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Abstract

We articulate a single, universal principle that governs gravitational inference under finite
information: the coercive projection law. In this view, nature implements a projection from
raw baryonic sources to an effective source through a fixed, scale— and time—aware kernel;
the gravitational field is the unique minimizer of a classical energy with that effective source.
We show that Information-Limited Gravity (ILG) is precisely the gravitational instantiation
of this law in the pressure formulation, where the kernel w(k,a) =1+ C (a/(k7p))® maps
observed baryons to the effective pressure p, and the potential ® solves the classical Poisson
equation V2® = 47G a?p.

Mathematically, we prove a coercivity inequality with explicit constants that (i) guarantees
existence/uniqueness and stability of the projected solution, (ii) certifies positivity and
monotonicity displays used in galaxies and cosmology, and (iii) yields falsifiers that bind
probes together: rotation curves, tracer-independent E¢, the low-¢ ISW sign, and the low-L
CMB-lensing amplitude are all simultaneously constrained by the same kernel and the same
coercivity constants. Operationally, this converts “fits” into audited inferences: each analysis
ships with machine-readable certificates (energy values, residual norms, positivity checks,
convergence diagnostics) that verify compliance with the coercive projection law.

Conceptually, the universality and the specific constants trace to Recognition Geometry:

3/2

the exponent a = 1(1 — ¢~ 1) and prefactor C' = ¢~3/2 are fixed by golden-ratio structure;

2
the finite-net and rank-one projection constants match those that appear in independent

CPM instantiations (e.g., protein folding), explaining cross-domain alignment. We release a
minimal, dependency-light engine that implements the grid (FFT) and disk (Hankel) paths
and emits certificates with each result (CPM-Cosmology-Grid-Path).

Keywords: coercive projection; information-limited gravity; variational methods; explicit
constants; falsifiability; recognition geometry; rotation curves; linear growth; ISW; CMB lensing
1 Introduction

A single law. This paper advances a unifying claim: gravitational inference in the real world

is governed by a universal coercive projection. Raw baryonic sources are first mapped through a
fixed kernel into an effective source, and the observed field is the unique minimizer of a classical
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energy with that source. Information-Limited Gravity (ILG) is the concrete gravitational
presentation of this law. In the pressure formulation, the kernel

_ 2\ — 32 _1(1_ !
w(k,a) = 1—|—C(k7_0> , C=¢p , a=5(1—¢),
builds an effective pressure p from baryons, and ® solves the standard Poisson equation V?® =
471G a®p. At small scales (large k) the kernel tends to unity (laboratory gravity); at large scales
(small k) it yields a mild, monotone enhancement that is the same in galaxies and cosmology.

From phenomenology to principle. Prior work established ILG’s empirical adequacy for
rotation curves under a global-only policy and recast ILG as classical gravity with a pressure
source. Here we elevate ILG to a law by proving a coercivity inequality with explicit constants
in a general CPM (Coercive Projection Method) framework. The inequality certifies that (i)
the projection is unique and stable, (ii) positivity and monotonicity displays are structurally
enforced, and (iii) one kernel with one set of constants simultaneously constrains galaxies, linear
growth, lensing, and ISW. This binds probes together: if the kernel is forced globally, any failure
in one regime falsifies the whole structure—mo retuning.

Certificates, not just fits. The coercive projection law is operational. Each analysis can—and
should—emit certificates:

energy £[®|p], residual |[V?®—47G a®p||, positivity/monotonicity checks, grid/Hankel convergence,

which together verify compliance with the law. We provide a minimal engine that implements
both the 3D grid (FFT) and axisymmetric disk (Hankel) paths and writes these certificates
alongside figures and tables (CPM-Cosmology-Grid-Path).

Why the constants are what they are. The specific constants are not fitted artifacts.
The exponent « and prefactor C follow from Recognition Geometry’s golden-ratio structure;
the finite-net and rank-one projection factors that appear in the coercivity bound match
those arising in independent CPM instantiations (e.g., folding as phase recognition). This
cross-domain alignment explains the empirical universality: proof optimization (CPM) and
physical optimization (recognition under finite information) discover the same architecture.

Contributions.

1. Universal coercivity law. A CPM formulation of ILG with an explicit-constant coercivity
inequality that guarantees uniqueness, stability, and positivity /monotonicity displays.
2. Single-kernel universality. A “no-retuning” statement: the same kernel governs galaxies

and cosmology; any per-system retuning falsifies the law.

