
UNIQUENESS OF THE CANONICAL RECIPROCAL COST
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Abstract. We study a rigidity problem for functions F : R>0 → R≥0 that penalize devi-
ation of a positive ratio from equilibrium x = 1. Assuming (i) normalization F (1) = 0, (ii)
a d’Alembert-type composition law on R>0, and (iii) a single quadratic calibration at the
identity (in logarithmic coordinates), we prove that F is uniquely determined. The unique
solution is called the canonical reciprocal cost, namely the difference between the arithmetic
and geometric means of x and its reciprocal.

Our proof uses the logarithmic coordinates H(t) = F (et) + 1, where the composition
law becomes d’Alembert’s functional equation on R. The calibration provides the minimal
regularity needed to invoke the classical classification of continuous solutions and fixes the
remaining scaling freedom, selecting the hyperbolic-cosine branch. We also establish ne-
cessity of each assumption: without calibration the composition law admits a continuous
one-parameter family, without the composition law the calibration does not determine the
global form, and without regularity the composition law admits pathological non-measurable
solutions. Finally, we establish a stability estimate for approximate solutions under bounded
defect and characterize some properties of the canonical cost.

Keywords: d’Alembert functional equation, reciprocal cost function, quadratic calibration,
rigidity, hyperbolic cosine, Bregman divergence.
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1. Introduction

In the paper, we consider a function F : R>0 → R≥0 with a minimum at x = 1. Reciprocity
F (x) = F (x−1) is natural for ratio costs, as it penalizes reciprocal deviations equally, and
will be shown to follow from the d’Alembert-type composition law.

Our central assumption is a d’Alembert-type composition law on R>0 (simply called the
composition law),

F (xy) + F
(x
y

)
= 2F (x)F (y) + 2F (x) + 2F (y),

which becomes d’Alembert’s equation after logarithmic coordinates H(t) := F (et) + 1:

H(t+ u) +H(t− u) = 2H(t)H(u).

The theory of d’Alembert’s equation is classical, continuous solutions on R are classified
[3, 4, 5, 6, 7, 8, 9], discrete restrictions produce Chebyshev structure [10], and additional
regularity assumptions yield strong rigidity [11, 12]. We use a single local calibration at
equilibrium

lim
t→0

2F (et)

t2
= 1,

which supplies the needed regularity and fixes the remaining scaling freedom. Under the
assumptions of normalization F (1) = 0, a d’Alembert–type composition law on R>0, and a
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local quadratic calibration at the identity (in logarithmic coordinates), we prove that F is
uniquely determined and equals the canonical reciprocal cost

J(x) =
1

2
(x+ x−1)− 1.

The paper is organized as follows. Section 2 states the main theorem, introduces the
logarithmic coordinates, and recalls the relevant facts about d’Alembert’s equation. Sec-
tion 3 proves the rigidity theorem and demonstrates the necessity of each assumption via
explicit counterexamples and pathological solutions. Section 4 gives a stability estimate
under bounded d’Alembert defect. Section 5 presents further structural properties of J ,
including its Bregman divergence, induced metric, and Chebyshev structure.

2. Definitions and basic properties

In this section we give the basic definitions and notation, state the main rigidity theorem,
and rewrite the problem in logarithmic coordinates. The proof of the rigidity theorem is
given in Section 3.

2.1. Logarithmic coordinates. For any F : R>0 → R, we introduce logarithmic coordi-
nates t = lnx and define the associated functions

G(t) := F (et), H(t) := G(t) + 1 = F (et) + 1, t ∈ R. (2.1)

If F (1) = 0, then G(0) = 0 and H(0) = 1.

2.2. The canonical reciprocal cost.

Definition 2.1. The function J : R>0 → R≥0 defined by

J(x) :=
x+ x−1

2
− 1 (2.2)

is called the canonical reciprocal cost function.

The function J satisfies:

(i) Normalization: J(1) = 0;
(ii) Reciprocity: J(x) = J(x−1);

(iii) Nonnegativity: for all x ∈ R>0, J(x) =
(x−1)2

2x
≥ 0.

In logarithmic coordinates t = ln x, one has J(et) = cosh(t)− 1.

2.3. Calibration.

Definition 2.2. Let F : R>0 → R. The log-curvature of F , denoted κ(F ), is defined as

κ(F ) := lim
t→0

2F (et)

t2
,

provided this limit exists.

When the limit exists, κ(F ) is the quadratic scaling coefficient of F (et) at t = 0. This does
not assume a priori that F is C2. The existence of the limit provides the required regularity.
By the change of variables x = et, the limit exists if and only if

lim
x→1

2F (x)

(ln x)2

exists, and in that case the two limits are equal.
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2.4. Main result. We now state the main theorem, which establishes the uniqueness of the
canonical reciprocal cost under the composition law and a single quadratic calibration.

Theorem 2.1. Let F : R>0 → R≥0. Assume that F satisfies:

(i) Normalization: F (1) = 0;
(ii) Composition law on R>0: for all x, y > 0,

F (xy) + F
(x
y

)
= 2F (x)F (y) + 2F (x) + 2F (y); (2.3)

(iii) Unit log-curvature (Definition 2.2): κ(F ) = 1, i.e.

lim
t→0

2F (et)

t2
= 1. (2.4)

Then for all x > 0,

F (x) =
x+ x−1

2
− 1 = J(x).

