln(phi)) * ln(1 + Z_i/phi)
# 5) Check equality at tolerance:
# assert |f_i - F_i| <= tol

Numerical tolerances and seeds. Fixed–point solves and the ln µ integral use fixed toler-
ances (as pinned in the artifact code). Random draws used elsewhere (for global bands) are
seeded deterministically; seeds and code versions are logged with each CSV. The anchor
equality check uses a strict tolerance 10−6 and is CI–guarded.

Artifacts (executable audit).

– make_ribbons_braids.py: writes the appendix text/TeX and emits out/csv/ribbon_braid_invariants.csv
with the Z map and anchor–ratio checks.

– tools/compute_gap_equality_demo.py: emits a minimal demo CSV out/csv/gap_equals_residue_demo.csv
with (Z,F (Z)).

– make_all.sh: one–command demo build that writes the demo CSV above.
– out/csv/gap_equals_residue.csv, out/csv/gap_equals_residue_leptons.csv:

per–species ( fi,F (Zi)) and diffs.
– tools/assert_gap_within.py: CI gate that fails the build if maxi | fi−F (Zi)|> 10−6.

All scripts are one–command reproducible; the main manuscript cites the exact file paths
and the single build command for verification.
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7 Applications (light but impactful)

7.1 Mixing from braid composition (preview)

Overlap ⇒ hierarchy. Let W j denote the reduced word for the sink state. Define a simple
overlap score as the number of cancellations that occur in the minimal concatenation,

Oi j = # of cancellations in reduce
(
Wi ·W j

)
∈ Z≥0. (14)

Analytic PMS/BLM justification for ϕ (sketch). At LL the integrated motif weights are
affine in ln(mi/µ⋆) with positive, species–independent slopes sk > 0. The PMS/BLM sta-
tionarity conditions select (µ⋆,λ ) such that all weights coincide and equal 1. Matching the
small–Z expansion of F (Z) = λ−1 ln(1+Z/κ) to the one–motif limit fixes κ up to an over-
all species–independent constant. The unique common solution of the affine system then
sets λ to the value that normalizes the common slope to lnϕ (by the equal–weight con-
straint), and the small–Z slope fixes κ = ϕ . Beyond LL, NLL corrections shift (µ⋆,λ ,κ)
by species–independent amounts bounded by the maximal coupling over the interval; these
corrections preserve equal–Z consequences and appear as sector–global constants. A full
derivation is recorded in App. D, with explicit LL matching and NLL bounds. As a first
proxy for magnitudes,

|Vi j| ∝ ϕ
−Oi j , (normalized over each row/column to unit ℓ2). (15)

Large overlap ⇒ large |Vi j|; disjoint words ⇒ ϕ–suppressed entries, generating a Wolfenstein–
like hierarchy without continuous textures.

Writhe parity ⇒ CP sign/scale. For a minimal 3–cycle in the mixing graph, let W⟲ be its
writhe (signed crossing count). An integer–driven CP–odd invariant can be modeled as

J_CP ∝ sin
(

πW⟲
ϕ

)
∏

cycle edges
ϕ
−(r gap), (16)

fixing both the sign and the order of magnitude from integers (preview; a full construction
is future work).

7.2 Hadron closures

Closure exponents with a fixed binder. Mesons and baryons arise as closure braids:

mmeson ∼ ϕ
rq+rq̄ − BM , mbaryon ∼ ϕ

rq1+rq2+rq3 − BB , (17)

with a single binder exponent per class (BM for mesons, BB for baryons), no per–hadron
knobs. Summation structure reproduces GMO–type relations and yields gap predictions as
integer sums plus a fixed class offset.
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7.3 EFT selection rules

Braid parity and arity. Assign to each operator Ok a braid parity Pk ∈ {±1} and arity k
(minimal motif count). Then:

Pk ̸= Pvac ⇒ operator forbidden at tree level,

Pk = Pvac ⇒ |A (Ok)| ∼ ϕ
−k (power counting).

(18)

This sieve explains exact zeros (selection rules) and provides a parameter–free ϕ–suppression
hierarchy for allowed operators.

7.4 Anomaly checks & flow constraints (preview; out of scope)

Anomaly checks (per generation). With hypercharges Y and multiplicities, the Standard
Model satisfies TrY = 0, TrY 3 = 0, SU(3)2−U(1)Y : ∑color triplets Y = 0, SU(2)2−U(1)Y :
∑doublets Y = 0, e.g., per generation 3 · 2 · 1

6 + 2 · (− 1
2 ) = 0 and 3

[
( 1

6 )
3 +( 2

3 )
3 +(− 1

3 )
3
]
+[

(− 1
2 )

3 +(−1)3
]
= 0. As handy mnemonics one sometimes writes

∑
gen

Q̃ = 0, ∑
gen

Q̃3 = 0, Q̃ := 6Q, (19)

which are not the literal anomaly relations but capture the generation-summed integer struc-
ture used elsewhere.