3. Cross-probe falsifiers. Linked predictions for rotation-curve residuals (slope nulls),
tracer-independent Eg with a monotone scale trend, negative low-¢ ISW sign, and mild
low-L CMB-lensing enhancement—all from the same kernel and constants.

4. Certificates as data. A practical audit layer (energy, residuals, positivity, convergence,
kernel checks) that ships with results and is machine-verifiable.
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5. Constant structure explained. Alignment of CPM constants and ILG exponents
via Recognition Geometry (golden-ratio rigidity), clarifying why universality holds across
domains.

Roadmap. Section 2 formalizes the CPM structure (structured set, projection, energy, de-
fect, nets, aggregation). Section 3 instantiates ILG as the pressure formulation and proves
existence/uniqueness. Section 4 records the explicit constants (Kyet, Cproj, Ceng) that yield
¢ =49/162. Section 5 derives cross-probe falsifiers (rotation curves, Eg, ISW, lensing). Section 6
specifies the certificate schema. Section 7 aligns CPM constants across domains. Section 8
gives new, sign/slope-level predictions. Section 9 sketches the relativistic program. Appendices
provide technical details, algorithms, and reproducibility notes.

2 The Coercive Projection Law (Abstract CPM — Physics)

We state the coercive projection law abstractly and specialize it to gravity. The ingredients
are: (i) an admissible structured set of potentials, (ii) a projection map to the unique energy
minimizer, (iii) energy and defect quantifying distance to structure, (iv) finite nets and dispersion
control, and (v) an aggregation principle elevating local positivity to global guarantees with
explicit constants.

Structured set and projection

Let 2 C R? be either (a) a bounded Lipschitz domain with Dirichlet boundary data (isolated
systems, with the convention ® — 0 at infinity), or (b) a periodic box T? with meanzero
potentials. Define the admissible class

H (), Dirichlet (isolated),
Yy =
{® € HY(T?): [ps®dz =0}, periodic (meanzero).

The structured set for the potential is the admissible set itself, endowed with the classical
Dirichlet metric (Section 1). The projection II is the solution operator that maps any effective
source p to the unique minimizer ®* = Il(p) € V solving Poisson’s equation

V20 = 471G d?p, p = [w(V,a)s], (1)

with the same kernel w used in all probes. Here s is the raw baryonic source: s = p;, for galaxies
(at @ = 1), and s = py(a) d for cosmology. The operator w(V,a) is the isotropic convolution
with Fourier symbol

wika) = 1+ C(g5),  C=¢ % a=j1-p7), 2)

k1o

so that w — 1 in the laboratory limit (large k) and increases monotonically at long wavelengths.



Energy and defect

For fixed a and source p, define the classical energy functional
1
Plp] = — ®*d / pdd eV
E0lpl = g [IVOPde + [apds, eV Q)

Standard firstvariation gives the Euler-Lagrange equation (1), so the projection II returns the
unique minimizer ®*. We measure defect in two equivalent ways:

Dy (#) = [ V(@ — ") da, (4)
Dres(®) = ||V?® — 471G a’p|[}; s, (5)

and record the energy-defect control (a consequence of Poincaré and elliptic regularity): there
exists Ceng > 0 depending only on boundary conditions and domain geometry such that

Dp1 (@) < Cong (E[@[p] = E[@%[p]),  E[@[p] = E[®"[p] 2 Dres(®). (6)

In periodic boxes one may take Ceng = 1 by construction; under Dirichlet data, Ceng is an O(1)
constant fixed by the Poincaré constant of 2.

Finite nets and dispersion control

The CPM template localizes distancetostructure by covering admissible modes with a finite enet
and controlling the orthogonal projection error with an explicit constant. In the present setting:

e Projection constant. A rankone/Hermitian estimate yields Cpro; < 2 for the fiberwise
projection that removes components orthogonal to the structured set.

o Net constant. For a unit enet on spectral shells (FFT) or Hankel bands (disks), one records
Kunet = (1 +¢)/(1 — €))% An eighttick aligned choice e = 1/8 gives Kpey = (9/7)2.

o Dispersion hygiene. CIC/TSC assignment windows and a 2/3 spectral cutoff suppress aliasing;
in Hankel space, logarithmic sampling and Besselkernel quadrature control leakage. These
rules ensure that the discrete projection respects the continuous positivity of w.

