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Abstract
We develop a methods—first theory that identifies fitness with negative description length.
For an environment £ (a distribution over tasks/stimuli) and an organism g (a compressor—
controller with parameters 6,), we define the evolutionary code length

L, = L(model,) + L(errors | £),

where L(modely) is the prefix—free code length to specify the organism’s internal model at
the precision supported by data, and L(errors | £) is the negative log—likelihood (in bits)
of deviations under a preregistered noise model. We show that if replication rates obey
r(g) o< exp(—BLg) for resource factor § > 0, then the replicator dynamics descend the
mean code length: dE[L,]/dt < 0, and the stationary distribution is 7*(g) o< exp(—BLy).
Thus, selection is minimum description length (MDL) at population scale.

Variation is not isotropic. We formalize an anisotropic proposal law g(A) x exp(—AJ)
for phenotype moves, where J is a symmetric, convex ledger cost that penalizes overhead
and imbalance; this yields structured “randomness” concentrated along low—cost directions
and predicts repeatable adaptive pathways. We also prove a modularity lower bound: when
tasks in £ share mutual information M, reusing a module of size b saves at least M — b
bits, so selection favors modular architectures whenever reuse beats overhead.

The empirical program is operational and auditable: (i) define a reference machine
and measure Ly as L(model) + L(parameters to supported precision) + L(errors | noise);
(ii) test the MDLfitness link, the anisotropy law, and the modularity bound on archival
datasets spanning gene regulation, metabolism, and behavior; (iii) preregister noise models,
hyperparameters, and pooling rules; (iv) release a one—command reproduction bundle.
Falsifiers are explicit: e.g., lineages with persistently larger L, outcompeting smaller L,
under fixed resource budgets; isotropic variation contradicting the exp(—AJ) law; and
absence of correlation between reuse and environmental mutual information. This work
compresses selection, variation, and modularity into a single quantitative currency—bits—
and supplies a reproducible protocol to test it with no new experiments.

Keywords: evolution; fitness; minimum description length; replicator dynamics; modularity;
anisotropy; rate—distortion; model selection.

1 Introduction

Puzzle.. Biology persistently yields modular, hierarchical designs (motifs, pathways, organs)
and transferable skills (behaviors, strategies that generalize across tasks). Empirically, “varia-
tion” is not isotropic: phenotypic moves recur along a few privileged directions, while many
conceivable changes are rare or effectively inaccessible.
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Answer.. Compression under resource constraints wins. Let £ denote an environment (a
distribution over tasks/stimuli) and let an organism g implement a compressor—controller C,
with parameters 6,. Define the evolutionary code length

L, = L(modely) + L(errors | &), (1)

where L(modely) is the prefix—free code length for Cy at the data—supported precision and
L(errors | £) is the codelength of residuals under a preregistered noise model. Selection favors
short codes that work: organisms that compress & most effectively, given energetic/recognition
budgets, increase.

Contributions.. This paper makes four contributions:

1. Formal MDL fitness. We identify fitness with negative description length and show
that replicator dynamics descend the population mean of (1).

2. Variation anisotropy via J. We derive an anisotropic proposal law for phenotype
moves, q(A) o« exp(—AJ), where J is a convex, symmetric ledger cost encoding resource
overhead and balance.

3. Modularity bound. When tasks in £ share mutual information M, reusing a module
of size b yields a codelength saving of at least M — b bits; selection favors modular
architectures whenever reuse beats overhead.

4. Archival test plan and falsifiers. We specify a preregistered, MDL-based measurement
protocol on public datasets (gene regulation, metabolism, behavior) and state concrete
falsification conditions (e.g., persistent outperformance by higher L, designs under fixed
budgets; isotropic variation contradicting the exp(—AJ) law).

2 Background

MDL in statistics and learning.. Minimum Description Length (MDL) formalizes parsimony:
among models that explain the data, prefer the one minimizing total code length (model +
parameters to supported precision + residuals). In finite samples, MDL aligns with penalized
likelihood criteria (e.g., BIC) and with universal coding bounds from information theory. Here
we treat organisms as models and environments as data sources, so fitness becomes an MDL
objective.

Rate—distortion tradeoffs.. Biological agents face resource limits (metabolic, temporal,
memory). Rate-distortion theory quantifies the best achievable error (distortion) at a given
information rate (coding cost). Our L, is an operational rate that must be budgeted; viable
organisms lie near Pareto fronts balancing model complexity against residual error under &£.

Replicator dynamics and Fisher’s theorem.. Replicator equations describe composition
changes under frequency—dependent selection. Fisher’s fundamental theorem relates the change
in mean fitness to heritable variance. By setting reproduction rates r(g) o« exp(—fL4) with
resource factor 8 > 0, the replicator flow implements code—length descent: the population mean
E[Ly] decreases monotonically toward a stationary distribution 7*(g) o exp(—/SLyg).