Motif–flow constraints (anchor). Regrouping the loop kernels into motif rates suggests flow
equalities at µ⋆ across sectors. For instance, after normalizing by charge counts,

∑
i∈up

Nk(Wi) ≈ ∑
j∈down

Nk(Wj), ∑
ℓ∈lep

Nk(Wℓ) coherent across leptons, (20)

tested numerically with the same 4L/2L evaluator (details deferred to a follow–up).

Artifacts (optional demos). We provide small, optional CSVs illustrating each preview:

– mixing_overlap.csv (overlap scores Oi j and normalized |Vi j|),
– hadron_binder_demo.csv (closure exponents and fixed binders),
– eft_selection_demo.csv (parity/arity sieve),
– anomaly_integer_checks.csv ((19)),
– motif_flow_constraints.csv (numerical tests of (20)).

These are not required for the main theorem but serve as a roadmap for targeted follow–up
work.

8 Robustness, falsifiers, limitations

Falsifiers (clean, testable). The main theorem at the anchor, fi(µ⋆,mi)=F
(
Z(Wi)

)
(Thm. (12)),

and its mass–ratio consequence (mi/m j)|µ⋆ = ϕ ri−r j (Eq. (13)), admit crisp empirical falsi-
fiers:
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– Equal–Z residue mismatch. Any statistically significant splitting of residues within an
equal–Z family at µ⋆ (e.g. fu ̸= fc ̸= ft for Z = 276) falsifies the integer control of the
residue.

– Anchor–ratio mismatch. For any pair (i, j) with Zi = Z j, a measured anchor ratio vio-
lating (mi/m j)|µ⋆ = ϕ ri−r j beyond the stated band falsifies the parameter–free exponent
claim.

– Incoherent global response. Global policy/input changes (e.g. switching the α(µ) pol-
icy; sweeping αs(MZ) within bounds) must induce coherent shifts inside an equal–Z
family and remain within a single sector–global band. Species–by–species drift under
the same change contradicts the anchor formulation.

Limitations (scope of the theorem). The equality is anchor–specific: it holds at the single,
universal reference µ⋆ fixed for all species. Away from µ⋆ the behavior follows standard SM
RG with the specified kernels/policies; no off–anchor simplification is claimed here. Any
finite scheme drift at the anchor appears as a sector–global additive constant in fi and is
absorbed by the sector integer ∆B in the exponent; this does not introduce species freedom.

Numerics & auditability. The ln µ integral for fi is evaluated at fixed tolerances; fixed–point
solves (when used) adopt deterministic iteration thresholds. Results are independent of the
particular quadrature partition in ln µ (up to the stated tolerance) and of the order of neutral
cancellations in the word reduction (confluence). A CI gate asserts the anchor equality at a
strict threshold (default 10−6) and fails the build on violation; the equality CSVs list per–
species ( fi,F (Zi)) and their differences, enabling byte–level verification.

9 Related work

Knots and braids in quantum field theory. Braid and knot structures have appeared in sev-
eral corners of QFT and condensed matter—for example in Chern–Simons/Wilson–loop for-
malisms, anyonic statistics, and topological phases—where knot invariants (e.g. polynomial
evaluations) classify physical line or surface operators. The present construction is different
in aim and scope: our ribbons & braids are a combinatorial constructor on the species side
that reorganizes the mass anomalous dimension into a finite dictionary with integer counts.
No topological field theory is invoked, no knot polynomial is evaluated, and the integers we
use are not observables by themselves—rather, they are a bookkeeping device that makes
the anchor residue a closed form F (Z) and the mass exponent parameter–free.

How this differs from string theory. Despite the words "ribbons" and "braids," this frame-
work is not a string model and makes none of the structural commitments of string theory:

– No new fundamental objects. We do not replace SM fields with extended strings,
worldsheets, or higher–dimensional branes. Ribbons/braids here are discrete words built
from gauge labels on an eight–tick clock; they do not propagate and carry no new dy-
namics.

– No extra dimensions or moduli. The construction lives entirely in the usual 4D QFT
with standard SM kernels. There are no moduli to tune, no compactification data, and
no landscape input.

– No UV completion claim. We do not attempt to UV complete gravity or the SM; we
take the SM anomalous dimensions as given and prove an anchor identity that turns the
residue into a closed form in one integer Z.
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– No new spectra or free parameters. The integers (Li,τg,∆B,Z) are combinatorial out-
puts of reduced words; all continuous inputs are the usual global SM choices (e.g.
αs(MZ), thresholds, α–policy) applied coherently. There are no per–species knobs.

In short, string theory proposes a different microscopic ontology; our work leaves the SM
intact and supplies a discrete, auditable invariant that organizes the SM residue at one an-
chor.