Definition 2.3. A function F : R>0 → R is called a reciprocal cost if

F (x) = F (x−1) for all x > 0.

It is normalized if F (1) = 0.

Remark 2.1. Reciprocity is a natural symmetry for ratio costs. In Proposition 3.1, we show
that reciprocity is implied by the composition law together with the normalization F (1) = 0.

Lemma 2.1. If F is reciprocal, then G and H given by (2.1) are even.

Proof. Since e−t = (et)−1 and F (x) = F (x−1), we have

G(−t) = F (e−t) = F
(
(et)−1

)
= F (et) = G(t).

Further, for H(−t), we have

H(−t) = G(−t) + 1 = G(t) + 1 = H(t).

□

2.5. The d’Alembert functional equation. The key structural identity in this paper is
d’Alembert’s functional equation (also called the cosine equation), which is equivalent to our
composition law on R>0 (Lemma 2.6).

Definition 2.4. A function H : R → R is said to satisfy the d’Alembert functional equation
if, for all t, u ∈ R,

H(t+ u) +H(t− u) = 2H(t)H(u). (2.5)

The equation goes back to d’Alembert [14] and was further studied by Poisson [15] and
Picard [16], and many others. The equation plays an important role in determining the sum
of two vectors in various Euclidean and non-Euclidean geometries.

Substituting t = u = 0 in (2.5) gives H(0) ∈ {0, 1}. If H(0) = 0, then (2.5) forces H ≡ 0.
In our case H(t) = F (et) + 1 with F (1) = 0, hence H(0) = 1 and the trivial branch H ≡ 0
is excluded.
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Theorem 2.2 ([5]). If H : R → R is continuous and satisfies (2.5), then either H ≡ 0, or
H ≡ 1, or

H(t) = cos(kt), or H(t) = cosh(kt),

for some real constant k.

More generally, the following holds.

Theorem 2.3 ([17]). The general complex-valued solutions of d’Alembert’s functional equa-
tion (2.5) on the cartesian square of an abelian group G are given by

H(x) =
h(x) + h(−x)

2
,

where h : G → C satisfies h(x+ y) = h(x)h(y), x, y ∈ G.

In this paper we consider d’Alembert’s functional equation on the group G = (R,+) for
functions H : R → R.

If one assumes continuity of H (as we will later obtain from the curvature calibration),
then the multiplicative solutions h have the classical exponential form h(t) = ect with c ∈ C,
and hence

H(t) =
ect + e−ct

2
.

For real-valued H, this reduces to the standard cosine/hyperbolic-cosine classification (cf.
[3, 4, 5]).

Lemma 2.2. If H satisfies Definition 2.4, then H is even.

Proof. Fix u ∈ R and apply the d’Alembert equation (2.5) with t = 0:

H(u) +H(−u) = 2H(0)H(u) = 2H(u),

so H(−u) = H(u). □

Lemma 2.3. If H satisfies Definition 2.4, then for all t, u ∈ R,

H(t+ u)H(t− u) = H(t)2 +H(u)2 − 1.

Proof. Apply (2.5) with a = t+ u and b = t− u:

H((t+ u) + (t− u)) +H((t+ u)− (t− u)) = 2H(t+ u)H(t− u),

so

H(2t) +H(2u) = 2H(t+ u)H(t− u).

Using that

H(2t) = 2H(t)2 − 1

(obtained from (2.5) with (t, t) and H(0) = 1), and similarly for u, yields the claim. □

Lemma 2.4. If H satisfies Definition 2.4, then for all t, u ∈ R,(
H(t+ u)−H(t− u)

)2
= 4 (H(t)2 − 1) (H(u)2 − 1).
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Proof. Let A := H(t+ u) and B := H(t− u). Then A+ B = 2H(t)H(u) by Definition 2.4,
and AB = H(t)2 +H(u)2 − 1 by Lemma 2.3. Hence

(A−B)2 = (A+B)2 − 4AB

= 4H(t)2H(u)2 − 4(H(t)2 +H(u)2 − 1)

= 4(H(t)2 − 1)(H(u)2 − 1).

□

Lemma 2.5. If H satisfies Definition 2.4 and if limt→0 2(H(t) − 1)/t2 exists, then H is
continuous on R.

Proof. The limit assumption implies that limt→0H(t) = 1. Since H(0) = 1, it follows that
H is continuous at 0.

Fix t ∈ R. For u → 0, the equation (2.5) gives

lim
u→0

(
H(t+ u) +H(t− u)

)
= 2H(t) lim

u→0
H(u) = 2H(t).

By Lemma 2.4, we have

lim
u→0

(
H(t+ u)−H(t− u)

)2
= 4

(
H(t)2 − 1

)
lim
u→0

(
H(u)2 − 1

)
= 0,

hence

lim
u→0

(
H(t+ u)−H(t− u)

)
= 0.

Moreover,

H(t+ u) =
H(t+ u) +H(t− u)

2
+

H(t+ u)−H(t− u)

2
.

Taking limits as u → 0 and using

lim
u→0

(
H(t+ u) +H(t− u)

)
= 2H(t), lim

u→0

(
H(t+ u)−H(t− u)

)
= 0,

we obtain

lim
u→0

H(t+ u) = H(t).

Similarly, limu→0H(t− u) = H(t). Therefore, H is continuous at every t ∈ R. □

Let H satisfy (2.5) and set G := H − 1. In this case, a direct calculation shows that G
satisfies

G(t+ u) +G(t− u) = 2G(t)G(u) + 2G(t) + 2G(u).