Aggregation of local positivity

Positivity and monotonicity of w (w > 1, dgw < 0, 9gw > 0) imply local window tests cannot
manufacture sign flips in the effective source or nonmonotone displays in derived quantities. Let
{Tw} denote a boundedoverlap family of local tests (e.g., residual norms in radial windows for
galaxies, bandpowers for cosmology). A standard CPM aggregation yields the global bound

DH1 ((I)) < M Kpet C'proj sup TW[(I)]7 (7)
w

where M is the window overlap constant (fixed by the analysis design). If the righthand side
is below a critical threshold determined by (6), the energy gap forces small global defect and,
hence, proximity to the structured solution.



Explicit constants and the role of ¢ and 7

The coercivity constant that appears in the inequality

1

E[®|plE[®* |p] > cDy (D), c= ——i——, 8
@ 19IE(0" 5] = cDy () Ao, ®)
is explicit. With the eighttick choice € = 1/8, Kyet = (9/7)?, the Hermitian bound Cpyoj < 2,

and periodic energy normalization Ceng = 1, one finds

1 49

c= ————— = — =~ 0.302.

(9/7)2-2-1 162
The kernel constants derive from Recognition Geometry: the exponent o = %(lgol) and prefactor
C = g03/ 2 fix the longwavelength slope and amplitude of w, while the fundamental tick 7y sets the
(dimensionless) gate between laboratory and cosmic regimes through the ratio a/(k 79). These
constants explain why the same projection law governs galaxies, growth, and optics without

persystem tuning.

3 ILG as the Gravitational Instantiation

Pressure source. In InformationLimited Gravity (ILG), the effective source is the pressure
field obtained by filtering the raw baryonic source s through the universal kernel w:

p(x,a) = [w(V,a)s|(z), p(k,a) = w(k,a)s(k,a), (9)

with N
w(k,a) = 1 + C (ﬁo) , C = <p_3/2, a = %(1 — gp_l). (10)

For galaxies (present epoch, a = 1) one takes s = py; for cosmology, s = py(a) dp in comoving
coordinates. The potential ® solves the classical Poisson equation with this source,

V20(z,a) = 47G a®p(x,a), (11)

under Dirichlet decay at infinity (isolated) or periodic meanzero (cosmology) boundary conditions.

Variational statement; existence and uniqueness. For fixed scale factor a and source p,
consider the energy £[® |p] in (3). The first variation yields (11), so the admissible minimizer
®* € V is the unique weak solution. Coercivity of the Dirichlet form and the Poincaré inequality
on V imply existence and uniqueness by the Lax-Milgram theorem when p € H'(Q) (e.g., p € L?
suffices). In periodic boxes, fixing the zero mode of d yields a unique meanzero solution; in
isolated domains with p € L' N L%, the Green$ representation

B(z,a) — —Ga2/R p(y:9) s, (12)

s |zy|

solves (11) in the distributional sense and decays as required. In either case, the energy gap
controls the H' distance to the solution by (6), establishing stability.



Positivity, monotonicity, and the laboratory limit. Because w(k,a) > 1 for all £ > 0
and a € (0, 1], the Fouriermultiplier operator w(V,a) is positive in the operator sense:

. 3k ~ 3k
w0 f) = [IfRRwike s = [IFREGS = I8 03)
Moreover,
O w(k,a) < 0, Ogw(k,a) > 0, kli_}rn w(k,a) = 1, (14)

so increasing scale (smaller k) or later times a monotonically enhance the effective source, while
the laboratory limit is recovered exactly as k — oo. These properties propagate to displaylevel
quantities: (i) effective surface profiles built from p inherit nonpathological signs; (ii) ratios
such as w(R) = v?(R)/ v%aryon(R) are monotone in regimes where the baryonic Hankel power is
concentrated at low k; and (iii) smallscale predictions reduce to standard gravity because w — 1.

4 Coercivity with Explicit Constants

We now record the explicit constants that certify stability of the coercive projection and bind all
probes under a single kernel. The bound reads

1
EP|pl — E]D* > cDiy1 (P = : 15
[ ‘p] [ ’p] = € Hl( )’ ¢ Knet CprOj Ceng ( )

Projection constant (rankone/Hermitian). The fiberwise projection step admits the

Hermitian rankone estimate miny>q, jpz1 [[H — Av @ v*||fig < 2[|H — 21 J|%, hence one may

take Cproj < 2. This constant is domainagnostic and matches independent CPM instantiations.