Modularity in networks..  Across molecular, cellular, and behavioral levels, biological networks
exhibit modular, hierarchical structure with motif reuse. From an MDL viewpoint, modules
are reusable subroutines that amortize codelength across shared tasks; their selection follows
directly when environmental tasks overlap and the reuse advantage exceeds overhead.
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Evolvability and pleiotropy.. Evolvability describes a system’s capacity to generate adaptive
variation; pleiotropy couples multiple traits to shared genetic mechanisms. Anisotropic variation
naturally arises when accessible phenotype moves are biased by a convex cost J: changes
that conserve balance and minimize overhead occur with exponentially higher probability,
concentrating search along low—cost directions.

Bridge to practice (one currency across levels).. Code length provides a unifying, measurable
currency from genome (encoding circuits), to network (wiring and parameters), to behavior
(policy and error). We will measure L, on archival datasets via a fixed reference machine and
compare organisms and baselines under the same scoring rules, enabling cross—level synthesis
without changing units.

3 Definitions and Setup (operational)

Environment £.. The environment is a probability space of tasks/stimuli and their statistics.
Formally, let (&X', 3, P¢) denote sensory input streams (including exogenous variables and task
labels), and let performance functionals be evaluated under draws z1.p ~ Pe. Empirical
frequencies (task mix, context durations, noise levels) determine the weights used for pooling
scores across tasks.

Organism g.. An organism is modeled as a compressor—controller Cy with parameters 0,
mapping sensory histories to internal states and actions:

Cy: (X=', memory) — (action;, updated memory),

subject to homeostasis and reproduction constraints. Architectural choices (modules, wiring,
dynamics) and numeric parameters (thresholds, gains, kinetic rates) are part of 6.

Description length L,.. The evolutionary code length is the total codelength, in bits, required
to specify Cy and its predictive residuals under £ on a fixed reference machine:

L, = L(modely) + L(errors | ). (2)

Model code. L(modely) counts the prefixfree codelength to describe the structure (modules,
connections, update rules) and parameters 6, at the precision supported by data. Parameter
precision is set by interval coding from documented uncertainties or cross—validated tolerances;
a parameter with tolerance width § contributes & logy(1/0) bits.

Error code. L(errors | £) is the negative log-likelihood (or loss code) of deviations between Cj’s
predictions and observations drawn from Pg, evaluated under a preregistered noise/perturbation
model (Gaussian/covariance, Poisson, or a declared kernel). In all cases, residual codes are
expressed in bits via the corresponding log-likelihood.

Resource factor 5.. Resource scarcity (metabolic, temporal, memory/recognition) is summa-
rized by a positive scalar S > 0. Reproduction rates are modeled as

r(g) o exp(—BLy), (3)

so that higher g8 tightens MDL pressure: at fixed performance, organisms with shorter codes
replicate faster.
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Ledger cost J.. Variation proposals are biased by a symmetric, convex ledger cost J on
phenotypic moves. For a proposed change A in phenotype coordinates,

q(A) o< exp(—AJ), (4)

with J unique up to an overall scale and minimized at the balanced operating point. Convex
symmetry (J(z) = J(2~!) in appropriate coordinates) penalizes imbalance and high overhead,
concentrating accessible variation along low—cost directions. The consequence is anisotropic
variation: “randomness” is structured inside iso—J shells rather than isotropic in phenotype
space.

Equations (2)—(4) define the operational quantities used throughout: given £, organisms are
scored by Lg; selection applies via (3); and the geometry of accessible variation follows (4).

4 Core Theorems and Propositions (statements; proofs in appen-
dices)

[Replicator-MDL Equivalence] Let 7y be the population distribution over organisms g with
evolutionary code length L, (defined in (2)). Suppose per—capita replication rates satisfy

r(g) o exp(—=pBLg)  (8>0),

and the mean—field population dynamics are governed by the replicator equation
7i(9) = mlg) (EnlL] — Ly),

after a rescaling of time by £.' Then:

(i) The population mean code length is a Lyapunov functional:
4
dt

with equality iff L, is m;—a.s. constant.

Er[L] = —Vary, (L) < 0,

(ii) If, in addition, a small mutation/diffusion operator preserves absolute continuity and
satisfies detailed balance with respect to Lebesgue measure on the type space, then the
unique stationary density has Gibbs form

m™(g) o exp(— B Ly).

Interpretation. Selection implements code—length descent. With mild mutation, the stationary
population concentrates according to a Boltzmann weight in L.

[Rate-Distortion Fitness] Fix a coding rate budget R (bits for model/parameters) and a
tolerated loss level D (residual codelength target under the preregistered noise model). Among
feasible organisms g that meet the resource constraints, the viable set lies on a Pareto front
minimizing

L(modely) + L(errors | &),
and any organism strictly dominated in this sum by a feasible competitor is eliminated
almost surely under Section 4. Equivalently, at fixed (R, D) within the rate—distortion region
induced by &, selection prefers MDL—optimal designs. Interpretation. Fitness is penalized
likelihood /MDL: short, accurate codes dominate; longer codes with no compensating error
advantage are outcompeted.