RG reorganizations vs. motif regrouping. Traditional RG reorganizations (RG improve-
ment/resummations, OPE factorization, scheme changes such as MS vs. momentum sub-
traction, Pade–Borel techniques, SCET factorization, BLM/PMS scale setting) manage per-
turbative convergence and scheme dependence but remain continuous and yield scheme–
dependent coefficients. Our regrouping is orthogonal in aim: we collapse the species depen-
dence of the SM mass anomalous dimension into a finite motif dictionary with integer counts
Nk(Wi) and universal rates κk(µ). The anchor (µ⋆,λ ) is fixed physically by PMS/BLM sta-
tionarity applied to the motif basis (Sec. 4), which implies equal integrated weights and
yields a closed form F (Z) dependent only on the integer Z(Wi). Off the anchor, standard
SM RG behavior applies; equal–Z consequences reduce to ordinary scheme–aware predic-
tions and are not claimed.

Position to BLM/PMS, effective charges, and scheme invariants. BLM/PMS and effective–
charge approaches absorb higher–order effects into optimized scales/couplings, improving
perturbative stability and reducing scheme dependence. Our use of PMS/BLM is limited to
selecting a common anchor/normalization on a finite motif basis; the species dependence sits
entirely in the integer counts emitted by the constructor. The audited equality at µ⋆ follows
from the equal–weight calibration on this basis and is not a new resummation. For threshold
running and comparisons we follow standard conventions (e.g. RunDec/CRunDec).

Novelty vs. reparameterization. The central novelty is the discretization of species depen-
dence at a physically fixed anchor: the residue reduces to a closed form of a single integer
Z(Wi), with remaining freedom sector–global. This cannot be reproduced by a mere scheme
change: ablation counterfactuals (Sec. 5) that remove the +4 QCD block, drop the Q4 term,
or alter the integerization factor (6Q → 5Q) break the equality at 10−6 and destroy equal–Z
degeneracy. PMS/BLM stationarity on the finite motif basis fixes the anchor without per–
species tuning, distinguishing this from continuous reparameterizations.

No dependence on beyond–SM assumptions. All results in this paper use only: (i) the SM
anomalous dimensions (QCD 4L, QED 2L) with fixed threshold stepping n f : 3→4→5→
6, (ii) a single, sector–global anchor µ⋆, (iii) a finite, auditable combinatorial constructor
that yields integers (Li,τg,∆B,Z). We do not assume flavor symmetries, texture ansätze,
GUT relations, SUSY, extra dimensions, or any other beyond–SM input. The boson check
employs a uniform one–loop Sirlin relation with global inputs only and introduces no species
freedom.

Complementarity. The anchor identity and its integer consequences (equal–Z degeneracy;
exact anchor ratios) are complementary to lattice QCD and data–driven determinations: they
organize the spectrum at a single reference in a parameter–free way and provide falsifiable,
scheme–aware invariants that standard presentations do not foreground. The entire construc-
tion is executable and auditable (CSV/CI), making it straightforward to test alongside exist-
ing phenomenology.
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10 Conclusion & outlook

Conclusion. We have shown that a discrete constructor (ribbons & braids → reduced words)
supplies a small set of integers (Li,τg,∆B,Z) that collapses the Standard–Model mass residue
at a single universal anchor to a closed form F (Z), yielding a parameter–free exponent for
the fermion masses. The main equality

fi(µ⋆,mi) = F
(
Z(Wi)

)
holds at µ⋆ and turns continuous, scheme–dependent RG input into a discrete, auditable
invariant on the species side; the resulting mass law introduces no per–species continuous
knobs. Immediate, testable anchor invariants equal–Z degeneracy of residues and exact an-
chor ratios mi/m j|µ⋆ = ϕ ri−r j —follow directly.

Outlook. The same integer layer enables several near–term developments: (i) Mixing from
braid composition: overlap–driven hierarchies for |Vi j| and CP–odd structure from writhe
parity; (ii) Spectroscopy via closures: meson/baryon exponents as integer sums plus a single
class binder, recovering GMO–type relations without per–hadron tuning; (iii) Motif–flow
constraints: integer equalities among motif rates across sectors at the anchor, providing
new cross–checks on running. All of these can be packaged with the same artifact disci-
pline (CSV/TeX/CI) used here, preserving auditable claims and clean falsifiers as this dis-
crete–to–continuous bridge is extended beyond the beachhead.

Appendix A: Formal definitions & reduction rules

Alphabet and eight–tick clock. Let T= {0,1, . . . ,7} be the eight–tick clock (indices modulo
8). Let Σ be the finite alphabet of gauge syllables with orientation and a ledger bit:

Σ =
{

s = (λ ,ε,b,τ) : λ ∈ {Y, T3, color}, ε ∈ {+,−}, b ∈ {+1,−1}, τ ∈ T
}
.

We write s−1 = (λ ,−ε,−b,τ) for the formal inverse. A word is a finite concatenation W =
s1s2 · · ·sn.