Net constant (eighttick nets or 2/3 spectral cutoff). For a unit enet on spectral shells
(FFT) or Hankel bands (disks), the conevsnet bound records Ky = ((1 +¢)/(1 —¢€))2. The
eighttick alignment ¢ = 1/8 gives Kyt = (9/7)2. On periodic grids with a 2/3 spectral cutoff,
the effective € induced by shell spacing/window overlap yields a comparable constant; we retain
the eighttick value for analysis invariance.

Energy-control (periodic/Dirichlet classes). With the energy normalization in (3), the
linear source term cancels at the minimizer, giving the identity E[® | p] —€[®* | p] = gi5 [ |V(® -
®*)|2, 50 Ceng = 1 on periodic and Dirichlet classes (additive constant fixed by meanzero/decay).

Coercivity constant and RS alignment. Combining the three constants yields the explicit
coercivity bound:

1 1 49
= = = — =~ 0.302 16
‘ Khet Cproj Ceng (9/7)2-2-1 162 (16)

Universality and crossdomain structure. The same eighttick net and Hermitian projection
constant appear in other CPM domains (e.g., folding), yielding the same numerical ¢. This
is strong evidence that projection geometry—mnot problemspecific tuning—governs stability.
Meanwhile, the kernel’s exponent and prefactor (o = %(1 — ¢ 1), C = ¢ %?) and the gate 7



fix the longwavelength behavior of w via Recognition Geometry. Together these explain why
a single coercivity constant and single kernel constrain galaxies, growth, and optics without
persystem retuning.

5 Aggregation to Falsifiers Across Probes

The CPM aggregation bound (7) elevates local window tests to a global defect control with
explicit constants. Because the same kernel w and the same coercivity constant ¢ govern all
modalities, a single family of falsifiers binds galaxies and cosmology together: if any probe fails
under the declared windows and hygiene, the universal law is falsified (no retuning).

Galaxies: windows — global defect

Let {W} be radial windows on each rotation curve after fairness masks (inclination, inner
beam, outer reliability, bar/warp excision). With tests Ty (e.g., windowed residual norms) and
bounded overlap M, (7) gives

Dp1(®) < M Kiet Cproj S‘ljlllp Tw [D].

Two immediate consequences become falsifiers:

e No Retuning Theorem. With kernel w and constants fixed globally, acceptable residuals
cannot require pergalaxy changes to w. Any such retuning implies that a single projection
does not minimize a single energy across systems, violating the law.

e Residualslope nulls. Across windows spanning ~ 24 disc scale lengths, the slope of
residuals Av(R) should be unbiased and uncorrelated with basic baryonic observables (surface
brightness ¥, gas fraction fgas, morphology) under the globalonly policy. Statistically
significant correlations constitute a failure of dispersion hygiene or positivity and thus falsify
the law.

Positivity /monotonicity of w propagates to displaylevel checks:

« Sign/monotone displays. The effective surface profile P(R) = [ p(R, z) dz must be non-
pathological when ¥, > 0 is smooth; the derived display w(R) = v?(R)/ UIQ)aryon(R) should
be monotone in regimes where Hankel power concentrates at low k. Persistent sign flips or
nonmonotone behavior in clean systems falsify the positivity /monotonicity inheritance from
W.

Cosmology: linked predictions from the same kernel

In linear theory, the growth equation with the pressure source is o,+2H0,—47G a2 pp(a) w(k, a) &, =
0, so all cosmological predictions inherit the same w.

ak?®(a, k)

o Tracerindependent Eg factorization. Define Eg(a, k) = H(a) fla.k) dy(a k) Using
a a, bl @,
k2® = 4w G a? pp w 0y, one gets
_ [4nG a3 py(a) W(k7a)



which is tracerindependent. Falsifier: significant tracerdependent splits or a residual scale
trend opposite to the monotone w (after controlling for f).

Mild, monotone scale dependence in f(a, k). Since w mildly enhances long wavelengths,
the growth rate f(a,k) = 0lnD/JIna acquires a controlled, monotone kdependence at
late times, reverting to the standard limit at early times/small scales. Falsifier: strong,
nonmonotone kdependence inconsistent with dyw < 0.

ISW sign (low ¢). The growth of w(k,a) with a slows the decay of ® and can make ® < 0
on the largest scales, predicting a negative lowl ISW crosscorrelation. Falsifier: a robust,
maskstable positive lowl signal.

CMB lensing amplitude (low L). The lineofsight average of w mildly increases the lensing
amplitude at low multipoles L, with a smooth return to GR (w — 1) at high L. Falsifier:
a significant decrease toward low L or nonsmooth trends incompatible with the monotone
kernel.