'Equivalently, take instantaneous “fitness” f(g) = —L, so that 7(g) = 7(g)(f(g) — Ex[f]).
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Recognition Science bridge (J-cost uniqueness).. Recognition Science (RS) provides a
unique convex symmetric cost J (normalized by J(1) = 0 and J”(1) = 1) that governs
recognition dynamics; its uniqueness on R~ under symmetry/convexity /averaging constraints
is formally proven in Lean (cost-uniformity T5). We reuse this J as the ledger cost shaping
variation anisotropy below. Implementation and proofs reside in the public reality repository
(see Reproducibility).

[Variation Anisotropy] Let J be a symmetric, convex ledger cost on phenotype moves,
minimized at a balanced operating point. Assume variation proposals are generated by a
maximum-entropy mechanism under an expected cost constraint E[J(A)] < k (or, equivalently,
by a detailed—balance kernel with potential J). Then the proposal distribution has Gibbs form

q(A) x exp(—AAJ), A >0,

so that accessible moves are exponentially biased toward low—cost directions (iso—J shells).
Interpretation. “Random with respect to fitness” becomes structured randomness: variation
concentrates along directions that minimally perturb the ledger cost.

[Modularity Lower Bound] Let £ = & U--- U &, be a mixture of task families with joint
distribution, and let M denote the mutual information capturing shared structure among the
tasks (e.g., M =>", H(&) — H(E1, ..., &) in the discrete case). Suppose a reusable module of
size b bits captures the shared component once and is invoked across tasks. Then the joint
codelength saving achieved by reuse satisfies

ALreuse Z M - b,

with equality when the module exactly codes the shared factor and task—specific parts are
conditionally independent given the module. Interpretation. Selection prefers modular archi-
tectures whenever reuse outstrips overhead (M > b). Environments with greater task overlap
drive stronger modularity.

Proof roadmap. Proofs are deferred to the appendices: Section 4 via Lyapunov analysis of the
replicator (and Fokker—Planck for the mutational Gibbs form); Section 4 via dominance under
Section 4 and standard MDL /rate-distortion arguments; Section 4 via maximum-entropy with a
convex cost constraint (or detailed balance with potential .J); Section 4 via information—theoretic
coding bounds (chain rule and data—processing).

5 Measurement Protocol (preregistered MDL fitness)

One reference machine.. All measurements are made on a fixed, auditable reference machine
(pinned toolchain, prefix—free tokenization). For each organism g and environment £ we report
codelengths in bits with the decomposition

Liotar(g;€) = L(modely) + L(parameters, to supported precision) + L(errors | £, noise),
(5)
where L(model,) counts structure and algorithms (once per analysis), parameter bits use interval
coding at the data—supported tolerance, and the residual term is a negative log—likelihood
code under the registered noise model. Every measurement is duplicated in two independent
implementations (e.g., Rust and Python/Numba); the absolute discrepancy is reported as an
O(1) overhead band and must not affect the conclusions.

Noise models.. Residual codes use the dataset—documented observation model: Gaussian
with reported o or covariance, Poisson for counts, or an empirical /instrument kernel when
supplied. As a preregistered robustness check we rerun all residual codes under a fixed
heavy—tailed Student—¢ model (preset degrees of freedom) and report the deltas in bits.



Darwin as MDL Washburn

Baselines.. To rule out scoring artifacts, we evaluate agnostic learners under the same protocol
and report the best baseline per dataset: (i) dictionary/sparse models (fixed dictionaries or
learned under capacity limits), (ii) generic neural networks with precommitted architectures
and regularization, and (iii) kernel regressors/Gaussian processes from a fixed kernel menu.
Hyperparameter grids, random seeds, early—stopping criteria, and tokenization are preregistered;
no domain priors beyond smoothness/capacity are allowed. Baselines are scored by (5) so that
comparisons to Ly are apples—to—apples.

Pooling rule.. Let T be the set of tasks in £ with empirical frequencies (or durations) w,
satisfying > -7 w; = 1. The pooled evolutionary code length for organism g is

Ly(&) = L(modely) + Y wy L(errors | 7,noise,), (6)
TET

with L(modely) counted once across tasks and residuals computed on held-out data per
task using the preregistered noise model noise;. When tasks share constants or reusable
submodules, those bits are encoded once and referenced thereafter by pointers whose cost is
accounted explicitly. All weights w,, splits, and any task—specific tolerances are frozen in the
preregistration.

6 Archival Datasets and Tasks (no new experiments)

D1: Gene Regulation.. Setup: Public expression matrices under known stimuli/contexts
(time courses, dose series, knockdowns).

Model (Cy): Minimal modular controllers: motif libraries (tokenized PWMs), sparse wiring to
target genes, simple regulatory nonlinearities (e.g., Hill or sigmoids) and kinetic lags; parameters
encoded to supported precision. Residuals scored under preregistered noise (Gaussian with
covariance or Negative Binomial for counts).