For example (see [5]), the function

H(t) = J(et) + 1 = cosh(t)

satisfies the d’Alembert equation (2.5), and the corresponding G(t) = cosh(t) − 1 satisfies
the identity above.
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2.6. Composition law on R>0. Although our main theorem is stated on R>0, the com-
position law is most transparent after passing to logarithmic coordinates, where it becomes
exactly d’Alembert’s equation for H(t) = F (et) + 1.

Definition 2.5. A function F : R>0 → R satisfies the composition law on R>0 if for all
x, y > 0,

F (xy) + F
(x
y

)
= 2F (x)F (y) + 2F (x) + 2F (y). (2.6)

Lemma 2.6. Let F : R>0 → R, and H : R → R such that H(t) = F (et) + 1. Then F
satisfies Definition 2.5 if and only if H satisfies the d’Alembert equation (2.5).

Proof. Assume F satisfies Definition 2.5. Let t, u ∈ R and set x = et, y = eu. Then

H(t+ u) +H(t− u) =
(
F (et+u) + 1

)
+
(
F (et−u) + 1

)
=

(
F (xy) + F

(x
y

))
+ 2

=
(
2F (x)F (y) + 2F (x) + 2F (y)

)
+ 2

= 2
(
F (x) + 1

)(
F (y) + 1

)
= 2H(t)H(u),

so H satisfies (2.5).
Conversely, if H satisfies (2.5), by reverse calculation with x = et, y = eu, we obtain that

F satisfies Definition 2.5. □

3. Main results

This section contains the rigidity argument for Theorem 2.1. Using logarithmic coordinates
H(t) = F (et) + 1, the composition law on R>0 becomes d’Alembert’s equation (2.5). We
verify the assumptions for the canonical cost J , classify the solutions, and obtain uniqueness.
We also briefly discuss which assumptions are essential.

Lemma 3.1. Let J(x) = 1
2
(x+ x−1)− 1 on R>0. Then:

(i) J is reciprocal and normalized: J(x) = J(x−1) for all x > 0 and J(1) = 0.
(ii) J satisfies the composition law on R>0 (Definition 2.5).
(iii) J has unit log-curvature: κ(J) = 1.

Proof. (i) Reciprocity follows directly from the definition of J(x). Also J(1) = 1
2
(1+1)−1 =

0.
(ii) Let H(t) = J(et) + 1, t ∈ R. Let us first compute H

H(t) =

(
1

2

(
et + e−t

)
− 1

)
+ 1 =

1

2

(
et + e−t

)
= cosh(t).

Hence H(t) = cosh(t) for all t ∈ R.
The function cosh satisfies the d’Alembert equation

H(t+ u) +H(t− u) = 2H(t)H(u) for all t, u ∈ R. (3.1)

Let x, y > 0 and
t = ln x, u = ln y.

Then et = x, eu = y, and consequently

et+u = xy, et−u =
x

y
.
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Using the definition of H, we can rewrite (3.1) as(
J(et+u) + 1

)
+
(
J(et−u) + 1

)
= 2

(
J(et) + 1

)(
J(eu) + 1

)
.

Substituting et+u = xy, et−u = x/y, et = x, and eu = y, we obtain(
J(xy) + 1

)
+
(
J
(x
y

)
+ 1

)
= 2

(
J(x) + 1

)(
J(y) + 1

)
.

Therefore, J satisfies the composition law on R>0 given by Definition 2.5:

J(xy) + J
(x
y

)
= 2 J(x) J(y) + 2 J(x) + 2 J(y), x, y > 0.

(iii) Using J(et) = cosh(t)− 1 and the Taylor expansion cosh(t) = 1 + t2/2 + o(t2) as t → 0,
we have

lim
t→0

2J(et)

t2
= lim

t→0

2(cosh(t)− 1)

t2
= 1,

so κ(J) = 1. □

The next theorem shows that a calibrated d’Alembert solution is forced onto a single
cosine/hyperbolic-cosine branch, with the calibration determining the parameter.

Theorem 3.1. Let H : R → R satisfy the d’Alembert equation (2.5). Assume the following
limit exists:

κH := lim
t→0

2 (H(t)− 1)

t2
∈ R. (3.2)

Then:

(1) If κH > 0, then H(t) = cosh(
√
κH t) for all t ∈ R.

(2) If κH < 0, then H(t) = cos(
√
−κH t) for all t ∈ R.

(3) If κH = 0, then H(t) = 1 for all t ∈ R.
In particular, if κH = 1, then H(t) = cosh(t) for all t ∈ R.

Proof. By Lemma 2.5, the existence of

lim
t→0

2 (H(t)− 1)

t2
∈ R

implies that H is continuous on R. Hence we will apply the classical classification of contin-
uous real-valued solutions of the d’Alembert equation (2.5) (see, for example, [3]).

H(t) ≡ 1, H(t) = cos(kt) or H(t) = cosh(kt), k ∈ R.
If H(t) ≡ 1, then H(t)− 1 ≡ 0, so κH = 0, and the conclusion in (3) holds.

If H(t) = cosh(kt) for some k ∈ R. Using the Taylor expansion cosh(t) = 1 + t2/2 + o(t2)
as t → 0, we have

cosh(kt)− 1 =
(kt)2

2
+ o(t2), t → 0.