All four predictions are locked to the same constants and same kernel w. A pass/fail in one

regime cannot be repaired by retuning another: the coercive projection law binds galaxies,

growth, ISW, and lensing as a single auditable structure.

6 Certificates as FirstClass Outputs

The coercive projection law converts fits into audited inferences. Fach plot, table, or quantitative

claim should ship with a compact, machinereadable certificate that verifies compliance with

existence/uniqueness, positivity/monotonicity, and discretization hygiene. This section specifies

the minimum fields, schemas, and default thresholds.

What to publish with every figure

For each result (galaxy, growth bandpower, lensing bin), attach:

Energy: £[®|p] and gap E[® | p] — E[O* |p].

Residual norms: ||V2® — 477G a?p| 2 (or H') and windowed residuals Tyy.

Positivity /monotonicity: pass/fail and metrics for (i) operator positivity checks (non-
negative quadratic form), (ii) displaylevel sign (e.g., P(R) > 0 where applicable), (iii)
monotone display trends (e.g., slope of w(R)).

Grid/Hankel convergence: relative change under resolution doubling/padding (e.g.,
1@an — @I/ @2n I, [03y, — vl /03)-

Kernel checks: (i) w — 1 at large k£ (laboratory limit), (ii) longwavelength slope sign

Okw < 0, time monotonicity d,w > 0, (iii) numerical stability (logevaluation for enhancement
term), (iv) kernel checksum for provenance.

Schema (JSON)

We recommend a single JSON object per artifact (figure/table). The schema includes:

artifact_id: unique identifier (e.g., "fig_3_panel_b")
context: probe type, dataset, object/system, constants (¢, a, C, 19, G)



energy: £[®|p] and gap

residuals: global norms (L?, H~!) and windowed Ty

positivity_monotonicity: operator quadratic form min, display signs/slopes, pass/fail
convergence: grid/Hankel relative errors

kernel: highk deviation, slope signs, checksum (SHA256)

provenance: commit hash, environment, seeds, timestamp

A minimal example (fig_3_panel_b.json):

{"artifact_id": "fig_3_panel_b",
"context": {"probe": "galaxy", "dataset": "SPARC", "object": "NGC3198",

"constants": {"phi": 1.618034, "alpha": 0.190983,
"C": 0.485868, "tauO": 1.0, "G": 4.3e-6}},

"energy": {"E": 1.234e5, "gap": 2.1e3},
"residuals": {"norm_L2": 3.5e-3, "windows": [...]},

"positivity_monotonicity": {"passes": true},

"convergence": {"hankel": {"rel_error": 0.008}},

"kernel": {"checksum_sha256": "abc123..."},

"provenance": {"code_commit": "abd3eba", "timestamp": "2025-11-04T..."}}

Default thresholds

Thresholds should be set globally and predeclared (per analysis commit):

Convergence: ||[®oy — @y ||/||Pan|| < 1%; |v3y, — v3;] /3, < 1% over reported radii.
Kernel (hik): |w(kmax) — 1| < 5% on the mesh; slope signs dyw < 0, d,w > 0.

Positivity /monotonicity: operator quadratic form > 1 to numerical tolerance; display
sign nonnegative where ¥, > 0; monotone trend consistent with lowk dominance.

Windows: bounded overlap M recorded; supy Ty below the critical threshold implied by
(6) and (15).

“Green checkmark” reproducibility and audit

We recommend a short, perartifact box that lists pass/fail for each certificate class. A result is

marked with a green checkmark only if all items pass under the frozen configuration:

Reproducibility: code commit hash; kernel checksum; constants file (¢, a, C, 79, G); envi-
ronment and version pins; random seeds.

Energy /residuals: gap and norms reported; thresholds met.
Positivity /monotonicity: operator and displays pass stated tests.
Convergence: grid/Hankel tolerances met; padding documented for isolated systems.

Windows: masks and overlap constant M recorded; supy Ty below threshold.

Certificates should be archived alongside figures/tables (e.g., as . json sidecars) and referenced

in captions. This enables third parties to audit compliance with the coercive projection law

without rerunning the full pipeline.



7 CrossDomain Constant Structure

The same CPM constants that control stability in gravity appear in independent recognition
problems (e.g., folding as phase recognition). Table 1 aligns the numerical values and their
provenance, and highlights how the goldenratio structure fixes the kernel exponent a and
prefactor C in gravity.