Baselines: Agnostic sequence-to-expression predictors (capacity-limited NNs, kernel regressors,
dictionary models) with precommitted hyper-grids; scored identically by (5).

Goal/metrics: (i) Lqy(E) via (6) should negatively correlate with growth/fitness proxies (yield,
division rate) at fixed resources; (ii) define environmental overlap by mutual information M
between stimulus labels and upstream signal features; measure module reuse bits and test that
reuse increases with M (slope > 0).

D2: Metabolism.. Setup: Public stoichiometric reconstructions with flux data across media
conditions.

Model (Cy): Encode networks using a library of reusable subgraphs (e.g., transporters, shared
core pathways); parameters are enzyme capacities/constraints with interval coding; feasibility
checked by a fixed solver. Residuals are deviations in fluxes/growth under the declared noise
model.

Baselines: Capacity-matched generic flow predictors (kernel/NN/dictionary) without explicit
reuse.

Goal/metrics: In environments that share substrates/cofactors, the marginal L(model,) should
drop via reuse relative to environments without overlap (report AL(model) per added environ-
ment vs measured overlap). Fitness proxies should decrease with L, at equal performance.

D3: Behavior/Ecology.. Setup: Public foraging/navigation datasets (trajectories, choice
histories) across task variants.

Model (C,): Policies with latent state and simple dynamics (e.g., sparse state-action graphs or
linear—nonlinear controllers) shared across tasks; parameters encoded to supported precision.
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Residuals scored on held-out trials under preregistered observation noise.

Baselines: Capacity-limited agnostic sequence forecasters (RNN/temporal kernels/dictionaries)
with preregistered capacity.

Goal/metrics: Cross-task transfer should reduce L(errors) for species with richer internal models
(report AL(errors) when training on task A and testing on task B). Directional diagnostics
(below) quantify anisotropy in accessible variation.

D4 (Optional): Developmental Modules.. Setup: Domain architectures across gene families;
inferred duplication—divergence events.

Model/metrics: Tokenize domains as modules of size b bits (structure + parameters). Compute
environmental /shared-task mutual information M. Test enrichment of duplication-divergence
when M > b (odds ratio > 1 after phylogeny-aware controls). Report code savings > M — b in
composite tasks, consistent with the modularity bound.

Anisotropy diagnostics (all domains). Estimate the directional spectrum of accessible variation
by projecting observed phenotypic deltas A onto eigenvectors of a local metric (empirical Fisher
or Hessian of J) and fitting the log-frequency slope in ||A|| against AJ; the prediction is

logPr(A) = const — AAJ (A >0),

with heavier mass along low—A.J directions. Confidence bands obtained by bootstrap over
individuals/conditions.

7 Results Plan (structure; numbers filled later)

Per-domain panels.. For each domain (D1-D4): (i) report codelength breakdowns L(model),
L(parameters), and L(errors) under (5); (ii) plot fitness proxies versus Ly (&) from (6) with
slopes and Cls; (iii) plot module-reuse bits versus environmental mutual information M with
slope/ClIs; (iv) show anisotropy diagnostics (directional spectra, fitted \; goodness-of-fit to the
exp(—AAJ) law).

Cross-domain synthesis.. Demonstrate that a single MDL rule explains: (i) fitness (negative
association with L, at fixed resources), (ii) modularity (reuse increases when M increases), and
(iii) plasticity (transfer reduces L(errors) in species with richer models). Verify that anisotropy
persists after controlling for phylogeny, sampling noise, and baseline capacity.

Sensitivity.. Report dual-language overhead bands (O(1)) for all codelengths; heavy—tail
noise robustness (Student—t vs Gaussian/Poisson) for residuals; and baseline capacity sweeps
showing conclusions are stable once baselines saturate their precommitted capacity.

8 Consistency with RS Source (evolution capsule)

The RS "Source.txt" evolution capsule outlines three core statements that this paper now
formalizes and operationalizes:

[leftmargin=*]

1. E1 (Fitness = —L;): We define evolutionary code length L, and show replicator-MDL
descent (Section 4).

2. E2 (Anisotropic variation): Proposal law ¢(A) o< e *2/ with RS J bridges ledger
cost to accessible phenotypic moves (Section 4).
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3. E3 (Modularity bound): Shared environmental information M yields reuse savings
ALeuse > M — b (Section 4).

These align one-to-one with the evolution section in the RS source specification while supplying
a preregistered, auditable measurement protocol.

9 Reproducibility and Repository

Repository.. All code, proofs, and scaffolds are hosted in the public reality repository:
https://github.com/jonwashburn/reality.

Toolchain.. Lean toolchain pinned by 1lean-toolchain; LaTeX sources in Projects/afterlife.
RS cost uniqueness (T5) and related primitives are implemented in IndisputableMonolith/Cost/
and referenced by higher layers.

Dual-implementation overhead band.. Following our entropy paper protocol, measurements
that depend on tokenization/coding are duplicated in Rust and Python/Numba; the absolute
discrepancy is reported as an O(1) band (typically < 10 bits) and does not affect conclusions.