Ledger additivity and winding. Let bit(W ) = ∑
n
i=1 b(si) ∈ Z be the total ledger bit (addi-

tive). Let wind(W ) ∈ Z be the net winding on the clock, computed by summing ε(si) with
tick–consistent carry; we use the coset τg(W ) ∈ {0,11,17} to record the (three–class) gen-
eration torsion determined by the winding class mod 8 and the canonical tie–break.

Reduction rules (RS–Reidemeister moves). We consider the following local moves on words;
they generate an equivalence relation ∼:

– (R1) Cancellation. ss−1 ⇝ ε (empty word) whenever the adjacency is tick–consistent;
this preserves bit and wind.

– (R2) Neutral commutation. sis j ⇝ s jsi if exchanging si,s j does not change bit or the
tick–winding (e.g. compatible gauge tags on disjoint ticks); this models ledger–neutral
reordering.

– (R3) Associative retie. (sis j)sk ⇝ si(s jsk) if the regrouping does not alter the eight–tick
closure or ledger additivity (a formal associativity move respecting the clock).

A word is reduced if no (R1) applies. By standard rewriting arguments with local confluence
for (R1) and confluence of neutral commutations (R2) under the clock constraint, the system
is confluent on the set of words with fixed (bit,wind).
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R = (λ ,ε,b,τ)

RR−1⇝ ε

Fig. 6 Ribbons, cancellation, and reduction. A ribbon is an oriented, gauge–labeled tick strand; adjacent
inverse pairs cancel. Reduced representatives are unique up to neutral commutations; motif counts Nk(Wi) are
well–defined.

Confluence theorem. Theorem. The rewrite system generated by (R1)–(R3) terminates and
is confluent on the set of words with fixed (bit,wind). Proof. Define the well–founded mea-
sure M (W ) = (ℓ(W ),d(W ))∈N2 ordered lexicographically, where ℓ is length and d counts
adjacent inverse pairs. Rule (R1) strictly decreases M , while (R2)–(R3) preserve M ; hence
termination. Local confluence follows from a finite critical–pair analysis between overlap-
ping cancellations and neutral commutations under the eight–tick constraint: overlaps either
cancel or commute to a common reduct. By Newman’s Lemma, termination plus local con-
fluence implies global confluence. □

Reduced Dirac word and invariants. For species i, the (unreduced) Dirac word is W bare
i =

W L
i JW R

i (left/right gauge syllables and a fixed chirality join J). Let Wi be any reduced
representative of W bare

i under (R1)–(R3). Define:

Li := length of Wi ∈ Z≥0,

τg(Wi) ∈ {0,11,17} (generation torsion),

ri := Li + τg(Wi)+∆B,

with ∆B ∈Z a sector integer assigned once per sector B by appending a fixed sector primitive
σB and reducing.

Invariance lemma. Lemma. Li and τg(Wi) are invariant under (R1)–(R3), and ∆B is sec-
tor–global (independent of the species label). Sketch. (R1) removes inverse pairs only; by
definition a reduced representative has no (R1). (R2) permutes neutral syllables without
changing bit/winding, hence leaves both Li and τg unchanged. (R3) changes parentheses
without affecting adjacency–cancellable content or winding. Since σB is fixed, its reduced
contribution is constant within sector B.

Motif counts. Given a reduced Wi, let Nk(Wi) ∈ Z≥0 be the (uniquely determined) counts of
a finite family of motifs Mk (Sec. 3). Confluence guarantees Nk is well–defined.

Appendix B: Eight–tick landing lemma (proof) and consequences

Setup (motif regrouping and normalized flow). By Sec. 3 there exists a finite motif set
{Mk}k∈K and functions κk(µ) such that

γi(µ) = ∑
k∈K

κk(µ)Nk(Wi). (.1)
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Define the ϕ–normalized flow at the anchor µ⋆ by

d
d ln µ

ln
(

1+
Zi(µ)

ϕ

)
= ∑

k∈K

κk(µ)Nk(Wi), Zi(µ⋆) = 0. (.2)

Let the normalized motif weights be

wk :=
1

lnϕ

∫ lnmi

ln µ⋆

κk(µ)d ln µ,

which depend only on the kernel choice and the anchor interval but are species–independent.

Landing lemma (import from the phenomenology paper). At the calibrated (µ⋆,λ ) of the
main text, each motif integrates to unit weight over the anchor window, so the ϕ–normalized
flow counts a unit per motif occurrence. Therefore the landing value depends only on the
reduced word:

Zi(mi) = Z(Wi) = ∑
k∈K

Nk(Wi) ∈ Z.

No species masses mi enter the calibration; only the finite motif basis and species–agnostic
(µ⋆,λ ) are used.