Quantity Symbol Folding (CPM) Gravity (ILG) Provenance

Net constant Kiet (%)2 (%)2 Eighttick (¢ = 1/8) finite net
Projection constant Chroj <2 <2 Hermitian rankone bound

Energy control Ceng 1 1 Dirichlet/periodic normalization
Coercivity c 9 ~0.302 49 ~0.302 1/(Knet CprojCeng)

Kernel exponent a — 1(1—¢h) Recognition geometry (golden ratio)
Kernel prefactor C — g 3/2 Recognition geometry (golden ratio)
Gate parameter 70 — global (fixed) Finite refresh; lab — cosmic gate

Table 1: Alignment of CPM constants across domains. The same net and projection constants
yield the same coercivity c. In gravity, the kernel exponent v and prefactor C' follow from golden-
ratio structure, while 7y sets the dimensionless gate between laboratory and cosmic regimes.

Interpretation: why proof and physics discover the same constants. Recognition
Science (RS) explains why proof optimization (CPM) and physical optimization (inference under
finite refresh) converge to the same architecture:

o The eighttick alignment (¢ = 1/8) that optimizes covering nets in CPM coincides with the
timing structure (eightbeat ledger cycles) that optimizes recognition capacity.

o The Hermitian rankone bound (Cpro; < 2) reflects the same minimal projection geometry

across convex cones and recognition modes.

o In gravity, goldenratio rigidity fixes the kernel’s longwavelength behavior: a = %(1 — o™

and C' = cp_3/ 2 are not tunable; they follow from the recognition cost functional and the
golden ratio’s unique fixedpoint property.

The result: a single set of constants that stably governs galaxies, growth, and optics without
persystem dials. The constant alignment (¢ = 49/162 in both folding and gravity) is not
numerology—it is RS architecture discovered from both directions.

8 New Predictions (from the Law, not a Model)

The coercive projection law yields linked, sign and slopelevel predictions that do not depend
on auxiliary modeling choices. They arise from positivity and monotonicity of w, the explicit
coercivity constant, and the singlekernel universality that binds probes together.

The rotation—lensing—growth triangle

» Linked signs and slopes. A monotone w(k,a) (0w < 0, 9w > 0) demands: (i) outer
rotationcurve displays w(R) nondecreasing over radii where Hankel power concentrates at
low k; (ii) a mild, monotone kdependence in the latetime growth rate f(a, k); (iii) a negative

10



low? ISW sign; and (iv) a mild lowL enhancement in CMB lensing amplitude with a smooth
return to GR at high L.

o Nogo behaviors. The following cannot occur under the law: (i) persistent nonmonotone
w(R) in clean disks; (ii) strong, oscillatory kdependence in f(a,k) after controlling for
background; (iii) a robust positive lowl ISW crosscorrelation; (iv) a decreasing lensing
amplitude toward low L; or (v) perprobe retuning of w to reconcile inconsistent signs/slopes.
Any one is a structural falsifier.

Nearfield slope and nanogravity trend

At high wavenumber, w(k,a) =1+ C(a/(k19))* with o > 0 implies a negative logarithmic slope
dlnw/dInk = —« % < 0. Thus, nearfield deviations must be small, negativeslope
corrections approaching unity from above as k — co. The nanogravity regime therefore exhibits
a gentle, monotone approach to GR with no oscillatory or positiveslope features. Controlled
experiments that recover the opposite sign or a nonmonotone behavior would falsify the kernel
form.

Crossprobe amplitude —band constraints

The lineofsight average of w imposes consistent amplitude bounds across probes and bands:
rotationcurve displays, tracerindependent E¢, lowf ISW, and low L lensing form a single amplitude
budget. A scale/time band that demands enhancement in one probe must produce a commensurate
response in the others. Conversely, a band that appears enhanced in one probe but suppressed
in another (after identical hygiene) violates singlekernel universality.

9 Outlook: Relativistic Completion via Coercive Projection

The nonrelativistic law invites a relativistic presentation that preserves coercivity and universality.

Effective stress—energy and route identities

Define an effective, divergencecontrolled stress—energy (or pressure 2form) built from the filtered
source p = w(V,a) s, and choose a gauge in which the coercivity identity (15) holds at the level
of metric potentials. Route identities (Kgates) then lock normalizations by equating independent
constructions (e.g., time—to—length routes), eliminating ambiguity in gauge presentations and
preventing hidden degrees of freedom. The same constants (¢, o, C, 79) fix the longwavelength
sector.