Therefore,

κH = lim
t→0

2(cosh(kt)− 1)

t2
= lim

t→0

2
(

k2t2

2
+ o(t2)

)
t2

= k2 ≥ 0.

If κH > 0, then k ̸= 0 and |k| = √
κH , hence

H(t) = cosh(kt) = cosh(
√
κH t), t ∈ R,
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since cosh is even. If k = 0, then H ≡ 1 and κH = 0, which is already covered by the first
case.

Similarly, if H(t) = cos(kt) for some k ∈ R, the Taylor expansion cos(kt)− 1 = −k2t2/2+
o(t2) yields κH = −k2, and the claim in (2) follows. □

Corollary 3.1. Let F : R>0 → R and F (1) = 0. Assume F satisfies the composition law on
R>0 and has unit log-curvature κ(F ) = 1. Then

F (x) =
x+ x−1

2
− 1 for all x > 0.

Proof. Let H(t) = F (et) + 1. By Lemma 2.6, H satisfies d’Alembert equation (2.5), and
moreover,

κH = lim
t→0

2(H(t)− 1)

t2
= lim

t→0

2F (et)

t2
= κ(F ) = 1.

From Theorem 3.1 then H(t) = cosh(t), hence F (et) = cosh(t) − 1 = J(et). For x > 0 and
x = elnx, we have F (x) = J(x). □

Remark 3.1. Together with the codomain restriction F : R>0 → R≥0 and normalization
F (1) = 0 in Theorem 2.1, it yields the stated uniqueness.

For completeness and because the results below are used in the stability analysis (Sec-
tion 4), we record an alternative characterization: the existence of the curvature limit implies
sufficient smoothness to differentiate (2.5) and obtain a linear ODE for H. These lemmas
provide an independent way to the classification, although Theorem 3.1 as stated follows
directly from the classical classification.

Lemma 3.2. (c.f. [18]) Let f : R → R be continuous. Fix T > 0 and define the central
second difference

Dhf(t) :=
f(t+ h)− 2f(t) + f(t− h)

h2
(|t| ≤ T, h ̸= 0).

If there is a continuous function L : [−T, T ] → R such that

lim
h→0

sup
|t|≤T

∣∣Dhf(t)− L(t)
∣∣ = 0,

then f ∈ C2([−T, T ]) and f ′′(t) = L(t) for all |t| ≤ T .

Lemma 3.3. Let H : R → R satisfy the d’Alembert equation (2.5). Suppose the following
limit exists

κH := lim
t→0

2 (H(t)− 1)

t2
∈ R.

Then H ∈ C2(R) and
H ′′(t) = κH H(t) for all t ∈ R.

Proof. By Lemma 2.5, H is continuous. Fix T > 0. Let t ∈ [−T, T ] be arbitrary and let
h ∈ R with 0 < |h| ≤ 1. Since H is defined on R, then H(t ± h) are well-defined. The
d’Alembert equation yields

H(t+ h) +H(t− h) = 2H(t)H(h).
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Rearranging, we obtain

H(t+ h)− 2H(t) +H(t− h)

h2
= 2H(t)

H(h)− 1

h2
.

Define

q(h) :=
2(H(h)− 1)

h2
.

By assumption, q(h) → κH as h → 0.
Since H is continuous on [−T − 1, T + 1], there exists MT > 0 such that

|H(t)| ≤ MT for all |t| ≤ T.

Hence

sup
|t|≤T

∣∣∣∣H(t+ h)− 2H(t) +H(t− h)

h2
− κHH(t)

∣∣∣∣ = sup
|t|≤T

|H(t)| |q(h)− κH |

≤ MT |q(h)− κH | −−→
h→0

0.

By Lemma 3.2 (applied with f = H and L(t) = κHH(t)), it follows that H ∈ C2([−T, T ])
and

H ′′(t) = κHH(t) for all t ∈ [−T, T ].

Since T > 0 is arbitrary, the conclusion holds for all t ∈ R. □

Lemma 3.4. Let H ∈ C2(R) satisfy the d’Alembert equation (2.5). Then for all t ∈ R,

H ′′(t) = H ′′(0)H(t).

Proof. Given that H satisfies

H(t+ u) +H(t− u)− 2H(t)H(u) = 0.

Taking the second derivative with respect to u for fixed t, we get

H ′′(t+ u) +H ′′(t− u)− 2H(t)H ′′(u) = 0.

Therefore, evaluating at u = 0, we have

2H ′′(t)− 2H(t)H ′′(0) = 0,

so H ′′(t) = H ′′(0)H(t) for all t. □

Lemma 3.5. Let H ∈ C1(R) be even. Then H ′(0) = 0.

Proof. Since H is even, H(t) = H(−t) for all t. Then

H ′(0) = lim
t→0

H(t)−H(0)

t
= lim

t→0

H(−t)−H(0)

t
= − lim

t→0

H(t)−H(0)

t
= −H ′(0),

hence H ′(0) = 0. □

Lemma 3.6. Let κ > 0 and let f ∈ C2(R) satisfy f ′′(t) = κf(t) for all t, with f(0) = 0 and
f ′(0) = 0. Then f(t) = 0 for all t.
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Proof. Let λ :=
√
κ. Define g(t) := f ′(t)− λf(t) and h(t) := f ′(t) + λf(t). Then

g′(t) = f ′′(t)− λf ′(t) = κf(t)− λf ′(t) = λ(λf(t)− f ′(t)) = −λg(t),

h′(t) = f ′′(t) + λf ′(t) = κf(t) + λf ′(t) = λ(λf(t) + f ′(t)) = λh(t).