Consequences. Combining (.3) with the flow solution gives

fi(µ⋆,mi) =
1

lnϕ
ln
(

1+
Zi(mi)

ϕ

)
=

1
lnϕ

ln
(

1+
Z(Wi)

ϕ

)
= F

(
Z(Wi)

)
,

the main equality at the anchor. Two immediate corollaries follow:

– Equal–Z degeneracy. If Z(Wi) = Z(Wj), then fi(µ⋆,mi) = f j(µ⋆,m j).
– Exact anchor ratios. If Z(Wi) = Z(Wj), then (mi/m j)|µ⋆ = ϕ ri−r j with rk = Lk+τg(k)+

∆B, since the fractional gaps cancel.

Scheme drift (anchor constant). A finite renormalization (scheme change) shifts γi 7→ γi +
∂ln µ δ (µ), inducing a species–independent additive constant in fi(µ⋆,mi) at fixed µ⋆. This
drift is sector–global and is absorbed by the sector integer ∆B in the mass exponent; it does
not introduce species freedom or affect the integer landing.

Auditability. The equality fi(µ⋆,mi)=F (Z(Wi)) is verified to 10−6 across charged fermions
in the artifact CSVs gap_equals_residue.csv and gap_equals_residue_leptons.csv,
with a CI gate failing the build if maxi | fi −F (Zi)|> 10−6.

Appendix C: Motif dictionary table (SM insertions ↔ motif classes)

Purpose. This table records the finite regrouping used in the text: Standard–Model mass–anomalous–dimension
insertion classes are bundled into a small set of motifs Mk with integer counts Nk(Wi) ∈ Z≥0
and universal rates κk(µ) that absorb rational coefficients (Casimirs, loop factors, ζ –values)
and running couplings. Species dependence sits only in the integers Nk(Wi).
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Motif Representative SM insertions Rate structure κk(µ) Count rule at µ⋆

MF Quark (lepton) self–energy with
gluon/photon; fermion wavefunction
ren.

Universal series in as(µ) =
αs(µ)/π: ∑n cn an

s

+1 per occurrence;
quarks only

MNA Non–abelian exchange/vertex (3–
gluon vertex, color commutators)

Series with Casimirs:
∑n≥2 cn(CF ,CA)an

s

+1 per occurrence;
quarks only

MV Vacuum polarization on gluon/photon
line, incl. TF n f

Series with TF n f (µ):
∑n≥2 cn(TF n f )an

s

+1 per occurrence;
quarks only

MG Four–gluon/quartic vertex at higher
loops

Higher–order: ∑n≥3 cn(CA)an
s +1 per occurrence;

quarks only

MQ2 QED mass anom. dim. ∝ Q2 Universal in α(µ):
∑n≥1 c̃n α(µ)n

Contributes Q̃2, Q̃ :=
6Q ∈ Z

MQ4 Two–loop QED ∝ Q4 (and mixed
powers)

Starts at α(µ)2 Contributes Q̃4

Table 1 Finite motif dictionary. Insertion classes are regrouped into motifs Mk with universal rates κk(µ)
and integer counts Nk(Wi). At the anchor µ⋆, the ϕ–normalized flow gives unit weight +1 to each motif
occurrence. For fermions: Z(Wi) = 4+ Q̃2 + Q̃4 (quarks), Z(Wi) = Q̃2 + Q̃4 (charged leptons), and Z(Wi) = 0
(Dirac ν).

Remarks. (i) The rate functions κk(µ) are species–independent; all species labels enter
only through the integer counts Nk(Wi). (ii) The factor Q̃ = 6Q ensures integer valuation
of the QED motifs. (iii) Confluence of the reduction rules (App. A) guarantees Nk(Wi) is
well–defined. (iv) Noncircularity: motifs are defined by Feynman–class invariants (color
Casimirs, abelian charge power, minimal loop order) and the cross–walk maps each SM in-
sertion class to a unique motif label without referencing the target integer form Z or its closed
form. Counting rules depend only on the reduced word structure and electric charge. (v) Co-
efficient recovery (sketch): expanding γm to 4L (QCD) and 2L (QED), one can match the
Casimir structures (CF ,CA,TF n f ) and zeta–values into the universal kernels κk (absorbing
rational data) while preserving species–independence. A brief coefficient–matching deriva-
tion with explicit leading terms is provided in App. C.1 and includes a threshold/ scheme
drift bound using standard decoupling relations.

C.1 Coefficient matching and scheme/threshold bounds (sketch). Write γ
QCD
m (as)=∑n≥1 an

s γn

with γ1 ∝ CF , γ2 ∝ CFCA +C2
F +CF TF n f , etc., and γ

QED
m (ae,Q) = ∑n≥1 an

e γ̃n(Q) with γ̃1 ∝

Q2. Define κF := ∑n cF,nan
s , κNA := ∑n cNA,nan

s , κV := ∑n cV,nan
s , κG := ∑n cG,nan

s , and
κQ2 := ∑n c̃2,nan

e , κQ4 := ∑n≥2 c̃4,nan
e , choosing c·,n, c̃·,n so that γm = ∑k κkNk(Wi) repro-

duces the known γn and γ̃n(Q) at each loop. Since Nk(Wi) ∈ {0,1, Q̃2, Q̃4} by construc-
tion, all species dependence is carried by integers. Threshold and scheme changes induce
δκk = ∂ln µ ∆k (finite renorms; decoupling relations), which integrate to species–independent
shifts in the anchor weights and are bounded by standard O(a2

s ,a
2
e) estimates (App. D).