Program for Nbody and multiprobe synthesis

o Nbody with prefiltered sources. Incorporate the prefilter step (p = w * s) at each time
slice, then solve standard Poisson and advance particles. Emit certificates (energy, residuals,
convergence, kernel checks) per snapshot.

¢ Multiprobe joins. Enforce singlekernel universality by sharing kernel arrays and constants
across rotationcurve, growth, lensing, and ISW pipelines; attach perprobe certificates and a

11



crossprobe consistency summary.

» Release practice. Archive certificate sidecars (JSON), kernel checksums, and environment
pins with each public figure/table to enable independent audit without reruns.

This program extends the present nonrelativistic law to surveyscale inference while preserving
its decisive feature: a single, auditable structure that ties galaxies, growth, and optics together
by coercivity and explicit constants.

10 Conclusion

We have articulated and instantiated a coercive projection law of gravity: nature projects raw
baryonic sources through a fixed, scale and timeaware kernel to construct an effective pressure
source, and the gravitational field is the unique minimizer of a classical energy with that source.
In this presentation, InformationLimited Gravity (ILG) is not a tunable phenomenology but
the gravitational face of a universal projection principle. A CPM (Coercive Projection Method)
framework with explicit constants certifies existence/uniqueness, positivity, and stability, and
binds galaxies, growth, ISW, and lensing as a single auditable structure.

Three distinguishing features.

1. Universality. One kernel and one set of coercivity constants apply across probes; persystem
retuning falsifies the law.

2. Falsifiability. Positivity and monotonicity of the kernel generate linked, sign and slopelevel
predictions (rotation—growth —lensing triangle; nearfield slope sign; crossprobe amplitude
bands) that cannot be violated without breaking the principle.

3. Auditability. Every result ships with compact certificates—energy values, residual norms,
positivity /monotonicity checks, convergence diagnostics, kernel sanity and checksums—so
that independent parties can verify compliance without reruns.

Why the constants align. The coercivity constants (net, projection, energy) match those
arising in independent CPM domains (e.g., folding), while the kernel’s exponent and prefactor
follow from Recognition Geometry’s goldenratio rigidity; the fundamental tick 7y sets the gate
between laboratory and cosmic regimes. This alignment explains why proof optimization (CPM)
and physical optimization (recognition under finite refresh) converge: the same architecture is
discovered from both directions.

The engine and next steps. We release a minimal engine (CPMCosmologyGridPath) that
implements the grid (FFT) and disk (Hankel) paths, emits certificates by default, and enables
multiprobe synthesis under a single kernel. Nearterm directions: (i) relativistic completion
preserving coercivity via effective stress—energy and Kgates; (ii) Nbody pipelines with prefiltered
sources and persnapshot certificates; (iii) surveyscale audits reporting pass/fail against pre-
declared thresholds. The decisive test is not a better fit but a better law: one kernel, explicit
constants, green checkmarks, and crossprobe predictions that stand or fall together.
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Appendix A: Functional Setting and Existence Details

Function spaces and boundary conditions. For an isolated domain Q C R? with ® — 0
at infinity, take ¥V = H{ (). For periodic T3, take V = {® € HY(T?) : [® = 0}. Assume
p € HY(Q) (p € L? suffices). The bilinear form a(®, ¥) = (87G)~! [ V® - V¥ is continuous
and coercive on V.

Lax-Milgram and energy identity. By Lax-Milgram, for each p € H~! there exists a unique
®* € V solving V2® = 47G a’p with the stated boundary conditions. Moreover,

el - e |n) = o [ V(@ —a")Pds,

giving Ceng = 1 in the energy-defect control.

Green’s representation (isolated). If p € L'(R3) N LY/5(R3), the potential ®(x,a) =
—Ga? [ p(y,a)/|z — y| d®y solves the Poisson equation in the distributional sense and decays at
infinity; the Dirichlet energy is finite.

Operator positivity. For real f € L2, (f,w(V,a)f) = [w(k,a)|f|>d3k/(27)3 > || f]|2 since
w > 1. This is an operatorlevel statement and does not require a pointwise W (r,a) > 0.

Appendix B: Discretization Hygiene and Algorithms

FFT grid path (periodic).
e Deposit s on an N, x Ny x N, mesh; FFT to s.

o Multiply by w(k, a) in Fourier space (evaluate enhancement in logs).
e Solve ® = —4nG a2p/k? for k # 0; set ®(0) = 0.
o Inverse FFT; differentiate spectrally for forces; apply a 2/3 spectral cutoff.