Since g(0) = f ′(0) − λf(0) = 0 and h(0) = f ′(0) + λf(0) = 0, the unique solutions are
g(t) = g(0)e−λt ≡ 0 and h(t) = h(0)eλt ≡ 0. Hence f ′ = 1

2
(g + h) ≡ 0, so f is constant, and

with f(0) = 0 we conclude f ≡ 0. □

Lemma 3.7. Let κ < 0 and let f ∈ C2(R) satisfy f ′′(t) = κf(t) for all t, with f(0) = 0 and
f ′(0) = 0. Then f(t) = 0 for all t.

Proof. Let κ = −λ2 with λ =
√
−κ > 0. Define the energy function

E(t) := f ′(t)2 + λ2f(t)2 ≥ 0.

Then E ∈ C1(R) and, using f ′′ = −λ2f ,

E ′(t) = 2f ′(t)f ′′(t) + 2λ2f(t)f ′(t) = 2f ′(t)
(
f ′′(t) + λ2f(t)

)
= 0.

Hence E is constant. Since E(0) = f ′(0)2+λ2f(0)2 = 0, we have E(t) = 0 for all t. Therefore
f ′(t) = 0 and f(t) = 0 for all t. □

In terms of logarithmic coordinates H(t) = F (et) + 1, the rigidity problem can be sum-
marized as follows: once the d’Alembert equation (2.5) holds and the quadratic calibration
(3.2) exists, the solution is forced into one of the standard cosine/hyperbolic-cosine families,
with the parameter fixed by κH . In our case, the normalization F (1) = 0 forces H(0) = 1,
and the unit calibration in Theorem 2.1 forces κH = 1, hence H(t) = cosh(t) and F = J .

Theorem 2.1 is intentionally minimal: each assumption plays a distinct role. The following
propositions show what fails when individual assumptions are removed.

Proposition 3.1. Let F : R>0 → R satisfy (2.6) and F (1) = 0. Then F (x) = F (x−1) for
all x > 0.

Proof. Plug x = 1 into Definition 2.5 to obtain

F (y) + F
(1
y

)
= 2F (1)F (y) + 2F (1) + 2F (y) = 2F (y),

hence F
(1
y

)
= F (y) for all y > 0. □

Proposition 3.2. Assume there is a function W : R>0 → (0,∞) satisfying

W (xy) = W (x)W (y) x, y > 0.

Define FW : R>0 → R by

FW (x) :=
W (x) +W (x)−1

2
− 1.

Then FW (1) = 0, and FW satisfies the R>0 composition law (Definition 2.5). If, in addition,
W is continuous, then there exists λ ∈ R with W (x) = xλ for all x > 0, hence

FW (x) = cosh(λ ln x)− 1.
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Proof. First, W (1) = W (1 · 1) = W (1)2 and W (1) > 0 force W (1) = 1, so FW (1) =
1
2
(1 + 1)− 1 = 0. Also,

W (x)W (x−1) = W (xx−1) = W (1) = 1,

so W (x−1) = W (x)−1 and hence FW (x) = FW (x−1).
Define H(t) := FW (et) + 1 = 1

2
(W (et) +W (et)−1). Let t, u ∈ R. Then

H(t+ u) +H(t− u) =
W (et+u) +W (et+u)−1 +W (et−u) +W (et−u)−1

2

=
(W (et) +W (et)−1)(W (eu) +W (eu)−1)

2
= 2H(t)H(u),

so H satisfies d’Alembert. By Lemma 2.6, FW satisfies the R>0 composition law.
Finally, if W is continuous, define w(t) := lnW (et). Then w : R → R is additive: using

W (et+u) = W (et)W (eu), we get w(t+ u) = w(t) +w(u). Continuity of W implies continuity
of w, hence w(t) = λt for some λ ∈ R. Therefore W (et) = eλt, i.e. W (x) = xλ for x > 0,
and FW (et) = cosh(λt)− 1, equivalently FW (x) = cosh(λ ln x)− 1. □

Corollary 3.2. For any λ > 0, define

Fλ(x) := cosh(λ ln x)− 1 (x > 0).

Then Fλ is continuous on R>0, satisfies Fλ(1) = 0, satisfies the composition law (2.6), and
has κ(Fλ) = λ2. In particular, the unit calibration κ(F ) = 1 fixes λ = 1.

Proof. Take W (x) = xλ in the previous proposition, so Fλ = FW and (2.6) holds. Moreover,

since cosh(λt)− 1 = λ2t2

2
+ o(t2) as t → 0, we get

κ(Fλ) = lim
t→0

2(cosh(λt)− 1)

t2
= λ2.

□

The following proposition shows that normalization and unit calibration alone do not
imply the composition law on R>0.

Proposition 3.3. Let us define F (x) := 1
2
(ln x)2 on R>0. Then F is continuous, satisfies

F (1) = 0, and has κ(F ) = 1, but it does not satisfy the composition law on R>0.

Proof. Continuity and F (1) = 0 are immediate. Moreover, F (et) = t2/2, so

κ(F ) = lim
t→0

2(t2/2)

t2
= 1.