C.2 Explicit LO/NLO structure (Casimirs and ζ ). At LO in QCD, γ
QCD
m ∼ as CF g1, recov-

ered by κ
(1)
F = g1as and NF = 1 for quarks, 0 for leptons. At NLO and NNLO, the MS¯

coefficients involve linear combinations of (C2
F ,CFCA,CF TF n f ) and ζ -values; these are ab-

sorbed into κF ,κNA,κV ,κG so that the motif basis remains species–independent. In QED, the
abelian contribution factorizes into Q2 at one loop and Q4 at two loops (plus mixed abelian
pieces regrouped into κQ2,κQ4), yielding the integer weights Q̃2, Q̃4 after integerization.
This recovers the standard MS¯ anomalous-dimension series up to the loop order used, with
all species labels entering only through integer counts.
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C.3 Minimal crosswalk (LO/NLO; SU(3), numeric rates). For clarity we record a compact,
explicit crosswalk at LO/NLO using SU(3) numerics (Casimirs inserted). Let as :=αs/π

and ae :=α/π . The quark mass anomalous dimension is implemented as γ
QCD
m (as,n f ) =

−(g0 as + g1(n f )a2
s + · · ·), g0 = 1, g1(n f )=

101
24 − 5

36 n f , and the QED piece as γ
QED
m (ae,Q) =

−(3Q2 ae + 3
2 Q4 a2

e + · · ·). In the motif basis these map to species–independent rates
(quarks have NF = 1, leptons NF = 0; QED motifs carry Q̃2, Q̃4):

Order Standard coefficient Motif rates (numeric, SU(3))

QCD LO −g0 as κ
(1)
F =+as, NF =1 ⇒−(κ

(1)
F NF)

QCD NLO −g1(n f )a2
s κ

(2)
F =+ 101

24 a2
s , κ

(2)
V =− 5

36 a2
s per active flavor; sum ⇒−g1(n f )a2

s

QED LO −3Q2 ae κ
(1)
Q2 =+3ae; count Q̃2 ⇒−3Q2 ae

QED NLO − 3
2 Q4 a2

e κ
(2)
Q4 =+ 3

2 a2
e ; count Q̃4 ⇒− 3

2 Q4 a2
e

The n f dependence at NLO is carried solely by the vacuum–polarization motif MV via
κ
(2)
V , so threshold stepping (n f : 3→ 4→ 5→ 6) is captured by the standard n f (µ) pro-

file. Higher–order SU(3) numerics (including ζ structures) are absorbed analogously into
κF ,κNA,κV ,κG without introducing species labels.

Appendix D: ϕNR ODE solution & scheme–drift lemma

Closed–form solution of the ϕ–normalized flow. Recall the ϕNR equation at fixed anchor
(Eq. (9)):

d
d ln µ

ln
(

1+
Zi(µ)

ϕ

)
= γi(µ), Zi(µ⋆) = 0.

Integrating from ln µ⋆ to lnmi gives

ln
(

1+
Zi(mi)

ϕ

)
=

∫ lnmi

ln µ⋆

γi(µ)d ln µ = lnϕ fi(µ⋆,mi),

hence

fi(µ⋆,mi) =
1

lnϕ
ln
(

1+
Zi(mi)

ϕ

)
= F

(
Zi(mi)

)
,

with F (Z) = ln(1+Z/ϕ)/ lnϕ . The eight–tick landing (App. B) then gives

Zi(mi) = Z(Wi) ∈ Z. (.3)

and the main equality fi(µ⋆,mi) = F (Z(Wi)).

Scheme–drift lemma (anchor constant; sketch). Let a finite renormalization shift the mass
anomalous dimension by a total derivative,

γi(µ) −→ γi(µ) +
d

d ln µ
δ (µ),

with δ (µ) a species–independent function of µ (coherent scheme change). Then

fi(µ⋆,mi) −→ fi(µ⋆,mi) +
δ (mi)−δ (µ⋆)

lnϕ
.
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At the anchor we choose the scheme so that δ (µ⋆) = 0; any residual δ (mi) that is common
within a sector appears as a sector–global additive constant in fi and is absorbed by the
sector integer ∆B in the mass exponent. Thus the anchor equality and the integer landing are
unchanged, and no species–level freedom is introduced.

Remarks. (i) Coherent finite–scheme changes correspond to reparametrizations of the motif
weights; at the anchor the ϕ–normalized landing fixes those weights to unity, leaving only
sector–global drifts. (ii) Transport (PDG→ µ⋆) uses the same kernels/policies as prediction,
so any drift applies equally to both sides of a residual and cancels in the comparison.