Hankel disk path (axisymmetric).

« Compute %y(k) = [ REy(R) Jo(kR) dR on a log grid (FFTLog).
« Form P(k) = w(k,1) (k) and v*(R) = 27G R [ k J1(kR) P(k) dk.

e Use thickness corrections via k, quadrature or standard kernels as needed.

Convergence and padding. Double resolution (grid) or sample count (Hankel) and require
relative changes < 1%. For isolated boxes, zeropad by > 2 per dimension and verify stability
against padding.

Appendix C: Certificate Fields and Thresholds

Minimum fields.
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« Energy &, gap; residual norms (L?, H'); windowed residuals Tjy .

o Positivity/monotonicity: operator quadratic form min; P(R) sign; w(R) slope sign.
o Convergence: grid/Hankel relative errors; padding factor for isolated systems.

e Kernel: highk deviation from unity; slope signs; kernel checksum.

o Provenance: commit, constants (¢, a, C, 79, G), environment pins, seeds, timestamp.

Default thresholds. Convergence < 1%; highk |w — 1| < 5%; slope signs dyw < 0, dgw > 0;
positivity within numerical tolerance; window overlap M recorded; supy, Ty below the critical
threshold implied by coercivity.

Appendix D: Constants and Provenance

Golden ratio ¢ = (14+/5)/2; exponent o = %(1—<p*1); prefactor C' = ¢3/2; tick 1y catalogglobal;
Newton’s constant G in consistent units (kpc/Mpc conventions noted in artifacts). Release
kernel checksum (SHA256) and constants JSON with each analysis.

Appendix E: Reproducibility Notes

Repository: CPMCosmologyGridPath. Dependencies: Python 3.11, NumPy > 1.26, SciPy
> 1.11. Examples: grid path (growth, lensing, ISW) and disk path (rotation curves). Provide a
onecommand script to regenerate figures with certificate sidecars; pin environments and record
seeds. Artifacts should include perartifact JSON certificates and a run manifest.

Appendix F: Growth and E; Details

Growth ODE. Integrate &, + 2Hd, — 47G a? ppWdp = 0 in a using §  a initial conditions at
early times; report D(a,k) = &/8p and f(a,k) = ad/d.

E¢ estimator. Use (17) with surveyspecific geometry factors; report tracerindependent values
and consistency across tracers as a certificate item.

Appendix G: NoRetuning Theorem (Sketch)

Assume a single kernel w, fixed constants, and bounded window overlap M. Suppose acceptable
residuals require pergalaxy changes to w. Then the projection II cannot be a unique minimizer of
a single energy across the survey, contradicting the coercive projection law (existence/uniqueness
with explicit constants). Equivalently, supy, Ty computed under the global kernel exceeds the
critical threshold implied by coercivity for some systems; replacing w galaxybygalaxy constitutes
a change of law rather than a parameter choice. Therefore pergalaxy retuning falsifies the
universal law.
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Appendix H: Notation and Symbols

Symbol

Meaning

Notes

D(x,a)

p(x,a)
s
w(k,a)
C,a

70
E[@[p]
Dy
Dres
I

K net

CprOj
Ceng

fla, k)
Eg(a, k‘)

Gravitational potential

Effective pressure source

Raw baryonic source

ILG kernel (Fourier symbol)

Kernel constants

Fundamental tick
Energy functional
Dirichlet defect
Residual defect

Projection

Net constant

Projection constant
Energy-control

Coercivity constant

Growth rate

Tracerindependent ratio

Admissible ® € V (Dirichlet or
periodic)

p=w(V,a)s

oo (galaxies), py 9y (cosmology)
1+ C(a/(kmo))”

C=p2 a=31-¢")
(RSderived)

Lab — cosmic gate (global, fixed)
sig [ VO + [a’p@

J19(® - o0)2

V2@ — 47 Ga’p|)3, -,

®* = II(p) unique Poisson
solution

(+e)/A-e)*e=1/8
(eighttick)

< 2 (rankone/Hermitian bound)
1 (normalization)

49/162 ~ 0.302 (universal across
CPM domains)

0lnD/0Ina
[4nGa®py/H) W/ f

Repository and reproducibility.

Code, tests, examples, and certificate templates: github.com/jonwashburn/CPM-Cosmology-Grid-Path.
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