OSF preregistration.. Falsifiers and analysis plans (domains D1-D4) will be preregistered
before evaluation; all seeds, version pins, and manifests will be released.

10 Predictions (pre-stated, biting)

P1 (Modularity).. Organisms inhabiting more structured £ (higher M) exhibit larger cross-
task module reuse and lower L4 (&) at equal predictive performance. Formally, 0 ReuseBits/0M >
0 and 0L4,/OM < 0 (holding residual error fixed).

P2 (Duplication Threshold).. Duplication—divergence events are enriched when the shared-
information threshold is exceeded: Pr(duplication | M > b) > Pr(duplication | M < b), and
composite-task code savings satisfy ALyeuse > M — b.

P3 (Plasticity vs Entropy).. Plasticity capacity grows with Entropy (&) (broader task distri-
butions demand richer models), yet the total code L, is still minimized via sparsity: increasing
model bits must be compensated by larger reductions in L(errors) along the Pareto front.

11 Falsifiers (real, not rhetorical)

F1 (Anti-MDL dominance).. Find lineages that, under the same resource budget and
evaluation protocol, systematically increase in frequency while having larger L,(£) than
competitors with equal or better predictive performance. A statistically significant, persistent
reversal refutes the MDL—fitness link.

F2 (No modularity—overlap link).. Across independent datasets, observe no positive asso-
ciation between module reuse and environment/task overlap (mutual information M), after
preregistered controls (phylogeny, capacity, sampling). Failure to detect the predicted slope
(=~ 0 with tight CIs) refutes the modularity bound’s empirical bite.
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F3 (Isotropic variation).. After controlling for measurement windows and noise, find pheno-
typic deltas A distributed isotropically rather than according to g(A) o< exp(—AAJ). A flat
directional spectrum (no low-AJ enrichment) falsifies the anisotropy theorem.

12 Confounds and Controls

Genome size vs. code length (MDL, not raw length).. Raw genome length is not a proxy for
effective description length. We distinguish compressible redundancy from functional modules
by (i) encoding structure with a fixed tokenization of modules/subroutines, (ii) encoding
parameters only to data—supported precision, and (iii) charging residual error in bits. Two
genomes with different sizes can have comparable L(model,) once repeated motifs are referenced
and nonfunctional repeats compress to O(1) per motif. All analyses report both raw sizes and
effective L(modely) to prevent conflation.

Sampling and noise (non—ergodicity, batch effects).. Non-ergodic sampling and batch
effects inflate residual codes if unmodeled. We preregister observation models: Gaussian
with published o / covariance terms, Poisson or Negative Binomial for counts, or declared
instrument kernels. Batch effects are modeled as nuisance covariates whose parameters are
encoded at supported precision and charged to L(modely); we re-score residuals under a
heavy—tail (Student—t) sensitivity. Any hand cleaning is disallowed; filters are implemented in
code and logged.

Phylogeny (separating ancestry from MDL effects).. We use phylogeny—aware statistics (e.g.,
mixed models with clade random effects; phylogenetic generalized least squares / independent
contrasts) to separate inherited similarity from code-length effects. All regression summaries
of Ly(€) versus fitness or reuse versus environmental overlap report phylogeny-controlled
estimates and naive estimates side—by—side.

Overfitting (fair comparisons).. We enforce hard train/holdout splits across tasks and
precommit capacity limits (token budgets, network widths/depths, kernel menus). We always
report the best agnostic baseline under the same scoring rule (Lyota1) and capacity schedule.
Hyperparameter grids and seeds are frozen before evaluation; early stopping criteria are
preregistered.

13 Discussion (why this matters)

Unification.. This framework compresses Darwinian selection, statistical learning (MDL),
and network modularity into a single quantitative umbrella: bits. Fitness is negative description
length; the same currency measures model economy, residual accuracy, and reuse.

Mechanism for evolvability.. Anisotropic variation explains the empirical repeatability of
useful phenotypes: proposals concentrate along low—cost directions determined by a convex
symmetric ledger cost J, while modular reuse amortizes search over related tasks. Together
they yield fast, reliable adaptation without invoking ad hoc bias.

Bridging levels.. The code-length decomposition travels cleanly from gene circuits (motif
libraries, sparse wiring) to metabolism (reusable subgraphs) to behavior (compact policies):
L(model) and L(errors) remain commensurate in bits, enabling cross—level synthesis without
changing units.
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Links to engineering.. For synthetic biology and Al, the prescription is the same: build for
reuse and low MDL under the target environment €. Architectures that minimize L(model)
while achieving low L(errors) transfer better and adapt faster; anisotropy diagnostics inform
which directions in design space are most fruitful.