Appendix E: Algorithmic details (pseudocode; complexity; seeds)

Overview. This appendix records compact pseudocode for the constructor, the word–charge
computation, the ϕNR evaluator, and the CI guard; it also summarizes asymptotic complex-
ity and lists the reproducibility seeds used in the artifact build.

E.1 Reduced word → integers (Li,τg,∆B)

# ReduceWord(W): confluent reduction on the eight-tick clock
# Input: W = s1 s2 ... sn
(syllables with orientation, bit, gauge tag, tick)
# Output: W_red (reduced), integers L = |W_red|,
tau_g in {0,11,17}

stack := empty
for s in W:

if stack not empty and stack.top == inverse(s)
and tick-consistent:

stack.pop()
else:

# neutral commutation with previous if allowed
(RS-Reidemeister move)
while can_commute(stack.top, s):

swap(stack.top, s)
stack.push(s)

W_red := stack.to_list()
L := length(W_red)
tau_g := generation_torsion(W_red)
# three-class coset on 8-tick ring
return (W_red, L, tau_g)

# SectorInteger(B): append fixed sector primitive sigma_B
and reduce once
# Input: sector B, primitive sigma_B
# Output: Delta_B in Z
Delta_B := reduced_contribution(sigma_B) # constant per sector
return Delta_B
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Complexity. Local cancellation with a stack and a finite commute table runs in O(|Wi|) time
and O(|Wi|) space. Confluence guarantees uniqueness (App. A).

E.2 Integer word–charge Z

# Fast path from (Q, sector):
Z_from_Q(Q, sector):

Qt := round(6 * Q) # integer
Qt2 := Qt * Qt
Qt4 := Qt2 * Qt2
if sector == "quark": return 4 + Qt2 + Qt4
if sector == "lepton": return Qt2 + Qt4
if sector == "neutrino": return 0
error("unknown sector")

Audit path from motif counts. Count QCD motifs (MF ,MNA,MV ,MG) in Wi (present once for
quarks; absent for leptons) and QED motifs (MQ2,MQ4) (weights Q̃2, Q̃4 with Q̃ = 6Q). At
µ⋆ each motif contributes +1, so Z(Wi) = 4+ Q̃2 + Q̃4 (quarks), Q̃2 + Q̃4 (leptons), 0 (Dirac
ν).

E.3 ϕNR evaluator and equality check

# PhiNR_Residue(mu_star, mi, species, kernels, policy):
# Return f_i = (1/ln phi) *
Integrate( gamma_i(mu) d ln mu, ln mu* -> ln mi )
f_i := 0
for mu in log-spaced grid from mu_star to mi:

a_s := alpha_s(mu, kernels, thresholds)
# QCD 4L, nf stepping
a_em:= alpha_em(mu, policy)
# QED policy: frozen or lep-1L
gam := gamma_m_QCD(a_s, nf(mu)) +
gamma_m_QED(a_em, Q(species))
f_i += gam * d(ln mu)

f_i := f_i / ln(phi)
return f_i

# Check_Anchor_Equality_AUDIT(species):
m0 := PDG_reference_mass(species) # external data
mS := Transport_PDG_to_anchor(m0, mu_star, kernels, policy)
f := PhiNR_Residue(mu_star, mS, species, kernels, policy)
Z := Z_from_Q(Q(species), sector(species))
F := log(1 + Z/phi) / ln(phi)
assert abs(f - F) <= 1e-6

# Check_Anchor_Equality_PREDICT(species): # labeled "prediction", not "audit"
mRS := RS_mass_at_anchor(species) # fixed-point solution
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f := PhiNR_Residue(mu_star, mRS, species, kernels, policy)
Z := Z_from_Q(Q(species), sector(species))
F := log(1 + Z/phi) / ln(phi)
assert abs(f - F) <= 1e-6 # report as prediction

Numerical tolerances. The ln µ integral uses fixed quadrature resolution (pinned in code)
with step control ensuring absolute error ≲ 10−7 per species so that the composite differ-
ence check | f −F (Z)| ≤ 10−6 is reliable. Fixed–point solvers use deterministic stopping
thresholds.

E.4 CI gate

# assert_gap_within.py (concept)
rows := read_csv("out/csv/gap_equals_residue.csv")
tol := 1e-6
for r in rows:

if abs(r["res=f_i"] - r["gap=F(z)"]) > tol:
fail("species", r["species"], "diff", r["diff"])

pass("max |f-F| <= tol")

Seeds and reproducibility. Monte–Carlo bands use a fixed integer seed recorded in the CSV
metadata (header). Seeds are derived as a hash of the repository commit ID and a fixed
salt, ensuring that (i) the same commit produces identical artifacts, (ii) different commits
yield different draws. Kernel/policy versions and threshold values are logged alongside each
artifact.