Define H(t) := F (et) + 1 = 1 + t2/2. Then for t, u ∈ R,

H(t+ u) +H(t− u) = 2 +
(t+ u)2 + (t− u)2

2
= 2 + t2 + u2,
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while

2H(t)H(u) = 2

(
1 +

t2

2

)(
1 +

u2

2

)
= 2 + t2 + u2 +

t2u2

2
.

The last two expressions differ when tu ̸= 0, henceH does not satisfy d’Alembert’s functional
equation. By Lemma 2.6, F does not satisfy the composition law on R>0.

□

The following proposition shows that, without a regularity assumption, the composition
law on R>0 (2.6) admits pathological solutions.

Proposition 3.4. There exist functions F : R>0 → R satisfying F (1) = 0 and the composi-
tion law on R>0 (2.6) that are not measurable (and hence not continuous).

Proof. It is a consequence of the existence of a Hamel basis of R over Q that there exists an
additive function a : R → R, a(t+ u) = a(t) + a(u), which is not measurable (and hence not
continuous).

Let us define

H(t) := cosh(a(t)), t ∈ R.

We claim that H is not measurable. Suppose for contradiction that H is measurable.
Since arcosh : [1,∞) → [0,∞) is continuous and cosh(a(t)) ≥ 1, the composition

|a(t)| = arcosh(H(t))

is measurable. For each n ∈ N, define the measurable sets

En := {t ∈ R : |a(t)| ≤ n}.

Then
⋃∞

n=1En = R, so at least one En has positive Lebesgue measure. On that set, a
is bounded. It is a classical fact that an additive function bounded on a set of positive
measure must be linear, hence continuous, contradicting the choice of a. Therefore H is not
measurable.

Using the additivity of a and the identity cosh(x + y) + cosh(x − y) = 2 cosh(x) cosh(y),
we compute for all t, u ∈ R,

H(t+ u) +H(t− u) = cosh(a(t) + a(u)) + cosh(a(t)− a(u))

= 2 cosh(a(t)) cosh(a(u)) = 2H(t)H(u).

Thus H satisfies d’Alembert’s functional equation and H(0) = cosh(a(0)) = 1.
Finally, we define

F (x) := H(lnx)− 1, x > 0.

Then F (1) = 0, and by Lemma 2.6, F satisfies the composition law on R>0 (2.6). If F were
measurable, then H(t) = F (et) + 1 would be measurable as a composition of measurable
functions, contradicting the non-measurability of H. Hence F is not measurable. □
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4. Stability under bounded defect

In this part, we give a local stability result. If the d’Alembert equation holds with a
uniform defect on a compact set and the function is sufficiently smooth, then the solution is
close to the hyperbolic cosine case.

Definition 4.1. For H : R → R, we define the d’Alembert defect

∆H(t, u) := H(t+ u) +H(t− u)− 2H(t)H(u). (4.1)

Theorem 4.1. Fix T > 0. Let H ∈ C3([−T, T ]) be even with H(0) = 1, and set a := H ′′(0).
Assume a > 0. Let

ε := sup
|t|≤T, |u|≤T

|∆H(t, u)|, B := sup
|t|≤T

|H(t)|, K := sup
|t|≤T

|H(3)(t)|.

Then for every h with 0 < h ≤ T and every t with |t| ≤ T − h,∣∣H(t)− cosh(
√
a t)

∣∣ ≤ δ(h)

a

(
cosh(

√
a |t|)− 1

)
,

where

δ(h) :=
ε

h2
+

(1 +B)K

3
h.

Proof. Fix 0 < h ≤ T and |t| ≤ T − h.
Using the integral form of Taylor’s theorem, we have

H(t+ h) = H(t) + hH ′(t) +
h2

2
H ′′(t) +

∫ h

0

(h− s)2

2
H(3)(t+ s) ds,

H(t− h) = H(t)− hH ′(t) +
h2

2
H ′′(t)−

∫ h

0

(h− s)2

2
H(3)(t− s) ds.

Adding the last two equations and bounding |H(3)| ≤ K yields∣∣H(t+ h) +H(t− h)− 2H(t)− h2H ′′(t)
∣∣ ≤ K

3
h3. (4.2)

Since H is even, H ′(0) = 0, and the integral form at 0 gives∣∣H(h)− 1− a

2
h2
∣∣ ≤ K

6
h3. (4.3)

Now, by definition of ∆H (4.1), we have for (t, h)

H(t+ h) +H(t− h) = 2H(t)H(h) + ∆H(t, h).

Subtract 2H(t) + ah2H(t) from both sides, we obtain

h2
(
H ′′(t)− aH(t)

)
=

(
H(t+ h) +H(t− h)− 2H(t)− h2H ′′(t)

)
+∆H(t, h) + 2H(t)

(
H(h)− 1− a

2
h2
)
.
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Taking absolute values in the last equation and using (4.2), (4.3), |H(t)| ≤ B, and |∆H(t, h)| ≤
ε, we obtain

h2|H ′′(t)− aH(t)| ≤ K

3
h3 + ε+ 2B · K

6
h3 ≤ ε+

(1 +B)K

3
h3.

Dividing by h2 yields the uniform bound

|H ′′(t)− aH(t)| ≤ δ(h) (|t| ≤ T − h). (4.4)

Let y(t) := cosh(
√
a t), so y′′ = ay, y(0) = 1, and since H is even, H ′(0) = 0 = y′(0).