14 Methods (camera—ready subsections)

14.1 Formal L, definition and coding scheme

Tokenization and model code.. On a fixed reference machine with a prefix—free grammar,
the model code L(model,) counts: (i) structural tokens (modules, wiring, update rules) with
a canonical, versioned alphabet; (ii) parameters ¢, encoded by interval coding to supported
precision. If a parameter 6 is identified up to tolerance width 4, its code is [logy(1/6)] + O(1)
bits; shared constants are encoded once and referenced thereafter with a pointer of declared
cost.

Residual code.. For observations {y;}"_ ; with model predictions {y;} and noise model N,
the residual codelength is the negative log—hkehhood expressed in bits:

L(errors | £,N) Z logy par(yi | i, noise params),
=1

2 .
e.g. Gaussian: —logyp =), [% log, (270 2) + %’;1_2 ﬁ:)Q }; Poisson: —logop = >; [N — yilog A\ +

log(yi!)]/ In2. Heavy—tail sensitivity uses a Student—¢, likelihood with preregistered v.
Pooling across tasks.. Let {(7,w;)} be tasks and their empirical weights with Y w, = 1.
We score

Ly(€) = L(modely) + ZwT errors | 7, N7),

counting shared modules/constants once. All tokenizations, precisions, and weights are frozen
in preregistration.

14.2 Replicator—MDL proof details

Lyapunov descent.. With instantaneous fitness f(g) = —Lg, the replicator equation 7(g) =
7(9)(f(9) — Ex[f]) yields
d .
ExlL] = S it(g) Ly =Y w(9) (Ex[L] — Lg) Ly = Ex[L]> — E4[L?] = —Vary(L) <0.
9 g

Equality holds iff L, is m—a.s. constant.

Stationary measure with mutation.. Augment the replicator with a small, reversible diffusion
(mutation) operator generating a Fokker—Planck flow that satisfies detailed balance with
potential ®(g) = SL4. The stationary density solves V- (DVr* + D n*V®) = 0, yielding the
Gibbs form 7*(g) o exp(—fLg4) (up to normalization and base measure factors). Regularity
and confining conditions ensure uniqueness.

10
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14.3 Modularity bound proof (information—theoretic)

Let £ =& U---U& with joint distribution. Coding each task family separately has codelength
> L(&;); coding jointly with a reusable module M of size b bits that captures shared structure
achieves b+ Y, L(&; | M). By the chain rule,

STLE) - b LE M| = (Y HE) - HEL... &) b =M b

identifying M as mutual information in bits. Equality holds when M codes exactly the shared
factor and the task—specific parts are conditionally independent given M.

14.4 Variation anisotropy derivation and diagnostics

Derivation (maximum entropy or detailed balance).. Impose a constraint E[J(A)] < k on
phenotype moves A with convex symmetric cost J, or equivalently assume a reversible proposal
kernel with potential J. Maximizing entropy subject to the cost constraint yields

1

q(A) = mexp(f)\AJ), A>0,

with partition function Z(\) and Lagrange multiplier A set by . Symmetry of J yields iso—J
shells carrying level-set mass; convexity concentrates proposals along low—J directions.

Diagnostics (empirical tests).. Estimate a local metric (e.g., empirical Fisher or Hessian
of J) at a phenotype and project observed A onto its eigenvectors. Test the linear relation
log Pr(A) = const — AAJ by binning in AJ and fitting the slope A with bootstrap CIs. A flat
spectrum (no dependence) falsifies anisotropy.

14.5 Pre—registration and reproducibility

We release a containerized pipeline with pinned compilers/libraries and a single entry script
that rebuilds all numbers and figures. The preregistration freezes: dataset versions and
checksums; tokenization grammar; parameter precisions; noise models; train/holdout splits;
baseline families and capacity grids; seeds; and pooling weights {w,}. Each figure emits a
JSON manifest (dataset IDs, seeds, container digest, and numeric outputs) to enable byte—level
audit.

A Replicator—MDL equivalence (full derivation)

Setup (discrete type space).. Let G be a finite or countable set of organism types g € G
with evolutionary code lengths L, € R. Let m(g) > 0, 3°, m:(g) = 1 be population frequencies.
Define instantaneous Malthusian fitness

f(g) = _BLg"’_C,

where 8 > 0 encodes resource scarcity and c is an arbitrary constant. The replicator dynamics
are

wilg) = mlg) (fl9) = F),  fo:=Y_ m(h)f(h). (7)

heg

The additive constant ¢ cancels in f(g) — f, so only differences in L, (scaled by ) matter.

11
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Lyapunov descent of the mean code length.. Let Er,[L] := > 7(g) Ly. Differentiating
and using (7) gives

SEnlL] = 3 1l0) Ly = Y ml9) (f(6) = o) Ly = Cove, (L. ).
g 9

Since f = —fBL + ¢, we obtain
d
dt
with equality iff L, is m—a.s. constant. Thus Er,[L] is a strict Lyapunov functional whenever
the population contains heterogeneity in L.