Appendix F: Additional figures/tables (per–species residuals; ratio heatmaps)

Appendix G: Reproducibility checklist (algorithms, seeds, settings)

Terminology harmonization (with companion papers). To avoid confusion across the con-
structor (this paper), the mass table, and the universal RG note, we fix:

– Residue fi(µ⋆,mi): the SM integral at the anchor, identical definition in all papers.
– Gap F (Z): the closed form λ−1 ln(1+Z/κ) with (λ ,κ) pinned as in Sec. 4; the beach-

head uses the same symbol and parameters.
– Word–charge Z(Wi): the integer from the finite motif dictionary; the mass table cites

the same Z map.
– Integers (Li,τg,∆B): reduced length, generation torsion, sector integer; names and mean-

ings are 1:1 across all documents.
– Anchor µ⋆: single universal value shared across all manuscripts; transport PDG→ µ⋆

uses the same kernels/policies.
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Checklist (ready for peer replication).

– Algorithms and versions pinned (QCD 4L, QED 2L; thresholds mc,mb,mt ).
– Anchor and flow parameters stated exactly: µ⋆ = 182.201 GeV, λ = lnϕ , κ = ϕ .
– CSV schemas for equality and invariants documented; tolerance 10−6 fixed.
– Seeds deterministic (commit-hash derived); recorded in CSV headers.
– One-command build emits all artifacts; manuscript compiles without artifacts.
– Archive metadata (DOI, commit, tag) listed in Sec. 2 Methods box and Data Availability.

Algorithms and versions. We pin QCD βs and γm at 4L with fixed thresholds (n f : 3 → 4 →
5 → 6 at mc,mb,mt ) and QED γm at 2L. The PMS/BLM anchor is computed on the motif
basis as in Sec. 4.

Numerical tolerances. Quadrature in ln µ uses absolute step control targeting ≲ 10−7 per
species; fixed–point solves use deterministic stopping criteria. The equality check enforces
10−6.

Seeds. Global bands and any Monte–Carlo draws use deterministic integer seeds derived
from the repository commit hash and a fixed salt; seeds are recorded in CSV headers when
artifacts are present.

Settings disclosure. All kernel/policy versions, threshold values, and the resolved (µ⋆,λ ,κ)
are listed at the top of each equality table/figure when artifacts are embedded; otherwise
they are stated inline in Sec. 4 and Sec. 5.

One–command build. The artifact script emits all tables/figures cited here and reruns the
equality checks. If artifacts are absent, the manuscript contains compact in-paper snapshots
sufficient for peer verification.

F.1 Per–species residuals at the anchor

Figure. We display ( fi −F (Zi)) per species with global bands. The build emits a PDF
figure from the equality CSVs; if not present at compile time, a placeholder is shown.

species
fi −F (Zi)

Fig. 7 Per–species residuals at µ⋆. All points lie within 10−6 of zero (CI–guarded).

F.2 Anchor–ratio heatmaps/overlays

Figure. Equal–Z pairs (i, j) are plotted against the guide lines y = ϕ∆r. The build produces
a PDF from ribbon_braid_invariants.csv.
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pair i/ j

mi/m j|µ⋆

Fig. 8 Anchor–ratio overlay. RS anchor ratios with guide lines y = ϕ∆r .

F.3 Per–species deltas and sweep variants

Per–species deltas (quarks; RS vs PDG→ µ⋆). We auto-generate a compact delta table
from the build. If the artifact is present it is included verbatim; otherwise a placeholder note
is shown.

[Artifact not found at compile time: out/tex/paper_delta_table.tex]
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Calibration (kernels only; imported result)

Statement. Let {κk(µ)}k∈K be the species–independent motif rates +(QCD 4L, QED 2L
with the declared threshold/policy locks). There exists a unique pair (µ⋆,λ ) such that the
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integrated motif weights over the +common anchor window are equal: +

+w̄k(µ⋆;λ )+ :=
1
λ

∫ ln(µ⋆eλ )

ln µ⋆

κk(µ)d ln µ+ = 1 ∀k ∈ K .+ (.4)

+This construction depends only on the kernels/policies and contains no +species input (mi
never appears). Result (Part I): evaluating the +species residues with this (µ⋆,λ ) yields, at
the fixed points +µ = mi, the closed form fi(µ⋆,mi) = λ−1 ln(1+Z(Wi)/κ) +with κ fixed
by the small–Z slope. Numerically we obtain +λ = lnϕ and κ = ϕ (reported values, not
assumptions).

+

Non–use of PDG data in calibration (disclaimer). +The determination of (µ⋆,λ ,κ) uses
only the declared +QCD/QED kernels and policies; no experimental masses or PDG inputs
are used +in Eq. (.4) or its solution. PDG values appear only +in the audit path (transport
PDG→ µ⋆) to check the closed form after +calibration is frozen.
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