Define e(t) := H(t)− y(t). Then e ∈ C2([−T + h, T − h]), e(0) = e′(0) = 0, and

e′′(t)− ae(t) = H ′′(t)− aH(t),

so by (4.4), |e′′(t) − ae(t)| ≤ δ(h) for |t| ≤ T − h. For t ∈ [0, T − h], the equation for
e′′ = ae+ r with zero initial condition gives

e(t) =

∫ t

0

1√
a
sinh(

√
a(t− s)) r(s) ds,

where r(s) := e′′(s)− ae(s). Hence

|e(t)| ≤ δ(h)

∫ t

0

1√
a
sinh(

√
a(t− s)) ds =

δ(h)

a

(
cosh(

√
a t)− 1

)
.

Since e is even as difference of even functions, this bound holds for negative t, yielding the
inequality for all |t| ≤ T − h. □

Remark 4.1. The C3 smoothness is natural when H arises as an approximate d’Alembert so-
lution with controlled defect; if H additionally satisfies H ∈ C2(R) and (2.5), then Lemma 3.4
gives H ′′ = H ′′(0)H, which implies H ∈ C∞.

Corollary 4.1. Let the assumptions of Theorem 4.1 hold and define

F (x) := H(lnx)− 1, x ∈ R>0.

Then for every x ∈
(
e−(T−h), eT−h

)
,∣∣F (x)−

(
cosh(

√
a ln x)− 1

)∣∣ ≤ δ(h)

a

(
cosh

(√
a | ln x|

)
− 1

)
.

In particular, for every S ∈ (0, T−h) the function F is uniformly close to cosh(
√
a ln x)−1

on the compact interval [e−S, eS].
If moreover a is close to 1 and δ(h) is small, then F is uniformly close to J(x) =

cosh(ln x)− 1 on [e−S, eS].

In the special case a = 1, the estimate simplifies to∣∣F (x)− J(x)
∣∣ ≤ δ(h) J(x), x ∈

(
e−(T−h), eT−h

)
,

since cosh(| lnx|)− 1 = cosh(ln x)− 1 = J(x).



UNIQUENESS OF THE CANONICAL RECIPROCAL COST 15

Proof. Apply Theorem 4.1 with t = ln x. Since F (x) = H(t)− 1, we obtain

|F (x)− (cosh(
√
a t)− 1)| ≤ δ(h)

a
(cosh(

√
a |t|)− 1),

which is the required inequality after substituting t = ln x.
The case a = 1 follows from cosh(| ln x|)− 1 = cosh(ln x)− 1 = J(x). □

5. Properties of canonical reciprocal cost

Having shown that the canonical reciprocal cost

J(x) =
1

2
(x+ x−1)− 1

is uniquely determined by the normalization, the composition law on R>0 and the unit
log-curvature calibration, we now give some properties of J that make it interpretable and
useful.

5.1. Arithmetic and geometric means. The function J(x) can be written as

J(x) = AM
(
x,

1

x

)
−GM

(
x,

1

x

)
,

since GM(x, 1/x) = 1 and AM(x, 1/x) = 1
2
(x + x−1). In particular J(x) ≥ 0 for all x > 0,

with equality if and only if x = 1.

5.2. Bregman divergence. The logarithmic expression of the canonical reciprocal cost is

G(t) = J(et) = cosh t− 1.

Let Φ : R → R be defined by Φ(t) = cosh t. Then G coincides with the Bregman divergence
generated by Φ at the point 0, namely

G(t) = DΦ(t, 0) = Φ(t)− Φ(0)− Φ′(0)(t− 0),

since Φ(0) = 1 and Φ′(0) = sinh 0 = 0.
Since Φ ∈ C2(R) and

Φ′′(t) = cosh t > 0 for all t ∈ R,

the function Φ is strictly convex. Consequently,

DΦ(t, 0) > 0 for t ̸= 0, DΦ(0, 0) = 0,

and 0 is the unique global minimizer of Φ.
Thus, in logarithmic coordinates the canonical cost J corresponds to the Bregman di-

vergence G(t) = DΦ(t, 0). The strict convexity of Φ implies nonnegativity and a unique
minimum at t = 0, while the Taylor expansion of cosh at 0 gives the required quadratic
behavior.
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5.3. Metric associated with J. Starting from the canonical reciprocal cost function

J(x) =
1

2

(
x+

1

x

)
− 1,

we introduce logarithmic coordinates t = ln x and set

G(t) = J(et) = cosh t− 1, Φ(t) = G(t) + 1 = cosh t.

The function Φ is smooth and strictly convex on R, since

Φ′′(t) = cosh t > 0 for all t ∈ R.

The Hessian metric induced by Φ on R is

ds2 = Φ′′(t) dt2 = cosh t dt2.

In x-coordinates, we get

ds2 = cosh(lnx)
dx2

x2
=

x2 + 1

2x3
dx2.

The corresponding Riemannian distance is

dJ(x, y) =

∣∣∣∣∫ ln y

lnx

√
coshu du

∣∣∣∣ =
∣∣∣∣∣
∫ y

x

√
ξ2 + 1

2ξ3
dξ

∣∣∣∣∣ .
Since cosh is an even function, the distance is reciprocally symmetric, i.e.

dJ(x, y) = dJ

(1
x
,
1

y

)
.