Eﬂt[L] = —pBVarg, (L) < 0, (8)

Stationary measures with mutation (continuous limit).. On a continuous type space G C R?
with base measure dg, augment (7) by a reversible mutation/diffusion operator with (positive
definite) diffusion matrix D(g):

dimi(g) = mig) (fi = £(9)) + V- (Dl9) (Vme(g) + Be(9) VL(9)) ) (9)
The Fokker—Planck form (9) is a gradient flow for the free energy

Flr] = /W(g) (8 L(g) + log x(g)) dg,

under the D—weighted Wasserstein metric. Under confining conditions (6L(g) — oo as
llgll = oo) and mild regularity, the unique stationary density solves the detailed—balance
condition

Vr*(g) + B1(9) VL(9) =0 = 7*(g) o exp(—BL(g)).

Hence mutation selects a Gibbs measure with potential SL; in the zero-mutation limit, m;
concentrates on the MDL minimizers of L.

Invariances.. Adding a constant to all code lengths Ly — Ly + ¢ leaves the dynamics (7) and
the stationary Gibbs family unchanged (the partition function reabsorbs ¢). Rescaling L — aL
is equivalent to rescaling 5 — apf.

Extensions.. With time-varying ((¢) or resource-limited growth (logistic factors), the same
Lyapunov argument yields dE[L]/dt < 0 whenever selection differentials remain proportional
to —L up to a common offset.

B Modularity bound (inequalities, examples)
General inequality.. Let & = & U --- U &, denote a mixture of task families with a joint
distribution. Consider two coding schemes on a fixed reference machine:

e Separate coding: Code each family independently with codelength Zle L(&;).

o Joint coding with a reusable module M : First code a shared module of size b bits, then
code task-specific parts conditionally, giving b+ S2¥_ | L(& | M).

By the chain rule of codelengths (Shannon idealization), the gain is
k k k
ALiewse = Y L(E) = [b+ D L(E| M) > Y H(E) = H(Er,. . &) —b=M —b,
i=1 i=1 i=1
where M = >, H(&) — H(&1, ..., &) is the multi-information (shared structure) in bits.

Equality holds when M codes exactly the shared factor and, given M, tasks are conditionally
independent.
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Example (two tasks, one shared latent).. Let & = S @ Ny, & = S @& Ny where S ~
Bernoulli(1/2) and N; ~ Bernoulli(e;) independent, with & XOR. Then

M = 1(51;52) =1- h(El *52) + h(gl) + h(52)7

where h is the binary entropy and €1 x g2 = £1(1 — £2) + (1 — &1)e2. A module M that codes S
uses b = 1 bit; when noise is small, M ~ 1 and ALeuse ~ 1 — b~ 0" (tight). For more tasks
sharing S, the gain grows linearly in the number of tasks (amortization), while b stays fixed.

Negative/zero gains.. If M < b (module too large for the shared structure), reuse yields no
advantage: ALeuse < 0. This provides a falsifiable threshold for modularity: selection favors
modules only when M > b.

C Variation anisotropy (convex .J, proposal law, tests)

Maximum-entropy derivation.. Let A be a random phenotype move in a local coordinate
chart. Impose a resource constraint E[J(A)] < k where J : R — R, is convex, symmetric
(even), strictly minimized at 0, and has V2J(0) = 0. The maximum-—entropy distribution
subject to the constraints [ ¢(A)dA =1 and [ J(A)q(A)dA = k solves

5[—/q10gq+)\</Jq—H> +77(/q—1)] =0 = QA(A)ZZ(l)\)eXP(—AJ(A))v

with Z(\) = [ e *(A)dA and A > 0 chosen to match .

Local quadratic limit and geometry.. For small moves, J(A) = 2 ATH A + o(||A?) with
H :=V?2J(0) > 0. Then

(D) ~ N(o, xlﬂfl),
an elliptical Gaussian whose principal axes are the eigenvectors of H. Thus anisotropy is

governed by the curvature of J: directions with small curvature have larger variance (more
accessible moves).

Detailed—balance derivation (alternative).. Suppose proposals arise from a reversible Markov
kernel with stationary density o< e=*/; then detailed balance ¢(A) e (@) = g(—A) e~ (@+4)
enforces the same exponential form for the increment distribution in homogeneous neighbor-
hoods.

Empirical tests.. Let H be a local metric (e.g., empirical Fisher of the likelihood or a
quadratic fit of J near 0).

e Directional spectrum: Project observed A onto eigenvectors of H ; test whether variances
match oc 1/)\; (eigenvalues of H).

e Radial law: For quadratic J, AJ = %AT}AIA; bin moves by AJ and regress log Pr(AJ €
bin) on —AJ. The predicted slope is —\.

o Angular uniformity on iso—J: Condition on thin shells of fixed AJ; test angular uniformity
(no preferred orientation after accounting for H).

Deviations (e.g., isotropy after whitening by H ) falsify the anisotropy law.
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D Encoding minutiae for each dataset category

Common rules.. All codes are prefix—free. The total codelength follows (5). Parameters
are interval-coded at preregistered precision. Shared constants/modules are coded once and
referenced via pointers with declared bit costs. Residuals are negative log—likelihoods in bits
under preregistered noise models.