Near x = 1 (that is, t = 0), one has cosh t = 1 + O(t2), and hence dJ(x, y) is locally
equivalent to the logarithmic distance |ln y − ln x|. More precisely, there exist constants
c, C > 0 and a neighborhood U of 1 such that

c |ln y − lnx| ≤ dJ(x, y) ≤ C |ln y − ln x|, x, y ∈ U.

Globally, the growth of dJ is qualitatively different from the logarithmic distance because
the metric weight

√
coshu grows exponentially as |u| → ∞.

As |t| → ∞, one has cosh t ∼ 1
2
e|t|, and therefore

dJ(1, R) ∼
√
2R1/2 as R → ∞,

reflecting the exponential growth of Φ′′(t) for large |t|.

5.4. Chebyshev structure of J. It is known that normalized solutions of d’Alembert
equation

H(m+ n) +H(m− n) = 2H(m)H(n), m, n ∈ Z,
can be expressed in terms of Chebyshev polynomials (see, for example, [10]). In particular,
such solutions satisfy

Hn+1 = 2H1Hn −Hn−1 (5.1)

and can be written in the form Hn = Tn(H1), where Tn denotes the Chebyshev polynomials.
We now show how this discrete Chebyshev structure is realized by the canonical reciprocal

cost. Let H(t) = J(et)+1 = cosh t, which satisfies the continuous d’Alembert equation (2.5).
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Fix t = ln x and define the discrete sequence Hn := H(nt) for n ∈ Z. Then (Hn) satisfies
the recursion (5.1), and

J(xn) + 1 = cosh(n ln x) = Tn(cosh(ln x)) = Tn(J(x) + 1),

that is,
J(xn) = Tn(J(x) + 1)− 1, n ∈ Z.

Since H1 = cosh(lnx) ≥ 1, the Chebyshev identity Tn(cosh s) = cosh(ns) applies (with
s = lnx), yielding Hn = cosh(n ln x). In particular, for x ̸= 1 we have H1 > 1, so the
oscillatory cosine branch (which takes values in [−1, 1]) is not compatible with the canonical
cost J .

Thus, the Chebyshev recursion associated with the discrete d’Alembert equation is realized
explicitly by the functional J .

5.5. Golden ratio. A natural connection with the golden ratio follows from the fixed-point
structure associated with the canonical reciprocal cost. Consider the Möbius transformation
T (x) = 1 + 1

x
on R>0. Its fixed points satisfy x = T (x), i.e. x2 − x− 1 = 0, and the unique

positive fixed point is

φ =
1 +

√
5

2
.

Since J(x) = J(x−1), the reciprocal pair (φ, φ−1) is assigned the same cost, and explicitly

J(φ) = J(φ−1) = φ− 3

2
.

The convergence xn+1 = T (xn) → φ for any x0 > 0 is valid. For a related “golden ratio via
means” perspective, see [19].

5.6. Energy interpretation. Although J is characterized here only by a functional equa-
tion, it is natural to view it heuristically as an energy-like penalty for multiplicative im-
balance. Indeed, J ≥ 0 with a unique minimizer at equilibrium x = 1, and in logarithmic
coordinates x = et one has

J(et) = cosh t− 1 =
t2

2
+O(t4) (t → 0),

which matches the standard second-order behavior near a stable equilibrium in many vari-
ational models. This interpretation should be read as an analogy: J is not claimed to be a
Hamiltonian energy of a specific dynamical system.

6. Conclusion

This paper studies a rigidity problem for nonnegative functions F : R>0 → R≥0 normal-
ized by F (1) = 0. The problem addressed in this paper is to determine which structural
assumptions force F to have a unique functional form. Under the normalization F (1) = 0,
the composition law (2.6) on R>0, and the unit quadratic calibration (2.4), F is uniquely
determined. The resulting function is the canonical reciprocal cost

J(x) =
1

2
(x+ x−1)− 1,

equivalently J(et) = cosh(t)− 1 in logarithmic coordinates.

The composition law becomes d’Alembert’s functional equation (2.5) on R, and the cali-
bration becomes a curvature condition at t = 0. The calibration plays two distinct roles: it
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provides minimal regularity so that classical classification results for d’Alembert’s equa-
tion apply, and it fixes the remaining scale parameter that otherwise yields the family
H(t) = cosh(kt) or H(t) = cos(kt). As a result, the calibrated solution is forced onto
the single branch H(t) = cosh(t), hence F = J .

Section 3 also establishes the minimality of the assumptions. The composition law together
with F (1) = 0 implies reciprocity F (x) = F (x−1). Without fixing the calibration, one gets a
one-parameter family of continuous solutions Fλ(x) = cosh(λ ln x) − 1. On the other hand,
the normalization F (1) = 0 together with the calibration does not imply the composition law
(2.6) (see Proposition 3.3). Finally, even under the normalization F (1) = 0, the composition
law (2.6) admits non-measurable solutions (see Proposition 3.4). Hence some additional
regularity assumption is necessary.

Several directions remain for further study. An open question is whether the composi-
tion law (2.6) can be derived from weaker assumptions, rather than being imposed explic-
itly. Another direction is to consider alternative calibration conditions and to classify other
polynomial-type relations between F (xy) + F (x/y) and the pair (F (x), F (y)).

It would also be of interest to extend the analysis to other multiplicative structures, such
as positive definite matrices [2] or more general structures.
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