D1: Gene Regulation

Tokens: Motif library identifiers; PWM matrices (quantized to declared precision); wiring
adjacency lists (sparse format); regulatory nonlinearity class; kinetic lag tokens.

Parameters: PWM entries; binding thresholds; connection weights; kinetic rates. Precision
from cross—validated tolerances or published uncertainties.

Residuals: Gaussian with covariance (microarray) or Negative Binomial (RNA-seq counts).
Heavy—tail sensitivity: Student—t, with preregistered v.

Pinned datasets and protocols: Dataset DOIs/versions, normalization protocols, and seed
splits are listed in the repository manifests:

[leftmargin="*]

o manifest/datasets/evolution_gene_regulation.yaml: GEO/ArrayExpress accessions
with DOIs and checksums; normalization (TPM/RPKM as applicable); stratified task
splits (80/20) and fixed seeds {137, 42, 2718}.

e Preprocessing scripts and exact versions are recorded in the figure JSON manifests and
the container log (see §9).

D2: Metabolism

Tokens: Reaction list; stoichiometric blocks; reusable subgraph library (transporters/core
pathways); solver class (FBA /kinetic); constraint tokens.

Parameters: Enzyme capacities; transport bounds; maintenance costs. Precision from calibra-
tion tolerances.

Residuals: Deviations of fluxes/growth from observations under Gaussian/Poisson noise as
documented.

Pinned reconstructions and media tables: Reconstructions and media conditions are
enumerated in manifest/datasets/evolution_metabolism.yaml (e.g., E. coli and yeast com-
munity reconstructions), with solver options/tolerances (FBA /kinetic) and checksums. Media
condition tables are included alongside accession metadata; all versions are containerized and
logged at build time.

D3: Behavior/Ecology

Tokens: Policy class (finite—state controller / linear—nonlinear policy); latent—state count;
transition structure (sparse edges); observation kernel class.

Parameters: Transition probabilities/gains; observation parameters; reward weights if used.
Precision via held—out performance plateaus.

Residuals: Action likelihoods on held—out trajectories under preregistered observation noise.
Pinned accessions and splits: Behavior datasets (accessions, preprocessing rules, and task
splits) are specified in manifest/datasets/evolution_behavior.yaml. Trajectory tokeniza-
tion and observation models are pinned; splits are precommitted (80/20 across task variants)
with seeds {137, 42, 2718}.
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D4: Developmental Modules (optional)

Tokens: Domain vocabulary; gene—domain architectures; duplication markers; divergence
parameters.

Parameters: Domain—specific weights; linker costs; reuse pointers.

Residuals: Likelihood of observed architectures under the duplication—divergence model.
Pinned catalogs and priors: Gene family catalogs, phylogenies, and model priors are specified
in manifest/datasets/evolution_development.yaml with DOIs/checksums. Duplication
markers and divergence priors (bounds) are declared there for reproducibility.

Baselines (all domains).. Tokens: Architecture class (NN /kernel/dictionary); capacity pa-

rameters (layers/widths, kernel types, dictionary sizes); regularization; early—stopping rule.

Parameters: Weights/hyperparameters encoded to supported precision.

Residuals: Same scoring as for C.

Pinned baselines and container: Baseline hyper—grids and seeds are listed in manifest/baselines/hypergr
container image and digest are recorded in manifest/container/evolution_mdl.json and

included in all figure manifests.

E Additional controls (phylogeny-aware analyses, bootstraps)

Phylogeny-aware inference.. Use phylogenetic generalized least squares (PGLS) or mixed
models with clade random effects to regress fitness proxies on Ly(€) and reuse on M. Report
both naive and phylogeny—controlled estimates with confidence intervals.

Bootstrap and permutation tests.. Compute bootstrap Cls for slopes (fitness vs L,; reuse
vs M). Use task—label permutations to test whether observed associations could arise from
chance partitioning; use block bootstraps for time—series.

Capacity sweeps and early stopping.. Vary baseline capacity along preregistered grids;
confirm that beyond a knee point, further capacity yields diminishing returns in L(errors) but
increases L(model), leaving conclusions unchanged.

Holdout protocols and leakage checks.. Ensure that task splits prevent leakage of shared
modules into holdout evaluation. Verify that shared constants are counted once and that
pointers are charged uniformly across domains.

Sensitivity to noise models.. Re-score residuals under Student-t, and (where relevant)
heteroskedastic Gaussian models. Report deltas in bits and verify stability of rankings in L,.

Reporting and manifests.. Each figure is accompanied by a JSON manifest (dataset IDs,
checksums, seeds, container digest, tokenization version, numeric outputs) to enable exact
reproduction.

Final manifest: The frozen dataset list (DOIs/checksums), seeds {137, 42, 2718}, and
the container image digest are already recorded in the repository manifests (see §9) and
automatically embedded in each figure’s JSON output.
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